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Abstract

passive structured layers.

kAll—optical computing

Quantitative phase imaging (QPI) is a label-free computational imaging technique used in various fields, including
biology and medical research. Modern QPI systems typically rely on digital processing using iterative algorithms for
phase retrieval and image reconstruction. Here, we report a diffractive optical network trained to convert the phase
information of input objects positioned behind random diffusers into intensity variations at the output plane, all-
optically performing phase recovery and quantitative imaging of phase objects completely hidden by unknown,
random phase diffusers. This QPI diffractive network is composed of successive diffractive layers, axially spanning in
total ~704, where A is the illumination wavelength; unlike existing digital image reconstruction and phase retrieval
methods, it forms an all-optical processor that does not require external power beyond the illumination beam to
complete its QPI reconstruction at the speed of light propagation. This all-optical diffractive processor can provide
a low-power, high frame rate and compact alternative for quantitative imaging of phase objects through random,
unknown diffusers and can operate at different parts of the electromagnetic spectrum for various applications in
biomedical imaging and sensing. The presented QPI diffractive designs can be integrated onto the active area of
standard CCD/CMQOS-based image sensors to convert an existing optical microscope into a diffractive QP!
microscope, performing phase recovery and image reconstruction on a chip through light diffraction within
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Introduction

Imaging weakly scattering phase objects, such as cells,
has been an active research area for decades, with various
solutions reported ™ for applications in different fields,
including biomedical sciences. One common approach is
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the use of chemical stains’ or fluorescent tags’ to bring
contrast to such weakly scattering microscopic features of
objects, but these methods require complex sample
preparation steps, involving the use of exogenous labeling

agents, which might interfere with the normal
physiological processes of specimens. Differential
interference contrast (DIC) microscopy is another

commonly used method, which can rapidly image optical
path length changes in unstained samples, revealing the
qualitative phase information™’; however, it lacks a
quantitative measurement of the optical phase distribution.
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Addressing the need for quantifying the phase shift
information of objects, quantitative phase imaging (QPI)
has become a powerful and widely used tool for non-
invasively imaging transparent specimens with high
sensitivity and resolution''. Over the last decades, various
digital QPI techniques have been developed, such as
Fourier Phase Microscopy (FPM)"”, Digital Holographic
Microscopy (DHM)**" Diffraction Phase Microscopy
(DPM)", Spatial Light Interference Microscopy (SLIM),"”
among many others. Traditional QPI systems often require
relatively large-scale computational resources for image
reconstruction and phase retrieval algorithms, which are
time-consuming, partially hindering the frame rate of these
computational imaging systems. Moreover, the majority of
these works did not consider random scattering media
within the optical path, which is especially prevalent in
biological tissue”'". On the other hand, some works
addressed QPI through scattering media by, e.g.,
employing coherence-controlled holographic microscopy ",
but the optical setups used in these cases remain relatively
bulky. With the development and widespread use of deep
learning methods, recent works have also involved deep
neural networks in QPI, significantly advancing the image
reconstruction speed and the spatiotemporal throughput,
also improving the image quality by levering machine
learning and GPU-based computing®”’ "

Recent research also presented an all-optical phase
recovery and image reconstruction method for QPI using
diffractive deep neural networks (D’NN), enabling
computer-free image reconstruction of phase objects at the
speed of light propagation through thin diffractive layers”.
A diffractive network is an all-optical machine learning
platform that computes a given task using light diffraction
through successive (passive) transmissive layers™ *, where
each diffractive layer typically consists of tens of
thousands of diffractive units to modulate the phase and/or
amplitude of the incident light. Deep learning techniques,
such as error backpropagation and stochastic gradient
descent, are used to optimize each layer's modulation
values (e.g., transmission coefficients), mapping complex-
valued input fields containing the optical information of
interest onto desired output fields™ .

In this work, we report the design of diffractive optical
networks for phase recovery and quantitative phase
imaging through random unknown diffusers. Unlike some
of the earlier work™"', the presented QPI diffractive
network can convert the phase information of an input
sample into a quantitative output intensity distribution even
in the presence of unknown, random phase diffusers, all-
optically revealing the quantitative phase images of the
samples that are completely covered by random diffusers.
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This diffractive network, after its training, generalizes to
all-optically perform QPI through unknown random
diffusers never seen before, without the need for a digital
image reconstruction algorithm. It has a compact axial
thickness of ~70A, and does not require any computing
power except for the illumination light. The QPI D’NN
designs reported in this work can potentially be integrated
with existing CCD/CMOS image sensors by fabricating the
resulting thin diffractive layers on top of the active area of
an image sensor array. Such an on-chip integrated D’NN
can be placed at the image plane of a standard microscope
to convert it into a diffractive QPI microscope. This
diffractive computing framework for phase retrieval and
QPI through random unknown diffusers can potentially
advance label-free microscopy and sensing applications in
biomedical sciences, among other fields.

