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A B S T R A C T

Escalation of extreme weather events represents substantial threat to power system infra-
structure. Mobile emergency generators (MEGs) can form part of a flexible restoration strategy
against such destructive events. However, with continued expansion of distribution networks,
quantification of the impact of MEGs has become increasingly challenging owing to extreme-
weather-event-induced uncertainties. In this paper, we propose a stochastic geometry-based
method for assessing the impact of MEG deployment on distribution networks affected by ex-
treme weather events through investigation of structural features. First, we propose a distance
measure to represent the electrical connection between power grid components. Subsequently,
we adopt the point process and Voronoi tessellation to describe the spatial distribution of power
grid components and the service coverage provided by MEGs under different scenarios. Then, we
propose a set of assessment metrics to evaluate the survivability of power grid components and
the resilience of the entire distribution network under extreme weather events. Finally, we derive
accurate analytical expressions for the distance distribution and resilience metrics, such as
coverage probability and load shedding, enabling us to explore the relationship between MEG
deployment decisions, structural features, and power grid resilience. The proposed method en-
ables analytic assessment of the impact of MEG deployment on the resilience of distribution
networks, and provides beneficial insights to help formulate efficient measures for enhancing
resilience. Case studies demonstrated that the proposed method is accurate and efficient in
dealing with network analysis and assessment problems for distribution networks under massive
potential failure scenarios.

1. Introduction

1.1. Background and motivation

Resilient power systems are of paramount importance for ensuring a reliable supply of electricity to a wide range of critical
infrastructures (IEA, 2020). However, the resilience of power systems is currently under unprecedented threat owing to increasing
climate-change-induced extreme weather events (Busby et al., 2021; McGranaghan et al., 2013). For example, a large-scale power
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outage that occurred in Texas (USA), in February 2021, was primarily caused by extremely cold weather. More than 4.5 million
residences were affected during the peak outage, causing approximately $155 billion in losses (Busby et al., 2021). Historical data
indicate that approximately 90% of power outages occur in distribution systems (McGranaghan et al., 2013). Therefore, prioritizing
the enhancement of distribution system resilience is of utmost importance.

Mobile emergency generators (MEGs), as one type of mobile power equipment, can efficiently enhance the resilience of power
grids (Shang et al., 2009). Specifically, they can provide emergency power to support critical loads and serve as a flexible resource for
system restoration owing to their mobility and large capacity (i.e., up to several MVA) (Zhou et al., 2009). The potential of MEGs
necessitates thorough investigation and exploration because their use offers the prospect for enhanced survivability of critical loads
against the impact of extreme weather events. Previous studies mainly focused on a two-stage or a three-stage framework for dis-
patching MEGs as distributed generators in a distribution network to restore critical loads by forming multiple microgrids (Lei et al.,
2018; Wu et al., 2023). In the first stage, MEGs are proactively preassigned to candidate nodes before the occurence of a disaster,
whereas in the second stage, MEGs are dispatched in real time after an extreme event has struck (Lei et al., 2018). In Cai et al. (2023),
the stage-based uncertainties associated with formulating a two-stage MEG dispatch framework are considered. Reference Wu et al.
(2023) considered the resilient operation of distribution systems during disasters and formulated a three-stage MEG dispatch model.

It is noteworthy that extreme weather events pose a substantial challenge in the decision-making process regarding MEG pre-
allocation before the occurrence of disasters (Zhang et al., 2021). In highly uncertain extreme weather events, the operation and post-
disaster restoration strategies of a power system vary spatiotemporally based on a given predeterminde MEG distribution. To address
this problem, previous studies investigated power grid outage management under the impact of extreme weather events by con-
sidering the co-optimization between MEGs and other crucial response resources such as mobile energy storage systems (Erenog˘lu
and Erdinc¸¸¸, 2021), distributed generators (Hou et al., 2023), static energy storage systems (Ghasemi and Moshtagh, 2022) and
repair crews (Zhang et al., 2023a). However, the impacts of MEG pre-positioning decisions on system resilience, especially power grid
structure, have not been well investigated. Specifically, MEG pre-allocation decisions need to consider potential fault scenarios that
might arise in a power grid after the occurrence of an extreme event, especially when the failure probability of power grid com-
ponents is closely related to the intensity of such an event (Wang et al., 2017). Given the vulnerability of the numerous components in
a distribution network, such as overhead lines and towers, the number of possible fault scenarios increases rapidly as the scale of the
power grid expands. Massive potential failure scenarios pose substantial challenges regarding MEG pre-allocation decisions.
Therefore, it is necessary to develop appropriate resilience assessment methods and associated metrics to evaluate the performance of
MEG pre-allocation decisions under all potential failure scenarios. In Shafieezadeh and Burden (2014), the macro system perfor-
mance, such as the average of operation and restoration costs over random distributions of system component failures, was proposed
as resilience a assessment metric. Failure scenarios can be generated using a sampling method (Bessani et al., 2019). Accordingly,
resilience metrics can be obtained by averaging across all generated scenarios for which the corresponding optimization problems are
solved. Nevertheless, this scenario-based method is computationally demanding when assessing large numbers of scenarios, and the
optimization problems cannot be solved accurately in polynomial time for large-scale networks. Therefore, it is essential to develop
an efficient resilience assessment method for MEG pre-allocation that has acceptable computational complexity.

In addition to MEGs, other structural features of power grids, such as node degree distribution, shortest distance, connectivity,
clustering coefficient, and power source distribution, have marked impact on power system resilience. Reference (National
Academies of Sciences, 2017) incorporated structural features as constraints in constructing resilience operating strategies. A power
grid can be viewed as a complex network (Pagani and Aiello, 2013), and complex network-based analysis methods represent a
reasonable approach for analyzing the impact of structural features on resilience. These approaches aim to capture network con-
nectivity features using various centrality indexes, such as node degree and betweenness, and to quantify their ability to sustain basic
functions when components fail (Baraba´si, 2013). Centrality indexes reveal inherent properties of networks, such as critical tran-
sitions of cascading failures (Scheffer et al., 2012) and demonstrate that network resilience can be determined by low-dimensional
network dynamics and topologies (Gao et al., 2016) or by a small set of components (Morone and Makse, 2015). For example, under
the impact of extreme weather events, the entire ensemble of power network components and their connections might enhance the
overall resilience (Gao et al., 2016). However, existing approaches used to analyze structural features generally only consider net-
work topology and neglect the electric characteristics. Additionally, MEG deployment might potentially influence the structural
features of a power grid by resulting in various microgrid formation patterns after the occurrence of an extreme weather event, which
is a subject that also requires further research. Therefore, new approaches are urgently needed for systematic assessment of how
MEGs and network structural features interact under the impact of extreme weather events and affect power system resilience.

In this paper, we employ stochastic geometry (SG) to develop a comprehensive resilience assessment method for MEG-assisted
distribution networks. SG, as an interdisciplinary method combination of geometry and probability theory, is a powerful tool for
dealing with random spatial patterns by averaging over all potential geometrical patterns (Chiu et al., 2013). It enables us to analyze
the structural features of a network from a novel perspective. By modeling the random locations of network components as spatial
point processes, we can analytically derive statistical characteristics of network performance metrics, such as connectivity. SG
provides a unified mathematical paradigm for modeling spatial stochastic networks and enables closed-form expressions that describe
network behavior. Such expressions facilitate the understanding of network operation and provide insightful design guidelines for
network operators, which are often challenging to obtain through computationally intensive simulations (Chiu et al., 2013). The
methodology used here has been widely adopted in the study of random phenomena in two-dimensional or higher-dimensional
spaces, and it has become a standard tool for modeling and analyzing wireless cellular networks (Andrews et al., 2011). However, few
studies have employed SG to address power system problems (Atat et al., 2020a; Atat et al., 2020b). Reference Atat et al. (2020a)
proposed a spatiotemporal power grid model based on SG to represent real-world power grids, which enables the implementation of a
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multiyear phasor measurement unit allocation scheme. Reference Ren and Hou (2022) proposed an SG-based method to assess the
survivability of power transmission systems. In Ren and Hou (2020), Atat et al. (2020b), planning and allocation schemes for electric
vehicle charging stations were proposed based on SG. Nevertheless, using SG to assess the impact of MEG deployment on power
system resilience remains an unexplored area. In summary, the main research gaps are as follows.

1) The impacts of MEG pre-positioning decisions on power grid structure under massive potential failure scenarios are not fully
considered in current two-stage or three-stage MEG deployment frameworks.

2) Scenario-based optimization methods face substantial challenges owing to the high computational costs involved when dealing
with massive potential scenarios as power grids expand.

3) The structural features of power grids have not been fully considered, and thus effective and efficient methods are required to
address the structural features before and after the impact of extreme weather events.

