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Abstract

Human Activity Recognition (HAR) is widely used in various applications, from smart homes and healthcare to the Internet
of Things (IoT) and virtual reality gaming. However, existing HAR technologies suffer from limitations such as location
dependency, sensitivity to noise and interference, and lack of flexibility in recognizing diverse activities and environments.
In this paper, we present a novel approach to HAR that addresses these challenges and enables real-time classification and
absolute location-independent sensing. The approach is based on an adaptive algorithm that leverages sequential learning
activity features to simplify the recognition process and accommodate variations in human activities across different people
and environments by extracting the features that match the signal with the surroundings. We employ the Raspberry Pi 4 and
Channel State Information (CSI) data to extract activity recognition data, which provides reliable and high-quality signal
information. We propose a signal segmentation method using the Long Short-Term Memory (LSTM) algorithm to accurately
determine the start and endpoint of human activities. Our experiments show that our approach achieves a high accuracy of
up to 97% in recognizing eight activities and mapping activities associated with environments that were not used in training.
The approach represents a significant advancement in HAR technology and has the potential to revolutionize many domains,
including healthcare, smart homes, and IoT.
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Abbreviations Tx Transmitter

HAR Human activity recognition Rx Receiver

IoT Internet of things

RPi Raspberry Pi

CSI Channel state information 1 Introduction

LSTM Long short-term memory

CNN Convolutional neural network Human Activity Recognition (HAR) is a modern technology
BVP Body velocity profile with various domains, including smart cities, health care,
MIMO Multiple input multiple output security surveillance, virtual reality, gaming, and location-
NIC Network interface card based services [6]. Wearable sensor-based, and camera-
Bi-LSTM  Bidirectional long short-term memory based methods are the conventional approaches for HAR.
GRU Gated recurrent units Although these approaches are promising and widely used,

they have limitations that make them unsuitable for all appli-
cation scenarios. Wearable sensor-based approaches require
users to wear sensors on their bodies, which can be uncom-
fortable or inconvenient in some situations. On the other
hand, camera-based methods require cameras to be installed
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In recent years, researchers have focused on various appli-
cations of WiFi sensing, such as remote control in smart
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conditions [32], gesture recognition [1, 15], activity recog-
nition [5, 30, 31] and other human—computer interactions
and medical applications [24]. WiFi signals can be used as a
short-range passive radar by measuring their interaction with
movement and the environment [14]. Moreover, the systems
track locations and movements by analyzing how signals are
reflected and deflected environment [29, 39].

Using WiFi for HAR with location independence is a
promising area that has the potential to enhance the per-
formance and applicability of activity recognition systems.
This technology provides a robust and reliable approach that
accurately recognizes human activities regardless of the sen-
sor’s condition, making it an attractive solution for various
real-world scenarios. Mainly, the CSI component comprises
several parameters, including amplitude, phase, and delay
information, which is used to determine the quality of the
wireless link. To use CSI for HAR, researchers use machine
learning algorithms to analyze changes in the CSI as a per-
son moves through the wireless environment [13, 14]. By
detecting changes in the CSI’s amplitude, phase, and delay
information, it is possible to accurately recognize human
activities such as walking, running, and sitting. Location
dependency makes it difficult to generalize the model to dif-
ferent locations and situations and restricts the technology’s
ability to be transferable across multiple sites, which is cru-
cial for commercialization [5, 10, 40].

Location-independent sensing refers to the ability of
a technology to work in different environments, sites, or
locations without any changes in its configuration or per-
formance [5, 27]. Existing Wi-Fi-based HAR approaches
rely heavily on training data collected from specific loca-
tions or environments. This dependence on location limits
the generalizability and scalability of the models. A robust
HAR system should be able to accurately classify activi-
ties in different environments and adapt seamlessly to new
environments without retraining [20]. Overcoming location
dependency is crucial for deploying Wi-Fi-based HAR sys-
tems in diverse real-world settings. In addition, accurately
classifying static activities, such as sitting, standing, or lying
down, poses a substantial challenge in HAR. These activi-
ties share similar features and can be difficult to distinguish
solely based on Wi-Fi signals. Existing models need help
categorizing static activities, leading to lower accuracy in
these categories. Improving the classification of static activi-
ties is essential for achieving comprehensive and reliable
activity recognition [41].