Results

Design of a diffractive optical network for QPI
through random diffusers

Fig. la illustrates the schematic of a 4-layer QPI D’NN
trained to all-optically recover the phase information of an
input phase object through unknown random phase
diffusers. To train this QPI diffractive network, phase-only
objects with unit amplitude were randomly selected from
the MNIST dataset and placed at 53.3A in front of
randomly generated phase diffusers (see the Materials and
methods section). The QPI diffractive network designed
here was composed of four successive diffractive layers
with an axial distance of 2.67A between them, and the
distance between the random diffuser plane and the first
diffractive layer was also 2.67\. The output image plane
was designed to be 9.3A away from the last diffractive
layer, as shown in Fig .1b.

We introduced multiple random diffusers in each
training epoch to build the generalization capability for the
diffractive layers to quantitatively image phase objects
distorted by new random diffusers. We used the correlation
length (L) to characterize random diffusers in terms of their
effective grain size (see the Materials and methods
section), and all the random diffusers used in training and
blind testing were assumed to have the same correlation
length (L = L, 4, = Lies), modeled as thin phase masks
(Fig. 1b). During the training phase, handwritten digit
samples were randomly selected from the MNIST dataset,
and fed to the diffractive network, propagating through the
corresponding random diffuser and the
diffractive layers to form the intensity profiles at the output
plane. The design of our diffractive networks was based on
numerical simulations in which phase-only objects, random

successive
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Fig. 1 All-optical phase recovery and quantitative phase imaging through random unknown diffusers using a D’NN. a The schematic drawing of
the presented QPI D’NN, converting the phase information of an input object behind a random phase diffuser into a normalized intensity image,
which reveals the QPI information in radians without the use of a digital image reconstruction algorithm. b Optical layout and the training
schematic of the presented QPI diffractive networks. ¢ Sample images showing the image distortion generated by random phase diffusers with
L =142. Top: input phase objects. Second row: free space propagation (FSP) of the input objects through the diffusers, without the diffractive
layers. Third row: the input objects imaged by an aberration-free lens through the random diffuser. Fourth row: the QPI D’NN output.
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diffusers, and diffractive layers were modeled, and the free
space propagation of the optical fields was computed using
the angular spectrum method (refer to the Materials and
methods section for details). The phase values of the
diffractive features at each layer were adjusted through
error backpropagation by minimizing the mean square
error (MSE) between the target QPI images and the
normalized output intensity profiles (see the Materials and
methods section). One epoch was completed when all the
55,000 images in the MNIST dataset were used, and the
training stopped after 200 epochs when the QPI D°NN

used/saw N = 200n different random diffusers, where n is
the number of diffusers used in each epoch (e.g., n =20
and N =4000). After the training, which is a one-time
effort, the converged QPI diffractive networks were
numerically tested by imaging unknown phase objects
through new, unseen random diffusers, as shown in
Fig. 1b, c.

Without loss of generality, all the QPI diffractive
networks reported in this paper were designed with unit
magnification, i.e., the output intensity features have the
same scale as the input phase features; this is not a
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limitation since the thin QPI D’NN design (spanning 701
in thickness) can be placed at the magnified image plane of
a QPI microscope, by fabricating and integrating it on top
of the active area or the protective glass of the
CMOS/CCD-based imager chip. Since the output optical
intensity at the back-end of the diffractive network depends
on the power of the illumination source, the diffraction
efficiency of transmissive layers and the quantum
efficiency of the image sensor array, we defined a
reference region at the output plane, within which the mean
signal intensity was calculated to normalize the raw output
intensity of the QPI D°NN (see the Materials and methods
section). After this normalization, the resulting output
intensity, denoted as Iyp; (x,y) [rad], was used as the final
quantitative phase image. This makes the QPI D°NN output
images independent of external factors such as the
illumination beam intensity or the quantum efficiency of
the image sensor used as part of the microscope design,
helping us quantitatively map the phase information of the
samples behind unknown diffusers into intensity signals.

All-optical phase recovery through random diffusers
using QPI diffractive networks

To demonstrate the all-optical phase recovery through
random unknown diffusers using QPI diffractive networks,
we used the samples from the MNIST dataset as phase-
only input objects and trained a 4-layer network with
n =20 random diffusers in each epoch, i.e., N =4000
random diffusers were used in total. To test the
performance of the trained QPI D’NN model, we first used
new hand-written digits from the test set that were never
used during the training stage; these test objects were
individually distorted by n =20 random diffusers used in
the last training epoch (termed as known diffusers) as well
as some newly generated diffusers that were never used
during the training (termed as new diffusers), as shown in
Fig. 2a. The resulting output images of the QPI diffractive
network reveal its generalization performance for all-
optical phase recovery and quantitative phase imaging of
new test objects through new random phase diffusers that
were never seen before.