1.2. Aims and contributions

The main contributions of this paper are summarized below.

1) We propose an SG-based analytical method to assess the performance of MEG deployment decisions in enhancing the resilience of
distribution networks against the impact of extreme weather events. First, we employ point processes to depict the spatial dis-
tribution of power grid components under various scenarios. Then, Voronoi tessellation is utilized to describe the service coverage
of MEGs within the power grids. To the best of the authors’ knowledge, this is the first work to employ SG in analyzing the impact
of MEGs on power systems.

2) We propose a novel distance measure to characterize the electrical connections between power grid components. Compared with
Godsil and Royle (2001), the proposed distance measure considers all potential connection paths between components, and
compared with Lagonotte et al. (1989), Poudel et al. (2018), the proposed distance measure is more effective in capturing the
changes in electrical connections between components after faults occur. Furthermore, we derive analytical formulations for the
distribution functions and expectations of the distance measure to reveal the structural features and to address structure un-
certainties within power grids under various failure scenarios. The theoretical formulations accurately align with the actual
distance distributions among power grid nodes in various scenarios.

3) We define power system structural resilience for the first time, and we develop a comprehensive framework to analyze structural
resilience. A set of assessment metrics is proposed to quantify the structural resilience of distribution networks, and the corre-
sponding analytical results are derived to explore the relationship between structural features, MEG deployment decisions, and
structural resilience. Compared with the scenario-based optimization methods, the proposed SG-based method has much higher
computational efficiency in analyzing and calculating large-scale networks under massive potential failure scenarios, and the
calculation results closely align with the optimization results. The proposed SG-based resilience assessment framework provides
beneficial insights for both probabilistic value-based investment planning and appropriate measure selection for efficient en-
hancement distribution network resilience.

The remainder of this paper is organized as follows. Section II analyzes the structure uncertainty of power grids under the impact
of extreme weather events. Section III proposes the SG-based resilience assessment framework for distribution networks. Case studies
are presented in Section IV. Finally, our derived conclusions are presented in Section V.

2. Modeling and analysis of structure uncertainty in distribution networks

In this section, we first present the definition and the characterization of structure uncertainty in distribution networks in the face
of extreme weather events. Then, we propose a method based on discrete probability distribution to analyze the structure uncertainty
from a probabilistic and statistical perspective.

We define the structure uncertainty of a distribution network as the uncertain states of the electrical components (power grid node
and power lines), including node types, node injection power, and states of power nodes and power lines after faults occur. For
example, when a typhoon passes a specific geographic region, the failure probability of an electrical component within that region is
strongly correlated with the intensity and path of the typhoon, thereby resulting in its uncertain state. Uncertain states across
multiple components contribute to the structure uncertainty of the entire distribution network. Fig. 1 depicts two possible failure
scenarios in a 33-bus distribution network during an extreme weather event. In Fig. 1 (a), line 2–19 and line 10–11 are considered to
fail, the impact of which is examined in the case study section. In Fig. 1 (b), line 3–23, line 6–7, and line 32–33 are all considered to
encounter faults during an extreme weather event. The relationship between the failure probability of a component and hurricane
intensity, proposed in Wang et al. (2017), is expressed as follows:
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where wt represents the wind speed at time t during the hurricane; pwt and p0 correspond to the failure probability of a component
under hurricane and normal conditions, respectively; and w0 and wcollapse signify the wind speed thresholds at which a component
begins to experience disturbances and damage, respectively. The scaling factor is determined by the type of weather conditions.

According to (1), the failure probability of a component increases substantially with increase in the intensity of extreme weather
events. In the context of a distribution network, high-intensity extreme weather events can cause multiple component failures and
alter the network topology. Different numbers and locations of normal and failed components constitute crucial factors in distin-
guishing failure scenarios, which are referred to as the post-disaster structure patterns of a distribution network. Consequently, when
considering multiple components simultaneously, the number of possible post-disaster structure patterns of a distribution network
grows exponentially. Specifically, if a power network comprises N components, there will be 2N failure scenarios because each
component has two states, i.e., a normal state and a fault state. The number of post-disaster structure patterns to be addressed for a
distribution network with k normal components is expressed as follows:

=
×

C N
k N k

!
! ( )!N

k
(2)

Consequently, the computational burden is extremely high, even for a medium-sized distribution network.
One possible approach to address this problem is through the lens of probability and statistics. During an extreme weather event,

each electrical component might operate normally with probability p, whereas the probability of failure is 1-p, thereby constituting a
Bernoulli trial. The state of a component, indicated as y, can be either in normal state denoted by 1 or in fault state represented by 0,
following the Bernoulli distribution with parameter p. Assuming homogenous weather conditions across various regions over a short
period, all components will experience simultaneous disturbance and share the same failure probability, and the state of each
component is deemed independent of that of the others (Panteli et al., 2017). Therefore, the states of N components form a Bernoulli
process …y y y{ , , , }N1 2 , representing N independent and identically distributed Bernoulli trials. Based on the correlation between the
Bernoulli distribution and the binomial distribution (Ross, 2014), the number of components in a normal state after a faults occur can
be regarded as a random variable = =Y yi

N
i1 , which follows the binomial distribution, Y B N p( , ). Thus, we have the following:

= =Y k C p p( ) (1 )N
k k N k (3)

Equation (3) indicates the proportion of scenarios in which k components operate normally among all possible failure scenarios.
The expectation of the number of components operating normally is Np, which assumes a pivotal role in distinguishing various failure
scenarios.

The structure uncertainty of a distribution network focuses on the number and location of both normal and failed components, as
well as on their connections, during extreme weather events. Instead of assessing a specific scenario and calculating a concrete
resilience assessment metric, this paper investigates scenarios of multiple component failures and derives their statistical char-
acteristics relevant to resilience, e.g., the expected value and probability distribution of resilience metrics. Our aim is to propose an
effective method for modeling and analyzing the structure uncertainty of a distribution network under the impact of extreme weather
events in a probabilistic manner.

Fig. 1. Two failure scenarios of a 33-bus distribution network.
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3. Stochastic geometry-based resilience assessment method

In this section, we propose an SG-based approach for evaluating the performance of various MEG deployment decisions while con-
sidering the structure uncertainty induced by extreme weather events. We first provide a comprehensive overview of SG and point process
theory. Subsequently, we propose a distance measure to describe the connection among power grid nodes. Moreover, we define the
structural resilience of a power system and propose a novel point process model to characterize possible locations of power grid nodes in
different scenarios. To illustrate the service coverage of MEGs, we employ a Voronoi tessellation-based method. Finally, we develop
effective metrics to evaluate the structural resilience and to derive analytical expressions to quantify the structural resilience of a dis-
tribution network under the impact of extreme weather events. The framework depicted in Fig. 2 outlines the structure of Section III.

3.1. Preliminaries of stochastic geometry and point process

The SG method is a branch of applied probability theory that deals with the study of random spatial patterns. At its core, point
processes serve as fundamental and pivotal subjects of investigation. SG provides a powerful tool for depicting a random collection of
points in both one-dimensional and multi- dimensional space, enabling computation of statistical averages over all possible reali-
zations of a point process. This proficiency empowers us to extract comprehensive performance analyses, establish guiding principles,
and obtain invaluable design insights (Haenggi, 2012).

In this paper, we focus on the functionality of individual electrical components and on the average functionality exhibited by all
electrical components across all possible failure scenarios of a distribution network under the impact of extreme weather events.
Specifically, we employ point processes to model the spatial distribution of the components, the different realizations of which
characterize the possible locations of the components under different scenarios. Those realizations correspond to the random spatial
patterns of the distribution network. Subsequently, we analytically derive the statistical properties characterizing the random spatial
patterns of a distribution network by employing tools from SG.

For clarity, we first give a detailed definition of point processes.

Definition 1. (Point Process) (Haenggi, 2012): Considering a Euclidean space d, a point process = x i{ , }i is a finite and
countable random collection of points residing in d.

Remark: is a countable random set consisting of random variables xi
d as its elements. can also be defined by the random

measure formalism, which counts the number of points falling in a Borel set B d Haenggi (2012), defined as

=B x B( ) ( )
x

x
(4)

where δx(B) = 1B(x) is the Dirac measure at point x. Here, δx(B)= 1 if x B, δx(B)= 0 if x B.

Definition 2. (Poisson Point Process) (Haenggi, 2012): If a point process Φ satisfies the following conditions:

i) the number of points falling into any compact Borel set B d, i.e., ψ(B) follows the Poisson distribution,

= =B n e v B
n

[ ( ) ] [ ( )]
!

v B d
n

( )d
(5)

where λ denotes the intensity density of Φ. Here, λ describes the average number of points falling into the unit space, and v B( )d
denotes the Lebesgue measure of Borel set B.