We further tested the same QPI D’NN, which was
trained only with MNIST handwritten digits, using binary
phase gratings to quantify the smallest resolvable linewidth
and the phase sensitivity of the all-optical image
reconstructions through new random diffusers; see Fig. 3.
In this analysis, we varied the grating linewidth while
keeping the binary phase contrast as 0—m; each phase
grating at the input plane was completely hidden behind
random unknown phase diffusers as before. Our numerical
results reported in Fig. 3a show that O —x phase encoded
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gratings with a linewidth of ~9.61 were resolvable by our
QPI D’NN regardless of the grating direction and the
random phase diffuser used. Despite being trained using
only handwritten digits with relatively poor resolution, the
QPI diffractive network was able to quantitatively
reconstruct these phase gratings through unknown random
diffusers, indicating that our diffractive model was
successful in approximating a general-purpose quantitative
phase imager. Its resolution can be further improved by
using training images that contain higher resolution,
sharper features. Additional results of the QPI diffractive
network for quantitatively reconstructing more complex
images with higher resolution features can be found in
Fig. 4.

We also tested the same QPI D°NN network to image
distortion-free gratings by removing the random phase
diffusers in Fig. b while keeping all other components
unchanged; this scheme is against our training which
always used a random phase diffuser behind the input
plane. Despite deviating from its training configuration, the
QPI D’NN showed better image reconstruction quality
when the random diffusers were removed, further
demonstrating that the diffractive network design
converged to a general-purpose quantitative phase imager,
converting the phase information at the input plane into
quantitative intensity patterns at its output, with and
without the presence of random phase diffusers.

The input phase contrast is another factor affecting the
resolution achieved by our QPI diffractive network design.
To shed more light on this, we numerically evaluated our
QPI D°NN on binary phase gratings at varying levels of
input phase contrast (Fig. 3b); through this analysis, we
found out that the input phase gratings with a linewidth of
9.64 remained resolvable even when the input phase
contrast was reduced to 0.257. We also performed a similar
phase contrast analysis using the test samples from the
MNIST dataset to further examine the impact of the input
phase contrast over the quality of the QPI reconstructions
created by the diffractive optical network trained with
Qpain = @ =1, as shown in Fig. 5a, where a denotes the
phase range [0,a - 7] used for the training images. During
the blind testing, the input phase contrast parameter ()
was varied from 0.1 to 1.25, and the reconstructed D°NN
images at the output plane were quantified using the
Pearson Correlation Coefficient (PCC) and the percent
phase error (see the Materials and methods section).
Fig. 5b, c illustrate the mean and the standard deviation of
the resulting PCC and the percent phase error values as a
function of ., both of which peak at a,, =0.75 rather
than «,, = 1; this is due to the continuous distribution of
the phase values of the training images spanning
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[0, @/4in - r]. There is a performance drop as «,, decreased
to 0.1, suggesting that the trained QPI diffractive network
has difficulty separating the foreground and background
for smaller phase contrast input objects that are hidden
behind random unknown diffusers. On the other hand,
when «, increased to 1.25, beyond its training range
Quain =1, the reconstructed image quality was still
acceptable, although some performance degradation
appears (Figs. 5b-d), demonstrating the capability of the
QPI D°NN to generalize to input objects exceeding the
phase contrast range used during the training stage.

All these analyses reported above were performed using
phase-only input test objects that were completely hidden
behind random unknown phase diffusers with L, = 144.
Next, we removed the random phase diffusers in Fig. 5a
and tested the phase contrast performance of the same QPI
D’NN to quantitatively image distortion-free phase-only
objects; the results of this analysis are plotted in Fig. 5b, ¢

(red curves) as a,, varied from 0.1 to 1.25. As expected,
Fig. 5b-d reveal that the performance of the same trained
diffractive QPI network (@, = 1) was much better when
the random diffusers were removed, further supporting that
the D°NN converged to a general-purpose quantitative
phase imager, which is not only able to perform phase-to-
intensity transformations but is also resilient to structural
distortions caused by random, unknown phase diffusers
hiding the input phase objects.

Impact of the number of diffractive layers

Through both theoretical and empirical evidence, it was
demonstrated that deeper diffractive optical networks
compute an arbitrary complex-valued linear transformation
with lower approximation errors, and such deeper

exhibit higher generalization
39,40,42,43

diffractive architectures
capacity for all-optical statistical inference tasks
Similarly, we also analyzed the impact of the number (K)
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of trainable diffractive layers on the all-optical phase
recovery and QPI performance for imaging phase-only
objects through random unknown diffusers. Fig. 6a reports
the output images of the QPI diffractive networks through
known, new and no diffusers, where the known diffusers
refer to the random diffusers used in the last training
epoch, and the new diffusers are the newly generated
random diffusers, never seen before. Fig. 6b, c compare the
average PCC values and the absolute phase errors for the
phase imaging of unknown test objects using diffractive
QPI networks designed with different K, showing that 2-
layer networks had relatively low PCC values and high
phase error, and the imaging performance improved as we
increased the number of diffractive layers, K. This can also
be visualized in Fig. 6a, where the QPI results of the 2-
layer diffractive design are blurry with low contrast
compared to the results of the 6-layer diffractive design.

Our results further reveal that, with the additional trainable
diffractive layers available, the average PCC values in all
three cases (i.e., known, new and no diffusers) increase,
while the absolute phase errors decrease.

Furthermore, should emphasize that deeper
diffractive architectures generally exhibit learning and
inference  advantages over shallower diffractive
architectures, even if the shallower architectures are made
wider, as demonstrated in the literature for both spatially
coherent” and spatially incoherent illumination". For
example, a single phase-only diffractive layer that is much
wider, including a total of 7 trainable diffractive features in
that layer, performs much worse in its output accuracy and
blind testing after training, compared to a deeper and
narrower diffractive architecture that also includes the
of trainable diffractive features (7),
distributed over K diffractive layers (with each layer

we

same number
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having ~T/K trainable features)”". In fact, for a single-

layer phase-only diffractive processor, the ballistic photons
of a visual scene (with lower spatial frequencies) at the
input of the diffractive processor will directly dominate the
power balance at the output plane, making much weaker
spherical waves that are communicating through the edges
of the same diffractive layer negligible in terms of their
contributions to the accuracy of the desired output. This
effectively reduces the useful number of diffractive
features or degrees of freedom at a single phase-only
diffractive layer for a given optical inference or image
reconstruction task.

Impact of the diffuser correlation length (L)

We also investigated how the diffusers’ correlation
length affects the imaging quality. For this analysis, we
designed three different QPI diffractive networks, each
trained using random diffusers with a correlation length

(Lirin) 0£101,144 and 172 (see the Materials and methods
section); each one of the resulting QPI D’NN was blindly
tested with random new phase diffusers with the same
correlation length L, = L,.,. Fig. 7a visualizes the output
images of these three QPI networks, revealing that the
diffractive networks trained and tested with larger
correlation length diffusers more accurately reflect the
original phase distribution at the input, which aligns with
the fact that the phase diffusers with larger correlation
lengths introduce weaker distortions to the input objects.
Fig. 7b, c plot the PCC values and the phase errors of these
three QPI D’NN models for known, forgotten, new and no
diffusers, where the “forgotten” diffusers refer to the
diffusers used during the training stage before the last
epoch, i.e., the random diffusers used from the 1% to the
199" epoch of our training. We observe that the QPI
performance through the known diffusers used in the final
(200") epoch of the training is slightly better than imaging
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ity. a A schematic of the diffractive QPI network that was trained with

through forgotten diffusers or new diffusers, which is
expected due to the partial “memory” of the diffractive QPI
network. Another important finding is that the all-optical
phase recovery and QPI performance of these trained
diffractive networks to image test objects through new
random diffusers is comparable to imaging through
forgotten diffusers. Stated differently, from the perspective
of the QPI D°NN, a new random phase diffuser is
statistically identical to a forgotten phase diffuser that was
used during the earlier epochs of the training; in fact, this
feature can be considered a signature of successful training
of a diffractive imager network to see through random
diffusers.