Fig. 2. Framework of the proposed method.
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ii) ψ(B1), ψ(B2), … ψ(Bm) are independent variables if B1, B2, B3,. Bm are disjoint bounded sets in d. Then, point process Φ is a
Poisson point process.

This paper maps the distribution network into a point process. Fig. 3(a) illustrates a distribution network with two power sources,
and Fig. 3(b) shows a realization of the corresponding point process on a plane. The bounded sets G1 and G2 represent the coverage
areas of the power sourceG1 andG2, respectively. Points falling into bounded setsG1 andG2 represent the load consumers supplied by
the respective power source, whereas points located outside of sets G1 and G2 denote load consumers that cannot be served by MEGs.
The proposed approach leveraging the point process considers all possible scenarios by mapping them onto corresponding realiza-
tions of the point process. Consequently, we can derive the average performance of power source deployment decisions by averaging
over all potential realizations of the point process, thereby furnishing a groundbreaking perspective for tackling a multitude of
scenarios.

3.2. Distance measure between power grid nodes

Apart from modeling location distributions of power grid nodes, it is crucial to accurately quantify their interconnections. We
propose a distance measure that precisely quantifies the electrical connections among power grid nodes.

For a given power network, consider the injection of unit current into node i and the extraction of unit current from node j, with
all other nodes remaining as open circuits. By applying the power network equation I=YV and Kirchhoff’s law, we can express the
current difference = =i e e vYi j , where i v, d represent the current vector and the voltage vector, respectively (Song et al.,
2019). Consequently, the voltage difference between node i and node j can be expressed as follows:

= =e e v e e e ev v Y( ) ( ) ( )i j i j i i j
T

j
T † (6)

As depicted in (6), this voltage difference arises from the different current injections of node i and node j. Accordingly, we define
the distance measure between node i and node j as follows.

Definition 3. (Distance Measure between Power Grid Nodes): The distance measure between any pair of node i and node j in a
power network is defined as follows:

= e e e er Y( ) ( )ij i j i j
T † (7)

where Y† is the pseudo inverse of Y, e e,i j
n.

Remark. The proposed distance measure has clear physical meaning. It should be emphasized that a smaller rij signifies a reduced
voltage difference and a more robust link between node i and node j. In terms of voltage support, when node i is connected to a power
source and node j connects a load consumer, supplying power to the load consumer generates a voltage drop in the power source. If
the voltage drop exceeds the voltage limit, it signifies that the power source cannot support or cover this load. Hence, the distance
reflects both the level of difficulty a load consumer encounters in obtaining power from a power source and the priority level of
supplying a power source to the load consumer, when considering the maintenance of voltage stability.

Additionally, unlike other distance metrics, such as the topological distance determined by the shortest path length between nodes
(Godsil and Royle, 2001), the proposed distance measure accommodates all parallel paths linking the nodes. In summary, by em-
ploying the proposed distance measure, we can effectively quantify the electrical connection between any two nodes within a power
network. Furthermore, using the derived distance distributions in Section III. E, we can quantitatively assess any changes in the
connection between nodes caused by extreme weather events.

3.3. Coverage characterization of MEGs based on point process and voronoi tessellation

1) Point process model of distribution networks: In this part, we first provide a definition of the structural resilience of a power
network. The structural resilience of a power network focuses on managing resilience from the perspective of network structure. It

Fig. 3. A power network and its point process realization.
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considers not only the network topology but also the topological statistical indexes encompassing connectivity and connection be-
tween power grid nodes, as well as certain statistics of electrical structural features, such as the spatial distribution and sizing of
power sources, load consumers, and external flexible resources. Specifically, it characterizes resilience through statistical structural
feature.

As indicated previously, extreme weather events induce changes in the connections among power grid nodes and network con-
nectivity, leading to uncertainty in the overall structure and introducing risk to the structural resilience of a power network. To
address the structure uncertainty, we propose a point-process-based method that models the spatial locations of power grid nodes,
enabling diverse realizations that depict possible node locations. Consequently, when the point process model is ergodic, all possible
spatial locations are implemented, allowing probabilistic analysis of the power network’s average performance.

Distribution networks equipped with external flexibility resources, e.g., MEGs, mobile energy storage, and distribution generation
units, are referred to as heterogeneous distribution networks. The deployment of MEGs has notable impact on the structure of a
distribution network, amplifying its complexity and heterogeneity, especially during and after the occurrence of extreme weather
events. To establish a comprehensive and cohesive point process model for heterogeneous distribution networks, we employ multiple
spatially coexisting tiers. Each tier is characterized by distinct types of flexibility resources, varying numbers of resources, and
capacity. In this paper, we focus solely on the deployment of MEGs. The critical aspects of the proposed point process model can be
summarized as follows:

i) MEGs are modeled by a Poisson point process G with intensity density G;
ii) Load consumers are modeled by a point process u with intensity density u;
iii) The power consumption of any load consumer is less than the maximum output power of any MEG.

To implement the aforementioned point process model, we design an algorithm, shown in Algorithm 1, which generates points in
a plane-domain subject to the Poisson point process.

Algorithm 1. A plane-domain generation method for a Poisson point process.

Theorem 1 provides theoretical support for Algorithm 1.

Theorem 1. Suppose (ρ1, θ1), (ρ2, θ2),. (ρN, θN) are polar coordinates of N > 0 points from a Poisson point process on the circle C ^

{(x, y): x2 + y2 ≤ r2}, and ρ1, ρ2,. ρN are sorted in ascending order, denoted by 1, 2, … N . Then the ordered radii 1, 2, … N are
order statistics. The probability density function of the order statistic k is =f x( ) x

r
2

k 2 , x r[0, ]. Here, 1, 2, … N are independent
and identically distributed on [0, 2 ].

Proof According to the definition of order statistics (David and Nagaraja, 2004), the ordered radii 1, 2, … N are order statistics.
The probability density function of k is denoted as f x( )

k
, and the distribution function of k is denoted as F x( )k . The calculation

formula for f x( )
k

, based on the probability density elements, is expressed as follows:

=
< +

f x
x x x

x
( ) lim

( )
x

x
0x (8)

where < < +x x x( )k represents the probability of any point falling into a circle with an inner circle radius of x and an outer
circle radius of +x x . We know that < < + =x x x( )k

x x
r

2
2 . Therefore, the probability density function =f x( ) x

r
2

k 2 , x r[0, ].
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Here, 1, 2, … N are not order statistics. According to the definition of the Poisson point process, 1, 2, … N are independent and
identically distributed on [0, 2 ].

This completes the proof. □.
2) Coverage characterization of MEGs based on Voronoi tessellation: To accurately depict the service coverage of MEGs concerning

load consumers in response to potential extreme weather events, we employ Voronoi tessellation. Mathematically, this tessellation is
created by a series of randomly scattered points on a plane. For every point within point process Φ, the associated Voronoi cell is
defined as follows:

= <C a r a x r a x j k{ ( , ) ( , ), }k k j (9)

where r (a, xk) represents the distance between node a and node xk.
In this paper, the distances between nodes based on the proposed distance measure serve as the numerical measures for computing the

Voronoi tessellation. Mathematically, a measurable mapping from the probability space to the measurable space is referred to as a point
process. By employing the proposed distance measure as the measure of this measurable space, the distance between any two points in the
point process can be obtained, representing the mapping of electrical connections between power grid nodes in the measurable space.
Additionally, this paper considers the problem of the decision regarding MEG deployment in a power grid before extreme-event-induced
faults occur, but it does not involve real-timeMEG-scheduling issues during and after the occurrence of extreme events. In practical situations,
the gathering locations of MEGs might not coincide with the geographical locations of power grid nodes, but they will not be too far away
from each other to respond quickly to faults. For simplification, this paper assumes that MEGs are deployed at the geographical locations of
power grid nodes, enabling them to access the power grid at any time. Therefore, the physical distances between MEGs are converted to the
distances between those power grid nodes equipped with MEGs, which can be quantified using the distance measure proposed in this paper.

By utilizing the coordinates calculated through Algorithm 1 and the distances between nodes, we leverage the Bowyer-Watson
algorithm proposed in (Watson, 1981) to generate the Voronoi tessellation, effectively dividing the network into multiple Voronoi
cells. The distribution of MEGs and load consumers presented in Fig. 4, together with the coverage of MEGs on load consumers,
provides visual representation of how the proposed approach based on the Poisson point process and Voronoi tessellation works. The
polygons enclosed by the black solid lines in Fig. 4, called Voronoi cells, represent the coverage range of the MEGs within the
associated cells. For any specific MEG, the load consumers residing within its Voronoi cell can be supplied by the MEG, indicating that
those load consumers can be covered by the MEG. Conversely, load consumers located outside of the Voronoi cell of any specific MEG
are covered by other associated MEGs. The proposed Poisson point process model is leveraged to describe the potential spatial
distribution of MEGs and load consumers in the power grid across various scenarios, including both normal and fault conditions. By
employing the proposed distance measure as a metric, the relative positional distribution of MEGs and MEGs/load consumers is
mapped in the metric space. Then, Voronoi tessellation is utilized to determine the service coverage of each MEG, signifying its
coverage of neighboring load consumers. The integration of the Poisson point process with Voronoi tessellation represents a method
for analysis and computation of the coverage of MEGs on load consumers in specific scenarios. Through different realizations of the
Poisson point process in distance metric space, followed by the utilization of Voronoi tessellation, the coverage range of each MEG
can be obtained, effectively describing the power supply situation of MEGs to load consumers across diverse scenarios.

3.4. Structural resilience assessment considering MEG deployment

In this subsection, we formulate a comprehensive set of evaluation metrics to assess the structural resilience of a distribution
network, specifically focusing on load survivability, coverage probability, and load shedding.

Fig. 4. Poisson distributed MEGs, with each load associated with the nearest MEG.
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As a starting point, we propose a load survivability metric that effectively captures the ability of load consumers to withstand
extreme weather events. We divide the set of nodes in the power grid into two sets: NL, representing the load consumers, and NG,
representing the nodes allocated with MEGs.

Definition 4. (Load Survivability): The load survivability metric SIi for load consumer i NL is defined as follows:

=SI
j N r

r

min

( )
i

i
P

P G
ij

k N k j

P
P ik

,

Gj

Lj

G

Gk
Li (10)

where i signifies the priority of load consumer i. PLi represents the active power consumption of load consumer i, and PGj represents the
upper limit of the active power output of the MEG located at node j. Furthermore, rij denotes the distance between load consumer i and MEG
node j, and serves as a coefficient that quantifies the weight of power consumption for load consumers together with their distances to the
nearest MEG. Equation (10) precisely characterizes the ease with which a load consumer can obtain power from its nearest MEG during an
extreme weather event without compromising the survivability of other consumers. By combining (7) and (10), we can derive the following:

(11)

Equation (11) establishes the relationship between the power network structure (admittance matrix Y), MEG parameters, and the
survivability of load consumers.

Our proposed methodology adheres to the principle of maximizing coverage by leveraging available flexibility resources to support loads
to the greatest extent possible. Considering the uncertainties in network structure caused by extreme weather events, pre-positioned MEGs
might not align perfectly with the requirements of each outage area. Therefore, we propose the concept of coverage probability to evaluate
the survivability of both the load consumers and the entire network following the proactive positioning of MEGs at various candidate nodes.

Specifically, the coverage probability is equivalent to the following:

i) The probability that a random load consumer achieves a target survivability threshold or
ii) The average fraction of load consumers satisfying the target survivability threshold at any specific time or
iii) The average fraction of an area in the network that is “in coverage” at any time.
Definition 5. (Coverage Probability for Power Grid Nodes): The coverage probability for power grid node i is defined as follows:

= >p SI T[ ]cov i i, (12)

where T represents the survivability threshold for power grid nodes. A load being “in coverage” indicates that its survivability
exceeds threshold T. The value of T can be an adjustable parameter or the maximum failure probability of electrical components.

Definition 6. (Coverage Probability of Power Grids): The coverage probability for power grids is defined as.

= >p SI T r[ ( )]cov sys r, (13)

Equation (13) captures the macro performance of a power grid, revealing the average survivability of the power grid nodes during
the occurrence of extreme weather events after the MEGs have been pre-positioned.

Definition 7. (Load Shedding of Power Grids): The load shedding of power grids under MEG deployment is defined as.

=LS p P(1 )sys cov sys L,
i NL

i
(14)

where PL
i NL

i represents the total load consumption in a power grid.

By analyzing (10)-(14), we can gain insights into the macro-level performance of a power grid under different MEG deployment
strategies, thereby offering valuable theoretical decision-making guidance for system operators. The detailed analytical expressions of
(12)-(14) are derived in Section III. E.

3.5. Analytical characterization of power grid structural resilience

This part derives analytical results for the distance distributions between power grid nodes and the structural resilience metrics of
a power grid.

1) Distance distribution between power grid nodes: In Section III. B, we propose a distance measure to quantify the electrical connection
between power grid nodes. Distance is a crucial factor separating a specific node from other nodes. Owing to the impact of severe
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weather events on power grid nodes and power network structures, the distances between nodes become stochastic under dif-
ferent failure scenarios. Let = …r i n, 1, 2,i represent a set of random variables indicating distances from a randomly chosen node
to its n-th nearest neighbor. Our focus lies in obtaining the probability distribution form of the random variable ri. For the sake of
convenience and generality, we assume that this randomly chosen node and the other nodes can be considered homogeneous, and
that the analysis results obtained based on this node are general and can represent the characteristics of other nodes in the power
grid, as well as describe the overall characteristics of all nodes in the power grid. The distribution function of rn, which denotes the
distance from the randomly chosen node to its n-th nearest neighbor, is denoted as F R( )rn . We now provide the analytical de-
scriptions for F R( )rn .

Theorem 2. In a power grid with n+1 nodes, the distance between any node and its n-th nearest neighboring node is represented as
rn. The distribution function of rn is given by the following:

=
=

F R e R
k

( ) 1 ( )
!r

R

k

n k

0

1 2

n
2

(15)

where λ represents the proportion of non-island nodes in the power grid.
Proof Assuming that the location distribution of nodes in a power grid can be described by Poisson point process Φ with density
intensity λ, representing the proportion of non-island nodes in the power grid. The probability of k points from Φ falling into a
bounded closed set B in d-dimensional Euclidean space d is as follows:

= =B k e v B
k

( ( ) ) [ ( )]
!

v B d
k

( )d
(16)

where v B( )d denotes the Lebesgue measure of bounded closed set B, which corresponds to the area when considering a two-
dimensional plane.
Assuming that the randomly chosen node is located at origin o on the plane. Because the points of the point process are distributed
uniformly on the plane (and in higher dimensions), the shape of the closed set B on the plane is circular. When there are k points in
B, the radius of B is equal to the distance from the randomly chosen node to the k-th nearest point. Hence, the measure of the
closed set B is πr2.
The number of points in closed set B, i.e., ψ(B) is a discrete random variable. For the probability that ψ(B)<n is equivalent to the
sum of the probabilities that ψ(B) = 1, 2,. n−1, we have the following:：

(17)

Equation (17) precisely represents the complementary cumulative distribution function of rn. Specifically, the cumulative dis-
tribution function of rn gives P(rn≤ R). Its complementary cumulative distribution function is given by 1-P(rn > R). Here, P(rn >
R) represents the probability that the distance from the randomly chosen node to its n-th nearest neighbor is greater than R. This is
equivalent to the probability that there are at most n−1 nodes within a circle of radius R centered at the chosen node. Therefore,
we have the following:

(18)

This completes the proof. □
Based on Theorem 2, we can derive the following propositions and corollaries.

Proposition 1. In a power grid with n+1 nodes, the probability distribution function of the distance between any node and its n-th
nearest node is as follows:

=f r
n

r e( ) 2( )
( )r

n
n r2 1

n
2

(19)

where n=1, 2,.. Γ (n) denotes the standard gamma function defined as =n t e dt( ) n t
0

1 ,and λ denotes the proportion of non-
island nodes in the power grid.
Proof By utilizing the cumulative distribution function of rn, we can determine the probability distribution function of rn as
follows:
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This completes the proof. □

Corollary 1. The probability distribution function of the nearest distance r1 separating any node from its nearest node is given by.

=f r re( ) 2r
r

1
2

(21)

where λ denotes the proportion of non-island nodes in the power network.
Proof (21) can be obtained by taking n as 1 in (19). This completes the proof□
Proposition 1 and Corollary 1 provide the probability density function of the distance from any node to its n-th nearest node in the power
grid. The analysis of distance distributions assists in both revealing the inherent structures of power grids and assessing the structural
resilience under various extreme events. In a power grid with distributed generators, such results are helpful for analyzing the distribution
characteristics of distances between load consumers and generators at different locations within the power grid.
Considering that each load consumer tends to obtain power from its nearest power source owing to the small loss, Corollary 1 provides a
quantitative description of the distance distribution from any load consumer to its nearest generator. This information is valuable for
making decisions regarding the deployment of MEGs. Proper deployment of MEGs can effectively improve the distribution of distances
between load consumers and their nearest generators in the power grid, thereby enhancing the expected survivability of load during
extreme events.