The tradeoff between the QPI quality and the output

diffraction efficiency
Two factors mainly

efficiency of the presented QPI networks: the diffraction

influence the output power

efficiency of the transmissive layers and the material
absorption. In this study, we assumed that the absorption of
the optical material of the diffractive layers is negligible for
the operating wavelength of interest; this is a wvalid
assumption for most materials in the visible band (e.g.,
glass and polymers) since the entire axial thickness of a
QPI D°NN design is <100A. To control and accordingly
enhance the output power efficiency of QPI diffractive
networks, an additional loss function was introduced,
which balanced the tradeoff between the QPI performance
and the diffraction efficiency (see the Materials and
methods section). In Fig. 8, we present two QPI D’NN
designs with K=4 and 8 diffractive layers, both sharing the
same parameters as the set-up shown in Fig. 1. Their QPI
performance through new diffusers and no diffusers are
also plotted in Fig. 8. For the 4-layer QPI D’NN
architecture, the previously presented diffractive model that
was designed without a power-efficiency penalty (Fig. 2)
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achieved an output power efficiency of ~0.5% and a PCC
value of 0.885 for imaging input objects through new
random diffusers. By introducing the additional power-
efficiency loss term during training, the same QPI D’NN
architecture with K=4 achieved an increased output power
efficiency of ~1.86% while maintaining a good output
image quality with a PCC of 0.831. Compared to the
original QPI D’NN design that solely focused on the output
image quality, the newly trained diffractive network, which
took into account both the image quality and output power
efficiency, improved the diffraction efficiency by ~3-fold,
with only a minor compromise on the output image quality.

As shown in Fig. 8, for the QPI D’NN models with K=8
diffractive layers, the output image quality was further
improved compared to the 4-layer designs at the same
output efficiency performance. In general, a deeper D’'NN
architecture, such as the 8-layer model, can achieve a better
tradeoff between the output diffraction efficiency and the
QPI performance compared to shallow D’NN models with
fewer layers.

Discussion
As demonstrated in our numerical results, a QPI D°NN
trained with the MNIST dataset can all-optically recover
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the phase information of unknown test objects completely
covered by random unknown diffusers. By using the mean
intensity value surrounding the QPI signal area as a
normalization term, the QPI network becomes invariant to
changes in the input beam intensity or the power efficiency
of the system, and the resulting normalized intensity
profiles quantify the phase distribution of the input objects
distorted by random diffusers. Since these QPI diffractive
networks only consist of passive diffractive layers, they
perform phase recovery and quantitative phase imaging
without needing an external power source except for the
illumination light. Although the training process takes
relatively long (e.g., ~72 hours), it’s a one-time effort; after
this one-time training and the fabrication of the resulting
diffractive layers, the quantitative phase imaging of
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Fig. 8 The tradeoff between diffractive QPI signal quality and the
output power efficiency. a The PCC values and b and the phase
errors (in radians) of the QPI diffractive networks trained with
various levels of diffraction efficiency penalty. These QPI D’NN
models were trained using a4, = 1 phase-encoded input samples
selected from the MNIST dataset. Two D’NN set-ups using four and
eight  diffractive  layers  were  trained and  tested.
L = Lirain = Lyest = 144.

specimen hidden by unknown random phase diffusers can
be performed at the speed of light propagation through a
thin optical volume that axially spans <100A.

Noise is a common and unavoidable factor in optical
systems, often affecting the performance and accuracy of
imaging instruments. Therefore, understanding the impact
QPI diffractive network’s output
performance is crucial. To shed more light on this, we
assessed the robustness of the QPI D’NNs trained without
noise against various phase noise levels. Specifically, we

of noise on the

introduced a random phase noise, n,, to the object-free
regions surrounding the samples of interest, altering its
original uniform 0 phase, point by point. The random phase
noise n, follows a uniform distribution [0,¢,] for each
point, with ¢, being the maximum phase noise ranging
from 0 to 37/2 during the testing process, representing
different levels of phase noise. As shown in Fig. 9, the
original QPI diffractive network trained without phase
against noise, maintaining
acceptable QPI reconstruction quality within a phase noise
range of [0, 0.5n] even though the model was trained
without noise. However, its performance degrades quickly
when ¢, > 0.57. Next, we trained five additional models in
which noise was deliberately introduced during the training
process, with ¢, =n/4,7/2,3n/4,n,57/4. The image
reconstruction results of these five models, blindly tested at
various phase noise levels, are also reported in Fig. 9,
revealing a tradeoff between the image quality and

noise exhibits robustness



Li et al. Light: Advanced Manufacturing (2023)4:17

09 _ .
0.8
@]
8 0.7 —e— No noise
[0, 0.25x]
0.6 ~o— [0, 0.57]
—e— [0, 0.75n]
0.5 —o— [0, 7]
—e— [0, 1.257]
0.4

0 025t 0.50r 0.757 1.00m 1.25%

Test noise level

1.50n

Fig. 9 The image reconstruction results of six different QP D°NNs
trained with varying noise levels, with ¢, =0,n/4,7/2,3n/4,n,

5n/4, and blindly tested at various phase noise levels n.

robustness against noise; the QPI diffractive networks
trained with noise present relatively worse imaging
performance compared to those trained under noise-free
conditions, but they exhibit a stable reconstruction fidelity
when blindly tested under different ¢, levels, presenting
resilience against random phase noise.