Proposition 2. In a power grid with n+1 nodes, the expectation of the distance from any node to its n-th nearest neighboring node is
as follows:

=r n
n

( ) (2 1) !!
2 ( )n n (22)

where λ denotes the proportion of non-island nodes in the power network.
Proof Using the probability density function of rn shown in (19), we can derive the expectation of rn
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Denoting =I r e rdn
n r

0
2 2 , we have the following
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Utilizing the recursive formula of integral In, we can obtain the expression shown below.
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where =n n( ) ( 1)! for …n {1, 2, }.
This completes the proof. □

Corollary 2. The expectation of the distance from any node to its nearest node in the power grid is.

=r( ) 1
21 (26)

where λ denotes the proportion of non-island nodes in the power network.
Proof (26) can be obtained by taking n as 1 in (22). This completes the proof□

Proposition 3. In a power grid with n+1 nodes, the second origin moment of the distance between any node and its n-th nearest
neighboring node is as follows:
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where λ denotes the proportion of non-island nodes in the power grid.
Proof We can derive the distribution function of rn

2 using (15):
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Hence, the probability density function of rn
2 can be determined as follows:
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By applying the definition of the second origin moment for a random variable, we have the following:
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Denoting =+
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Based on the recursive formula of integral +In 1, we can obtain the following:
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This completes the proof. □

Corollary 3. The second origin moment of the distance between any node and its nearest node in the power grid is.

=r( ) 2
( )1

2
2 (33)

where λ denotes the proportion of non-island nodes in the power grid.
Proof (33) can be obtained by taking n as 1 in (27). This completes the proof.□
Proposition 2, Corollary 2, Proposition 3, and Corollary 3 quantify the average distances and the degree of dispersion of distance
from all nodes to their n-th neighbor nodes. It can be observed that an increased number of non-island nodes markedly reduces the
average distance between nodes. In other words, extreme weather events that cause component failures lead to increase in the
distance between nodes in a power grid because there are more isolated nodes.

2) Coverage probability: We now present our analytical results regarding the coverage probability of load consumers in a power grid.
Theorem 3. In a power grid with NL load consumers and NG MEGs, the probability of coverage of a typical load consumer randomly
located within the power grid is as follows:

=
+ + +p P

P P
P P R R T

P P
r e r

( )( )
( )( 2)

2 dcov sys
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G G
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G G
G

r
,

2
2 2

0
2 2 1G G 2

(34)

where PG and P
¯G represent the upper and lower bounds, respectively, of the maximum output power of the MEGs; denotes the

priority of the load consumer; α> 0 is a weighting coefficient that measures the distance between the load consumer and the MEGs
and the power consumed by the load consumer; T denotes the survivability threshold of the load consumer; R2 and RNG represent the
distance from the load consumer to the second nearest MEG and the distance to the most distant MEG, respectively; and λG denotes
the proportion of nodes deployed with MEGs in the power grid.

Proof The probability of coverage defined in Section III. D can be equivalent to the probability that a random load consumer
achieves a target survivability threshold. A consumer is in coverage when its survivability is larger than threshold T, and it is dropped
from the network for survivability below T. Conditional on the nearest MEG being at a distance r from the randomly chosen load
consumer, the probability of coverage averaged over the entire grid is as follows:
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where (a) follows from Campbell’s theorem (Chiu et al., 2013) and (b) follows from (10) and (21).
The electrical energy produced by MEGs is practically generated by a controllable vehicle- mounted generator set, and the

maximum output power of different MEG types falls within the range defined by the upper bound PG and the lower bound P
¯G.

Therefore, the maximum output power of the MEG powering the chosen load consumer can be assumed to follow a uniform dis-
tribution U P P(

¯
, ¯ ).G G Because the MEGs supplying power to this load consumer might differ under various failure scenarios, their

maximum output power will also vary. Hence, we derive the probability of coverage accordingly:
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where
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(37)

Note that (c) follows from the properties of conditional expectations, and that (d) follows from the distribution function of the
uniform distribution.

Applying Campbell’s theorem (Chiu et al., 2013), the following expression for I r[ | ]I rr can be obtained:

(38)
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where (e) follows from the independent identical distribution of PG and its independence from point process Φ. Here, ( ) denotes the
indicator function.

By combining (33)− (36), the expressions of the probability of coverage can be obtained:
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This completes the proof. □.
Theorem 3 provides a general formulation for the coverage probability of load consumers in a power grid. It explicitly reveals and

quantifies those factors that impact the coverage probability of load consumers, such as the number of deployed MEGs, the upper and
lower bounds of the maximum output power of the MEGs, the power consumption of load consumers, the distance between load
consumers and different MEGs, and the priorities and survivability thresholds of load consumers. This theorem describes the
probability distribution of load consumers being covered by MEGs under different scenarios within a power network. Specifically,
under varying scenarios, the power network structure varies, the distances between load consumers and MEGs change, and the
maximum power output from the MEGs at different locations also changes. Consequently, the probability of load consumers being
covered by MEGs varies across different scenarios. Therefore, to determine the coverage of load consumers by MEGs with different
upper bounds of output power under different scenarios, Theorem 3 models the upper bound of the output power from any MEG as a
random variable following a uniform distribution. To characterize the variation in distance between load consumers and MEGs across
different scenarios, the concept of conditional expectation is employed to calculate the conditional probability distribution of the
coverage probability of load consumers given a specific distance distribution.

Corollary 4. In a power grid with NL load consumers and NG MEGs, the load shedding within the power grid can be expressed as
follows:
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ProofThe relationship between the coverage probability and the load shedding of a power grid is as follows:

=LS p P(1 )sys cov sys
i N

L,
L

i
(41)

By substituting (41) into (34), we derive Corollary 4.
This completes the proof. □.
Theorem 3 provides valuable insights for improving the structural resilience of a power grid, including increasing the number and

output of MEGs, and optimizing the distance distribution through deploying MEGs and adding parallel lines, which could serve as
useful reference for decision-makers. Such insights also shed light on the explicit impact of power grid structures, MEG deployment
decisions, and external extreme weather events on power grid resilience. Corollary 4 provides the information necessary to quantify
the factors affecting load shedding, and it offers valuable insights for reducing load shedding within a power grid.

In summary, (34)-(41) establish the relationship between the structural features (distance distribution) and the structural resi-
lience (coverage probability, load shedding) of a power grid, as well as MEG deployment decisions. The analytical results provide
valuable information for evaluating the impact of structural features and MEG deployment decisions on the structural resilience of a
power grid.

4. Case study

In this section, we conduct case studies on a 33-bus distribution system (Baran and Wu, 1989) and on a 118-bus distribution
system (Zhang et al., 2007) to verify the effectiveness of the proposed method. The cases were tested in MATLAB 2019a on a personal
computer with a 3.00 GHz i5 processor and 16 GB RAM.

4.1. 33-bus distribution system

This system consists of 33 buses, 32 lines, and 5 tie lines, with a voltage of 12.66 kV, and load size of 3.715MW, and 2.3MVar.

1) Effectiveness of the distance measure: In the context of electric power grids, the electrical distance is used widely to quantify the
electrical connection between any two nodes in many power system problems (Lagonotte et al., 1989)– (Poudel et al., 2018). We
perform comparative analysis of computational outcomes utilizing the electrical distance and the proposed distance measure to
validate the soundness and effectiveness of the proposed distance measure. Specifically, we focus on evaluating the capability of
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electrical distance and the proposed distance measure to accurately reflect fluctuations in electrical connections between power
grid nodes during fault conditions. It should be noted that in the case study, we consider only line faults under the impact of
extreme weather events.

We consider a single-line fault scenario where the power line connecting node 10 and node 11 experiences failure; the location of
the failed line can be seen in Fig. 1(a). Comparison of the distribution of distances between node 10 and node 11 under normal and
failure conditions is presented in Fig. 5. It should be noted that nodes 10 and node 11 are associated with the failed line. The changes
in the electrical connections of node 10 and 11 with the other nodes in the power grid reflect the direct impact of line faults on
associated nodes. Fig. 5(a) and Fig. 5(b) show the changes in the distance measure between node 10 and node 11 with the remaining
nodes in the power grid before and after the line failure; Fig. 5(c) and Fig. 5(d) illustrate the changes in electrical distances between
node 10 and node 11 with the other nodes. From Fig. 5(a) and Fig. 5(b), it is apparent that, compared with the normal condition, the
line failure leads to increase in the distance measure between node 10 and node 11 and the other nodes, thereby indicating
weakening in their electrical connections. Notably, there is marked increase in the distance between node 10 and nodes 11–18, as
well as between node 11 and nodes 1–9, signifying notable reduction in their electrical connections. Intuitively, the failure of line
10–11 severs the direct connection path linking node 10 to nodes 11–18, as well that linking node 11 to nodes 1–9. Consequently,
those nodes can rely only on tie lines for connectivity, thereby resulting in deterioration of their electrical connections. The results
presented in Fig. 5(a) and Fig. 5(b) align harmoniously with this intuitive understanding.