Note that conventional QPI systems are relatively bulky
and need additional digital processing and algorithms to
retrieve the phase information of each sample from the
captured images, which can be time-consuming; this digital
computing step is needed for each sample of interest.
Although the implementation of these phase retrieval
methods using convolutional deep neural networks™' can
considerably accelerate the reconstruction speed per object,
this digital computation adds an extra step besides signal
acquisition. The QPI diffractive networks, on the other
hand, can complete the phase image reconstruction (even
through unknown random diffusers) as the input light
propagates from the objects onto the sensor over a thin
diffractive volume that axially spans ~704. In other words,
the signal captured by the sensor already represents the
QPI reconstruction result, eliminating the need for further
computation of the solution for the inverse problem.

Despite their advantages, the implementation of QPI
D’NNs remains challenging due to the requirement of high-
resolution 3D fabrication and alignment, which becomes
more critical when operating at shorter wavelengths. One
way to partially mitigate potential misalignments and
fabrication imperfections in the experiments is to employ a
“vaccination” strategy, which deliberately incorporates,
during the training stage, random 3D displacements or
imperfections into the diffractive layers”. To demonstrate
the impact of vaccination for QPI through random
diffusers, we introduced a uniformly distributed random
3D displacement vector,D = (D,,D,,D,), and designed a 4-
layer vaccinated QPI D°NN with a correlation length of

L=1L,,,=Le.;=144; see Fig. 10. The maximum
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permissible shift along the corresponding axes during the
training process was selected as A,,, =A,,, =0.2mm and
A, =0.375mm (see the Materials and methods section);
accordingly, D,,D, and D, followed a uniform distribution
in the range of U(-A,,,A..), U(-A,..A.)
U(-A,.,A,,,), respectively. All other parameters were kept
the same as the non-vaccinated D’NN setup shown in
Fig. 1. The QPI performance, in terms of the PCC and the
phase errors, was evaluated under varying amounts of
misalignments, as shown in Fig. 10b-e. For the QPI D°NN
trained without any random mechanical shifts (solid line),
the image output quality rapidly declined upon introducing
random shifts in the positions of the diffractive layers,
especially in the lateral directions. However, the vaccinated
QPI D’NN design demonstrated improved resilience to
both axial and lateral misalignments, as depicted by the
dashed lines in Fig. 10b-e, even sustaining a satisfactory

and

level of performance when the misalignments introduced
during the testing stage substantially exceeded those
applied during the training. These analyses confirm the
effectiveness of the vaccination strategy against potential
misalignments and fabrication imperfections, providing a
practical solution to implement QPI D’NN designs
experimentally.

In addition to such training approaches that can build
experimental resilience for fabricated diffractive networks,
high-resolution fabrication techniques, such as optical
lithography,  two-photon  polymerization-based 3D
printing”, electron beam lithography"’ and other emerging
approaches™ could also be used to fabricate diffractive QPI
networks that operate at shorter wavelengths, such as the
infrared or visible part of the spectrum.

Another important point that is worth emphasizing is
that, while a coherent diffractive neural network is a linear
optical processor for complex fields, the trained QPI
diffractive network approximates a nonlinear operation
applied on the input optical fields (phase-only objects in
this case, i.e., e/?). Specifically, the intensity (/) of the field
at the output region of interest of the QPI diffractive
network is proportional to the phase (@) of the input object,
ie, I=|D (input)|2 oc @, where D is the forward operation
performed by the trained QPI D’NN, acting on the input
field. This phase-to-intensity transformation approximated
by the QPI diffractive network represents a nonlinear
operation applied to the optical input fields™.

Although we considered here random diffusers as single-
layer thin phase elements, which is a common assumption
in various applications'*"”', an extension of this QPI D’°NN
concept for imaging through volumetric diffusers is left as
future work, which might find broader applications™”. For
example, the design of a hybrid system, which jointly
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ork

Fig. 10 Vaccinated QPI diffractive neural networks. a A schematic of the diffractive layer misalignment. b The PCC values and ¢ the percent
phase errors of the QPI diffractive networks trained with or without vaccination, and tested with different levels of axial misalignments. d The
PCC values and e the percent phase errors of the QPI diffractive networks trained with or without vaccination, and tested with different levels of
lateral misalignments. These QPI D°NN models were trained using a4, = | phase-encoded input samples selected from the MNIST dataset.
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trains a front-end diffractive network and a back-end
electronic neural network "' may be used to boost the
performance of QPI through more complicated volumetric
random diffusers. Finally, our results and methods can be
extended to operate at various parts of the electromagnetic

spectrum, including the visible and infrared wavelengths.
Materials and methods

The design of the random phase diffusers

We modeled a random phase diffuser as a phase-only
mask, whose complex transmission coefficient 7, (x,y) is
defined by the refractive index difference between the air
and the diffuser material (An=0.74) and a random
heightmap D (x,y) at the diffuser plane, i.c.,

2rA
1 (x.y) = exp (j%D(m)) (1)

where j = V—1. The random height map D (x,y) is defined

as
D(x,y)=W(x,y) =K (0) 2

where W (x,y) follows a normal distribution with a mean u
and a standard deviation o, i.e.