Fig. 5(c) and Fig. 5(d) reveal that the line failure causes escalation in the electrical distance between node 10 and node 11 with
respect to the other nodes, compared with the normal condition. As per the designated definition of electrical distance (Lagonotte
et al., 1989)– (Poudel et al., 2018), this increase signifies rise in the mutual impedance between node 10 and node 11, impacting their
current transmission capacity and subsequently leading to weakening of their electrical connection. Additionally, it is worth men-
tioning that the electrical distance between node 10 and itself, and electrical distance between node 11 and itself experience sub-
stantial rise following the line fault, indicating marked increase in their self-impedance. This reflects the impact of the line failure on
the associated nodes.

By analyzing Fig. 5(a)-Fig. 5(d), we can deduce that both the proposed distance measure and the electrical distance possess the
capability to support quantification of the impact of line failure on the electrical connections between the nodes associated with the
failed line and other nodes in the power grid. In comparison to electrical distance, the proposed distance measure can better quantify
the changes in electrical connections between the associated nodes and the other nodes, which are inherently influenced by the
topological structure of the power grid. This discrepancy is particularly evident when recognizing that the change in distance be-
tween node 11 and nodes 1–9, surpass that of other nodes owing to the disruption of their direct connection pathway.

Fig. 6(a) and Fig. 6(b) illustrate the changes in the distance measure and the electrical distance from node 1 to the remaining
nodes before and after the occurrence of the fault, respectively. It is evident that the occurrence of the line fault leads to increase in
both the distance measure and the electrical distance between node 1 and the other nodes, indicating deterioration in their electrical
interconnections. Although direct impact of the line 10–11 fault on the lines associated with node 1 is absent, its influence remains
evident owing to the disruption of the direct path connecting node 1 and nodes 11–18, thereby weakening their electrical connec-
tions. Notably, the extent of this deterioration in terms of the electrical connections between node 1 and nodes 11–18 can be
quantified by utilizing both the distance measure and the electrical distance, aligning with our intuitive expectations. Moreover, in
comparison to the electrical distance, the distance measure possesses superior ability to accurately differentiate nodes experiencing
notable changes in electrical connections.

In the second fault scenario, both line 10–11 and line 2–19 are considered affected by extreme weather events, as depicted in
Fig. 1(a). Note that in the multiple-line fault scenarios considered in this paper, cascading failures are considered. Fig. 7 illustrates the
distance distributions of node 2 and node 5 under three scenarios: normal conditions, fault on line 10–11, and faults on line 10–11
and line 2–19.

Specifically, Fig. 7(a) and Fig. 7(b) illustrate the distance measure distributions for node 2 and node 5, respectively, under the
three scenarios. Fig. 7(c) and Fig. 7(d) represent the electrical distance distributions for node 2 and node 5, respectively. When only
line 10–11 fails, node 2 is not associated with the failed line. Therefore, its response to the line failure is primarily reflected in
increase in the distance measure and weakening of the electrical connections between node 2 and nodes 11–18. However, when line
2–19 also fails, node 2 is affected directly. The distance measure between node 2 and nodes 11–18 further increases, and there is a
notable increase in the distance to nodes 19–22, indicating substantial weakening of the electrical connections, as depicted in
Fig. 7(a). Regarding electrical distance, Fig. 7(c) shows that the electrical distance from node 2 to the other nodes increases after the
fault occurs on line 10–11, and it increases further after the fault occurs on line 2–19. It is worth noting that the notable increase in
electrical distance between node 2 and nodes 11–22 after the line faults reflects the impact of the line failure on the electrical
connections between them. Intuitively, when line 10–11 fails, the direct connection path between node 2 and nodes 11–18 is dis-
rupted, and they can only be connected through tie lines, resulting in weakening of their electrical connections. When line 2–19 also
stops operating, the direct connection path between node 2 and branch 19–22 is interrupted, causing substantial weakening of the
electrical connections. Furthermore, the path connecting node 2 and nodes 11–18, comprising line 2–19, branch 19–22, and tie line
22–12, is interrupted, leading to further weakening of the electrical connections between them. The changes in electrical connections
shown in Fig. 7(a) and Fig. 7(c) align with this intuitive analysis.

After the faults on both line 10–11 and line 2–19, node 5 is not associated with the failed lines. Fig. 7 demonstrates that even
though node 5 is not located at the ends of the failed lines, its distance measure to nodes 11–18 and nodes 19–22 increases after the
faults occur. Moreover, it can be observed that the distance measure from node 5 to nodes 19–22 increases more noticeably after the
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Fig. 5. Distance distribution of nodes 10 and 11 under normal and fault conditions.

Fig. 6. Distance distribution of node 1 under normal and fault conditions.
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fault on line 2–19, whereas the increase in the distance measure from node 5 to nodes 11–18 mainly occurs after the fault occurs on
line 10–11. Consideration of the electrical distance distribution for node 5 shown in Fig. 7(d) reveals that the increments occur
primarily for nodes 11–18 and nodes 19–22. Intuitively, the disconnection of line 10–11 and line 2–19 removes the direct connection
paths between node 5 and nodes 11–18 and nodes 19–22. The results shown in Fig. 7(b) and Fig. 7(d) reflect the changes in the
electrical connections and align with our intuitive analysis. It is worth mentioning that, compared with electrical distance, the
distance measure of the relevant nodes shows more notable increase after the corresponding line faults, providing better dis-
crimination, maintaining accuracy, and offering better characterization of the changes in electrical connections between power grid
nodes.

Figs. 5–7 display the variations in electrical connections between the nodes located at the ends of the failed lines and the nodes at
other locations before and after a failure scenario. Next, we consider all scenarios for a certain type of line failure, including scenarios
with one-line faults, scenarios with two-line faults, and scenarios with three-line faults. We analyze the average changes in the
electrical connections between nodes under all scenarios for a given type of line failure, as shown in Fig. 8.

Fig. 8(a) and Fig. 8(b) show the distribution of the average distance measure and the distribution of the average electrical
distance, respectvely, from each node in the power grid to other nodes under normal conditions and under the three failure scenarios.
Note that in the 33-node distribution system, we account for the states of 37 lines, including 32 branches and 5 tie lines. Therefore,
there are 37 scenarios with a single-line fault, 666 scenarios with a two-line fault, and 7770 scenarios with a three-line fault in the
power grid. We consider all scenarios of the three differentline failure types, and compute the average distance measure and the
average electrical distance for each node across all scenarios.

From Fig. 8(a), it can be observed that compared with the findings in the failure scenarios, each node exhibits the smallest average
distance measure to the other nodes under normal conditions, indicating stronger electrical connection. Following the occurrence of
the line faults, the average distance measure from each node to the other nodes increases as the number of failed lines grows,
suggesting weakening of the electrical connections between nodes. Additionally, it is noteworthy that the average distance measure

Fig. 7. Distance distribution of nodes 2 and 5 under normal and fault conditions.

C. Ren, R.-P. Liu, W. Yin et al. Journal of Economy and Technology 1 (2023) 48–74

64



Fig. 8. Node average distance distribution under different conditions.

Fig. 9. Probability distribution function of distance measure under line fault conditions.
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exhibits a similar distribution pattern across all four scenarios. Specifically, for nodes 9–15, the average distance measure in all four
scenarios shows an initial increase followed by reduction, implying that their electrical connections with other nodes transition from
weak to strong and then weaken again, aligning with the topology of the grid. Both node 9 and node 15 are connected to tie lines,
thereby enhancing their electrical connections with other nodes under both normal and failure scenarios. Moreover, node 12 can
establish connections with other branches through tie line 12–22, resulting in a slightly smaller distance measure compared with that
of node 10 and node 13.

Conversely, the average distance measure of node 16, node 17, and node 18 increases sequentially, corresponding to their re-
spective locations within the power grid. Node 18, at the end of branch 1–18, faces relatively greater challenges in maintaining
connections with the other nodes during the line faults. The difference in the average distance measures between node 19 and node
18 also indicates that they do not belong to the same branch, with node 19 exhibiting stronger electrical connections with other nodes
in accordance with the power grid topology. For nodes 26–33, their average distance measures demonstrate an overall trend of
increase across all four scenarios. However, node 29 displays a slightly smaller average distance measure compared with the other
nodes on the same branch. According to the grid structure, we can deduce that node 29 is connected to node 25 through tie line
29–25, which reinforces its electrical connections with the other nodes.

Based on the above analysis, it is evident that the calculated results derived from the proposed distance measure reflect the
influence both of the number of failed lines and of the power grid structure on the electrical connections between nodes. The results
presented in Fig. 8(b) further validate the aforementioned analysis. It can be observed that as the number of line faults increases, the
average electrical distance from each node to another also increases, displaying similar distribution patterns across different types of
line faults. From node 1 to node 18, the average electrical distance initially declines and then increases. Considering the power grid
structure, nodes located at the ends of branches need to traverse more branches to establish electrical connections with other nodes in
the network, thereby resulting in higher mutual impedances compared with those of nodes closer to the center of the branches. This
corresponds to the larger electrical distances depicted in Fig. 8(b). For nodes 19–25 and nodes 26–33, their average electrical distance
distributions indicate that they do not belong to the same branch, reflecting the influence of the power network structure on the
electrical connections between nodes.

In summary, the results shown in Figs. 5–8 indicate that the proposed distance measure, in contrast to the electrical distance, has the
capability to more accurately quantify the changes in electrical connections between nodes associated with failed lines and nodes
associated with normal lines under fault conditions. Moreover, the average node distance measure in the line failure scenarios can
effectively capture the impact both of the number of failed lines and of the network structure on the electrical connections among nodes.

2) Numerical characteristics of distance measure: Based on the quantification of node distances using the distance measure, we compute
the precise numerical characteristics of node distances and compare them with theoretical outcomes to validate the effectiveness
of the theoretical expressions.

Theorem 2 presents the distribution function of distances between any node in the network and its neighboring nodes at varying
distances. We compare the actual distribution of node distances obtained by analyzing all line fault scenarios with the computed
results derived from Theorem 2, as shown in Fig. 9. Fig. 9(a) exhibits the real distribution of distances from each node to its nearest
neighbor node, together with the corresponding theoretical distribution based on SG when two lines fail within the power network.
Fig. 9(b) displays the actual distribution of distances from each node to its second-nearest neighbor node, accompanied by the
theoretical distribution. Note that we traverse a total of 666 scenarios where two lines fail and calculate the distances between each
node to its nearest and second-nearest neighboring nodes. Furthermore, when the power network experiences the three-line faults,
we traverse all 7770 scenarios and calculate the distances between each node and its nearest and second-nearest neighboring nodes.
The comparison results between the actual distribution of distances and the theoretical results are shown in Fig. 9(c) and Fig. 9(d).
Notably, the theoretical expression of the node distance distribution provided by Theorem 2 closely approximates the actual dis-
tribution, as observable in Fig. 9(a)-Fig. 9(d).

Propositions 2 and 3 offer the expectation of distance and the second origin moment of distance from any node to its neighboring
nodes in the event of structural changes in the power grid. To validate Proposition 2, we calculate the average distances between
nodes and their neighboring nodes under both normal and various fault conditions. We compare the calculated results with the
results obtained from Proposition 2, as shown in Table 1.

From Table 1, it can be observed that as the number of failed lines increases, Proposition 2 quantifies the growth in the ex-
pectation of distance between any node and its neighboring nodes within the network. Under both normal conditions and fault

Table 1
Node distance expectation.

Distance Normal 1-line fault 2-line fault 3-line fault

Exact SG Exact SG Exact SG Exact SG

Nearest 0.5609 0.5000 0.5627 0.5069 0.5895 0.5414 0.6161 0.6263
2nd nearest 0.8581 0.7500 0.8704 0.7603 0.9392 0.8121 1.0088 0.9395
3rd nearest 1.1921 0.9375 1.2181 0.9504 1.3345 1.0152 1.4622 1.1743
4th nearest 1.3987 1.0938 1.4928 1.1088 1.6574 1.1844 1.8408 1.3701
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conditions, Proposition 2 enables quantification of the distribution of average distances between nodes and their neighboring nodes.
Through comparison of the theoretical results provided by Proposition 2, presented in the “SG” column, to the actual expected
distances between nodes, listed under the “Exact” column, we observe close approximation between the theoretical values and the
computed values, with errors falling within an acceptable range.

To substantiate Proposition 3, we compute the second origin moment of distances between nodes and their neighboring nodes,
considering both normal and various fault conditions. The calculated results are compared with the results obtained from Proposition
3, as shown in Table 2.

As depicted in Table 2, noticeable correlation emerges between the escalation in line faults and the increase of the second origin
moment of distances between nodes. This indicates greater dispersion in distance values, highlighting more distinct electrical con-
nections between different nodes. Furthermore, within a given scenario, the dispersion of distance values is greater with nodes at
greater distances. The theoretical results based on SG effectively capture the changing trend of the second origin moment of distances
between nodes and provide relatively conservative results compared with actual outcomes.

3) Coverage probability and load shedding: To validate our proposed resilience metrics of coverage probability and load shedding, we
compare the results obtained from the SG-based theoretical framework, i.e., Theorem 3 and Corollary 4, to the optimization
outcomes based on the maximum covering model (Mak and Shen, 2016). The maximum covering problem is used widely to tackle
the classical operational optimization problem of facility location. We utilize the maximum covering model to determine the pre-
positioning strategy for MEGs before the occurrence of extreme events. The underlying optimization principle of this approach lies
in selecting locations for MEG deployment that maximize the total load that can be restored under the constraint of the total
number of MEGs. For comparative experiments, we consider all 666 scenarios where two lines in the power grid fail. Under
various scenarios, the power output limit of the MEG is uniformly distributed within the range of 500 kW and 800 kW. The
computed values of the coverage probability and load-shedding metrics based on the two methods are illustrated in Fig. 10.

Fig. 10 (a) exhibits the trend of the coverage probability metric as the number of MEGs varies. When two lines fail in the 33-bus
distribution system, deploying six MEGs achieves an average coverage of 55% of the load under all potential failure scenarios,
whereas deploying eight MEGs covers an average of 90% of the load. Fig. 10 (b) illustrates the declining trend of load shedding in the
power grid as the number of MEGs increases, eventually reaching zero. However, as the number of deployed MEGs exceeds nine, the
marginal benefit gained by reducing load shedding attributable to further deployment diminishes substantially. Both Fig. 10 (a) and

Table 2
Node distance second origin moment.

Distance Normal 1-line fault 2-line fault

Exact SG Exact SG Exact SG

2nd nearest 0.8862 0.6079 0.9555 0.6422 1.1484 0.8358
3rd nearest 1.6624 1.2159 1.7202 1.2843 2.1425 1.6716
4th nearest 2.2847 2.0264 2.5252 2.1406 3.2362 2.7860

Fig. 10. Resilience metrics of the 33-bus distribution system.
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Fig. 10 (b) demonstrate that the results obtained from the SG-based theoretical approach closely align with the optimization out-
comes based on the maximum covering model. This suggests that the SG-based theoretical approach proposed here can serve as an
approximate method for assessing the impact of MEG quantity on the ability to cover the load, thereby offering valuable insights
regarding power grid operation.

Fig. 11 illustrates the variations in coverage probability and load shedding metrics, computed using SG. It is apparent that for a
fixed number of MEGs, an increase in the number of line faults results in reduced load coverage and increased load shedding. To
achieve the desired coverage objectives and to mitigate economic losses caused by load shedding, additional MEGs must be deployed.

Fig. 11. Resilience metrics of 33-bus distribution system based on SG when multiple lines fail.

Table 3
Comparison of the Operation time on the 33-bus system.

Fault Time/h Number of scenarios

SG Optimization

2-line fault 370.15 3383.88 666
3-line fault 4318.45 - 7770
4-line fault 36706.86 - 66045

Fig. 12. Initial configuration of the 118-bus test system.
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Fig. 11 provides clear depiction of the interrelationship between MEG quantity and grid resilience, considering all possible scenarios
of multiple line failures. This offers valuable guidance to system operators when making MEG deployment decisions.

4) Running time comparison: Comparison of the operation time between these two methods is presented in Table 3. It is apparent that
our proposed SG-based approach exhibits notable superiority in terms of running time compared with the optimization method.
As the number of failed lines increases, the number of fault scenarios rises markedly. Employing optimization techniques imposes
substantial computational expense, and the symbol “-” within the table denotes inability to compute the results. The proposed SG-
based method provides strong support for rapid and effective assessment of how the quantity of MEGs deployed impacts grid
resilience and load survivability under different failure scenarios.

4.2. 118-bus distribution system

This system is a 11 kV distribution system with 118 buses, 117 sectionalizing switches, and 15 tie switches, as shown in Fig. 12.
Detailed data can be found in (Zhang et al., 2007).

1) Effectiveness of the distance measure: Results of assessment of the effectiveness of the distance measure and of the electrical distance in
characterizing the electrical connection among nodes within a 118-node distribution system are presented in Fig. 13 and Fig. 14.