W (x.y) ~ N(.03) 3)

K(0) is a zero-mean Gaussian smoothing kernel with a
standard deviation of o, and ¢ =« ’ denotes the 2D
convolution operation. The phase-autocorrelation function
R;(x,y) of a random phase diffuser is related to the
correlation length L as:

R, (x,y) = exp (—7r (x2 +y2) /Lz) 4

By numerically fitting the function exp (= (x* +y*) /L?)
to R,;(x,y), we can statistically get the correlation length L
of randomly generated diffusers. In this work, for u =254,
0o =84 and o =741, we calculated the average correlation
length as L ~ 141 based on 2000 randomly generated phase
diffusers. We accordingly modified the o values to
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generate the corresponding random phase diffusers for the
other correlation lengths used in this work.

Optical forward model of the QPI D°NN

Free space propagation in air between the diffractive
layers was formulated using the Rayleigh-Sommerfeld
equation. The propagation can be modeled as a shift-
invariant linear system with the impulse response:
b4 1 Jj2nr
ER ) == + = 5
wix.y.2) r2(2ﬂr2 M)exp( A ) )
where r= y/x2+y?>+7?> and n=1 for air. Considering a
plane wave that is incident at a phase-modulated object
h(x,y,z=0) positioned at z=0, we formulated the

distorted image right after the random phase diffuser
located at z; as:

Uy (X,,20) = tp (x,y) [ (x,5,0) = w(x,9,20)]  (6)
This distorted field is used as the input field of subsequent
diffractive layers. The diffractive layers were modeled as
thin phase elements. Consequently, the transmission
coefficient of the layer m located at z=z, can be
formulated as:

tw = exp (o (X,¥,2m)) @)

th

The optical field u,, (x,y,z,) right after the m" diffractive

layer at z = z,, can be written as:

Mm (-xay7 Zm) = tm (X,% Zm) ° [Mm—l (X,y, Zm—l) *W (X,}% Azm)](g)

where Az, =z, —2.-1 1S the axial distance between two
successive diffractive layers, which was selected as 2.671
throughout this paper. After being modulated by all the K
diffractive layers, the optical field was collected at an
output plane which was Az, =9.34 away from the last
diffractive layer. The intensity of this optical field is used
as the raw output of the QPI D°NN:

L (X,7) = [ugs % w (x,, Azg)] )

The design of QPI diffractive networks

During the training process of QPI D’NNs, we sampled
the 2D space with a grid of 0.44, which is also the size of
each diffractive feature on the diffractive layer. A coherent
light was assumed as the illumination source for the
diffractive neural networks with a wavelength of
A= 0.75mm. As for the physical layout of the QPI D’NN,
the input field-of-view (FOV) was set to be 961 x964,
which corresponds to 240x240 pixels defining the phase
distribution of the input objects. Handwritten digits from
the MNIST training dataset were first normalized to the
range [0, 1] and bilinearly interpolated from 28x28 pixels
to 14X14 (Pr4reer)- The resulting images were up-sampled to
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168x168 using ‘nearest’ mode, then padded with zeros to
240x%240 pixels (¢;), matching the size of the input FOV.
Stated differently, without loss of generality, we defined an
object-free region with a constant transmission coefficient
of 1 to surround the samples of interest. The values of the
padded images ¢;(x,y) were used to define the input phase
values, and the amplitude at each pixel was taken as 1.
Another parameter () was introduced to control the range
of the input phase; accordingly, the complex amplitude at
the input FOV can be expressed as input = e/ with a size
of 240x240 pixels, and the target (ground truth) output
intensity is Lyger = @M Prareer With a size of 14x14 pixels.

The physical size of each diffractive layer was also set to
be 964x964, i.e., layer contained
240%240 trainable diffractive features, which only
modulated the phase of the incident light field. The axial
distances between the input phase object and the random
diffuser, the diffuser and first diffractive layer, two
successive diffractive layers, and the last diffractive layer
and the output plane were set to be 53.31,2.674,2.674 and
9.34, respectively. The size of the signal area at the output
plane, including the reference region, was set to be
69.61x69.64 (174%174 pixels), in which we cropped the
central 67.24x67.21 (168x168 pixels) region as the QPI
signal area and the edge region extending (in both
directions on x and y axes) by 3 pixels was set as the
reference region. According to our forward model, the QPI
signal /,p;(x,y) can be written as:

IVHW ('x7y)
Ref

where Ref is the mean background intensity value within
the reference region at the output plane, and Ipp/(x,y)
indicates the quantitative phase image in radians. We
further cropped the central 168x168 pixels of I,p; and
binned every 12x12 pixels to one pixel by averaging such
that /yp; had a final size of 14x14 pixels representing the
input object phase in radians.