Fig. 13 and Fig. 14 present the distance distributions of node 63 and node 20 under three scenarios: normal conditions, fault on
line 1–63, and fauts on line 1–2 and line 1–63. Fig. 13 (a) displays the distance measure of node 63 from which we make. We have the
following observations. (i) Compared with that under normal conditions, the distance measure between node 63 and the other nodes
increases under both fault scenarios. (ii) The distance measure between node 63 and nodes 1–62 increases substantially after the fault
on line 1–63, and increases further after the fault on line 1–2. An explanation is that the connectivity path connecting node 63 and the
component consists of nodes 2–62 and involves four main lines: line 1–2, line 1–63, line 1–100, and tie line 96–58. When line 1–63.

Fig. 13. Distance distribution of node 63 under three different conditions.
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fails, the direct connectivity path between node 63 and nodes 2–62 is disrupted, thereby weakening their electrical connection.
Furthermore, when line 1–2 also fails, node 63 can only establish connection with nodes 2–62 through tie line 96–58, leading to
further attenuation of the electrical connection. However, these line faults do not occur within the component formed by nodes
64–118, consequently, it causes only minor impact on the electrical connection between node 63 and nodes 64–118. The computed
distance measure effectively quantifies the impact on node 63 of faults on line 1–63 and line 1–2. As shown in Fig. 13 (b), it is evident
that the electrical distance between node 63 and the other nodes increases substantially after the fault on line 1–63, and increases
further when faults occur on both line 1–2 and line 1–63, thereby confirming the conclusions derived from the distance measure
presented in Fig. 13 (a).

Fig. 14 (a) and Fig. 14 (b) present the distribution of the distance measure and of the electrical distance from node 20 to the other
nodes under three different scenarios. In those failure scenarios, node 20 is not associated with the failed lines, but its electrical
connections with the other nodes are still affected by line faults. It can be observed in Fig. 14 (a) that line faults have negligible
impact on the distance measure between node 20 and both nodes 1–19 and nodes 21–62. This is attributable to the fact that the faults
on lines 1–2 and 1–63 have no impact on the internal structure of the connected component comprising nodes 2–62. The primary
connectivity path between node 20 and the nodes residing in that connected component remained unchanged. Hence, the variations
in electrical connections between node 20 and nodes 2–62, as quantified by the distance measure, are not substantial. The notable
increase in the distance measure between node 20 and nodes 63–118 signifies the impact of line faults on node 20. The line faults
destroy the direct path between node 20 and the connected component containing nodes 63–118. Consequently, node 20 can only
establish connections with nodes 63–118 via tie line 96–58, which weakens the connection between them considerably. In Fig. 14 (b),
it is evident that line faults induce an increase in the electrical distance between node 20 and the other nodes, especially after line 1–2
fails. When only line 1–63 is destroyed, node 20 still maintains its electrical connections with the connected component comprising
nodes 63–118 through lines 1–2 and 1–100. The impact of the line 1–2 failure on node 20 is greater because electrical connections
with nodes 63–118 can only be established through tie line 96-58 rather than through lines 1–2 and 1–100. Consequently, the
electrical distance increases substantially, aligning with the conclusions drawn from Fig. 14 (a). Fig. 13 and Fig. 14 depict the effects

Fig. 14. Distance distribution of node 20 under three different conditions.
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Fig. 15. Resilience metrics of the 118-bus distribution system.

Fig. 16. Resilience metrics of 118-bus distribution system.
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of line faults on nodes both associated and unassociated with the failed lines, highlighting how the distance measure effectively
captures the impact of line faults on the electrical connections between power grid nodes, considering the inherent structure of the
network.

2) Coverage probability and load shedding:When one line fails in the 118-bus power grid, the total number of scenarios is 132, including
scenarios with tie line faults. Across different scenarios, the upper limit of power output from the MEG is uniformly distributed
between 500 and 800 kW. We compare the theoretical outcomes based on SG with the optimization results based on the maximum
covering model, as depicted in Fig. 15. Fig. 15 (a) and Fig. 15 (b) illustrate the variations in coverage probability and load
shedding metrics of the power grid, respectively, as the quantity of deployed MEGs varies. The proposed SG-based method yields
computational results that are consistent with the optimization outcomes. It effectively quantifies the performance pertaining to
the coverage probability and the load survivability under different quantities of MEGs. Moreover, it demonstrates the marginal
effects of increasing the number of MEGs. For example, when the number of MEGs increases from 15 to 19, the coverage
probability rises from 47% to 70%. However, as the number of MEGs continues to increase to 23, the coverage probability only
increases from 70% to 88%. This marginal effect is also demonstrated in the above case study of the 33-bus power grid.

Fig. 16 shows the variations in coverage probability and load shedding metrics of the 118-bus distribution system obtained from
the SG-based method. All scenarios of 1-line faults and 2-line faults are considered. Fig. 16 effectively portrays the expected coverage
probability and load shedding given a fixed number of MEGs, which serves as invaluable guidance for system operators when
formulating deployment strategies.

3) Running time comparison: Table 4 illustrates comparative analysis of the running time of those two approaches in the 118-bus
distribution system. Obviously, the proposed method reduces the computational time substantially, thereby facilitating rapid
evaluation of MEG deployment strategies in practice. Furthermore, compared with that with the above 33-bus power network, the
computational time based on the optimization method experiences rapid escalation as the network size increases to 118 buses,
and the computational cost for the scenario of 2-line faults is extremely high. However, our proposed approach displays noticeably
greater reduction in computation time, showcasing its exceptional capability in handling large-scale networks and vast scenarios.

4) Discussion: As another representative of mobile power sources, the application prospects of mobile energy storage systems (MESSs)
in the SG-based framework proposed in this paper are clear. Specifically, similar to MEGs, MESSs (Wang et al., 2022)– (Sadegh
et al., 2022) can also supply emergency power to critical loads, thereby enhancing power system resilience against extreme events
through pre-deployment. Within the SG-based framework presented in this paper, the spatial distribution of MESSs and critical
loads in the grid can be effectively modeled using point processes. Through the computation of the distances between them based
on the distance measure, coupled with the utilization of Voronoi tessellation, the service coverage of each MESS can be de-
termined. The derivation processes of the proposed resilience assessment metrics and the theoretical expressions remain ap-
plicable by simply replacing the parameters of the MEGs with those of the MESSs. Consequently, the SG-based framework for
power system resilience assessment, as proposed in this paper, can be readily extended to incorporate MESSs.

5. Conclusion

This paper proposes a novel SG-based method to address structure uncertainty in distribution networks induced by extreme
weather events, and to evaluate the performance of MEG pre-positioning decisions. The point process approach is adopted to
describe potential location distributions of power grid components across diverse scenarios. The proposed distance measure
effectively captures the changes in electrical connections between power grid components before and after failures occur. The
closed-form expressions of the distance distribution between power grid elements, based on Poisson point processes, closely
approximates the actual distance distribution. Subsequently, Voronoi tessellation is utilized to illustrate the coverage of
different MEGs for load consumers. Finally, effective resilience assessment metrics are defined, and the analytical expressions
of those metrics are derived and demonstrated, explicitly revealing the impact of power grid structural characteristics and
MEG deployment decisions on grid resilience during the occurrence of extreme events. The following conclusions are derived
based on analysis of case studies.

1) The proposed distance measure successfully captures changes in electrical connections between power grid components under
various line failure scenarios. Compared with the electrical distance, the proposed distance measure more effectively reflects the
weakening of electrical connections between components associated with failed lines and other components.

Table 4
Comparison of the Operation time on the 118-bus system.

Fault Time/h Number of scenarios

SG Optimization

1-line fault 1.10 17.57 132
2-line fault 71.92 - 8646
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2) The closed-form expressions of distribution functions and expectations of the proposed distance measure adequately describe the
numerical characteristics of the distances between power grid components across diverse scenarios, thereby characterizing
structure uncertainty induced by extreme events. As the number of failed lines increases, the distance between each component in
the power grid and its neighboring components increases. This results in rightward shift of the distance distribution curve and
increase in the expectation of distances between all components.

3) The proposed resilience metrics and their corresponding analytical expressions explicitly reveal the influence of MEG deployment
decisions on the survivability of load consumers and the resilience of distribution networks. The computational findings indicate
that as the deployment of MEGs gradually increases, the marginal impact of further increasing their quantity diminishes in terms
of improving coverage probability and reducing load shedding. Furthermore, the proposed method outperforms other approaches
in terms of required computation time.

4) The proposed analytical framework provides novel insights into studying and quantifying the structural resilience of distribution
networks. Our future work will focus on its combination with state-of-the-art optimization techniques to address the performance
evaluation and planning problems of large-scale power networks, considering massive potential failure scenarios.
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