During the training, » uniquely different phase diffusers
were randomly generated at each epoch. In each training
iteration, a batch of B =10 different objects from the
MNIST handwritten digit dataset were sampled randomly;
each input object in a batch was numerically duplicated n
times and separately perturbed by a set of n randomly
selected diffusers. Therefore, Bxn different optical fields
were obtained, and these distorted fields were individually
forward propagated through the same state of the
diffractive network. Therefore, we got Bxn different
normalized intensity patterns at the output plane
(Lop1 15---»1opr pn), Which were used for the mean square
error (MSE)-based training loss function calculation:

each diffractive

IQPI(x’y) = (10)
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2
Imrger (x7 y) - IQPlii ()C, y)|

1 Bn

xy

Loss =

Bn (1)

where Nop; = 14 X 14.

Pearson Correlation Coefficient (PCC) was used to
evaluate the linear correlation between the output QPI
image Ipp/(x,y) and the target I,..(x,y), which can be
expressed as:

Z (IQPI (x,y) —E) : (Itargel (x,y) _ngr)
VD (tor (63) = Ton) - (Farse (6:) = Torer)

PCC =

2

(12)
We also calculated the absolute phase error to assess the
phase recovery performance of a QPI D’NN:

phase error = Z Liarger (X, ¥) — L gpy (X, y)| (13)
or1
while the percent phase error is:
1 Itar et ()C, ) -1 (x, )
phase error% = Z o DY ety | (14)

QPI oy Itargei (xs )’)

In analyzing the impact of reduced input phase contrast
on the QPI performance, we trained a QPI D’NN using the
MNIST dataset and tested it with binary gratings and
handwritten digits. We binarized the MNIST samples by
setting a threshold of 0.5 during the testing stage. In the
exploration of the tradeoff between the QPI performance
and the output diffraction efficiency, we calculated the
power-efficiency E (I,,,) of the QPI D°NN as:

Dol ey) Y L ()

Z linput (x,y)| - 240°

and the corresponding diffraction efficiency penalty was
calculated as follows:

Losseff (Iraw) = max {0’ Elarget - E(Iraw)}

E(,,) = (15)

(16)

where E,,,., was the target power-efficiency, which varied
from 0 to 0.03 for the models presented in Fig. 8; the
diffractive model presented in Fig. 2 was trained without
any diffraction efficiency penalty. Based on these
definitions, the total loss function that included the power-
efficiency penalty can be rewritten as:

NlPl ZZHI Z |Itarget (x,y) - IQPIJ' (x,y)|2
X,y

Loss = +
Bn

Bn
Zizl max {0’ E"”g” -E (Irawii)}
Bn

(17)
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D°NN Vaccination

To assess the effectiveness of the vaccination strategy
against the negative impact of potential fabrication
inaccuracies and mechanical misalignments, we trained a
QPI D’NN while intentionally introducing random
displacements during the training stage. Specifically, a
random lateral displacement (D,,D,) was added to the
diffractive layer positions, where D, and D, were randomly
and independently sampled, i.e.,

D, ~U(-0.2mm, 0.2 mm), D, ~U(-0.2 mm, 0.2 mm)
(18)

where D, and D, are not necessarily equal to each other in
each misalignment step. Additionally, a random axial
displacement D, was also added to the axial distance
between any two successive planes after the diffuser,
including the distances between the diffuser and the first
diffractive layer, between two successive diffractive layers,
and from the last diffractive layer to the output plane. D,
was also randomly sampled:

D, ~U(~0.375 mm, 0.375 mm) (19)

Digital implementation

The QPI diffractive neural networks were trained using
Python (v3.6.13) and PyTorch (v1.11, Meta AI) with a
GeForce GTX 1080 Ti graphical processing unit (GPU,
Nvidia Corp.), an Intel® Core™ i7-7700K central
processing unit (CPU, Intel Corp.) and 64 GB of RAM,
running the Windows 10 operating system (Microsoft
Corp.). The calculated loss values were backpropagated to
update the diffractive layer transmission values using the
Adam optimizer” with a decaying learning rate of
0.997*" x 107°, where epoch refers to the current epoch
number. Training a typical QPI D°NN model takes ~72 h to
complete with 200 epochs and n = 20 diffusers per epoch.
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