To overcome this limitation, we propose an approach that
leverages activity-adapted learning to enable feature trans-
fer between different locations and users based on a RNN-
LSTM structure. This approach allows accurate recognition
of activities based on location, balances performance with
reducing the need for a large amount of training data and
allows learning from the user’s interactions. This framework
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introduces a systematic approach for accurately classifying
dynamic and static activities. It leverages logical sequence
classifiers and LSTM-based feature extraction to enhance
activity recognition performance. The main contributions
of this work can be summarized as follows:

e To present a logical approach used to reconstruct the CSI
data, which allows static activities mapping based on a
learning algorithm that adapts to new locations. The pro-
posed method employs a coarse-to-fine logical strategy
generally applicable to various activity recognition sys-
tems.

e To design a location-independent real-time monitoring
system that utilizes deep learning technology based on
HAR. The proposed model incorporates LSTM networks
for feature extraction from WiFi signals in our frame-
work. The utilization of LSTM networks enables the cap-
turing of long-term dependencies and temporal patterns
within the sequential data. This advanced feature extrac-
tion technique enhances activity recognition accuracy
by effectively modeling the complex relationships and
dependencies in Wi-Fi-based activity data.

e To validate the proposed framework’s effectiveness and
robustness by conducting extensive evaluations and com-
parisons with existing methods, including other RNN-
based approaches. Through this comparative analysis,
we demonstrate the superiority and advantages of our
framework in terms of activity recognition performance
and address the limitations of previous methods. The
evaluation provides empirical evidence of the efficacy
of our approach and its potential to overcome the chal-
lenges in Wi-Fi-based HAR.

By addressing the challenges related to location depend-
ency, improving the classification accuracy of static activi-
ties, and leveraging advanced LSTM-based feature extrac-
tion, our work significantly contributes to the advancement
of Wi-Fi-based HAR. Our proposed framework offers a more
accurate and robust solution for activity recognition, thereby
facilitating the deployment of Wi-Fi-based HAR systems in
various real-world scenarios. To provide a concrete illustra-
tion of the motivations and practical implications, let’s con-
sider a smart home equipped with WiFi sensors that monitor
the activities of its residents. In contrast to existing sensor-
based approaches, which require individuals to train models
in every new location with every new activity, our proposed
Wi-Fi-based HAR system eliminates the need for intrusive
and inconvenient training efforts. The proposed model ena-
bles the model to generate fingerprinted dataset based on
the new location by detecting dynamic activities. This non-
intrusive nature improves user comfort and enhances the
overall user experience regarding activity monitoring and
behavior analysis within a smart home environment.
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The remainder of this paper is structured as follows:
Sect. 2 discusses the theoretical background and related
works, followed by the problem analysis. Section 4 pre-
sents the methodology and experimental setup. Section 5
describes the results and discussion. Finally, limitations and
future works are highlighted, and concludes the paper.

2 Related Works

WiFi-based sensing is location-dependent compared to sen-
sor-based methods due to its sensitivity to the user’s orienta-
tion and environmental changes, posing a challenge to the
technology’s transferability across various locations. How-
ever, research continues investigating new methods to over-
come these limitations. These methods include developing
models independent of the user’s location and orientation
and mapping the relationship between WiFi measurements
and human actions or activities [7]. Practical approaches for
addressing location dependency have been proposed in [9,
22], which applied transform theories to practical applica-
tions. The recognition algorithm learns location and person
independent features from different perspectives of CSI data.
The state machine learns temporal dependency information
from history classification results. According to the superpo-
sition of multipath, the received signal and its effect on the
wireless channel for the same activity are greatly modified
in different stages, and activity detection is tied to the trained
location [17, 20, 25, 35].

Yang et al. developed FALAR, which leverages class-
estimated basis space singular value decomposition to elimi-
nate location information from the CSI data associated with
static paths [35]. The system was tested on samples of five
activity categories collected from eight locations, where four
of the locations were used for training. The results showed
that FALAR achieved a gesture recognition accuracy of
90.6% for all eight locations. However, the system requires
using the new OpenWrt firmware to obtain fine-grained CSI
data from all 114 subcarriers. Lu et al. proposed WiHand to
enhance gesture recognition in dynamic settings by separat-
ing background signals from gesture signals using low-rank
and sparse decomposition [20]. Their tests revealed an aver-
age testing accuracy of 93% for untrained locations. How-
ever, the system relies on high signal transmission rates,
which may lead to data packet loss.

Zhang et al. conducted additional research in this field,
introducing Widar3.0, a gesture recognition system that
uses body coordinate velocity profile (BVP) signals, and a
CNN-GRU network to extract spatial and temporal features
for classification [41]. Widar3.0 achieves an 85.3% average
accuracy for recognizing gesture samples at the fifth location
but requires at least three receivers and predefined zones for
BVP data collection. Although Widar3.0 improves recognition

performance by separating activity signals from background
information, it is limited by specific hardware or deployment
targets. Ding et al. introduced WiLiMetaSensing, a method
that utilizes a CNN and LSTM network to extract location-
independent features for activity recognition [5]. Samples from
source locations are used for meta-learning, and only a few
samples from target locations are required for training. When
four locations are used for training and 24 locations for testing,
WiLiMetaSensing achieves an accuracy of 91.11% in one-shot
learning. This approach decreases the number of target loca-
tion samples required for activity recognition but still requires
a small number.

Another approach to improving location independence
beyond model-based algorithms is array antennas and multi-
ple systems. In [8] and [33], antennas were utilized to improve
location dependency by focusing detection on the person’s pre-
cision. However, this approach does not fully operate location-
dependently. In [4], the employment of UWB 5G transmission
was used to improve the detection of multi-person estimation.
Their work aims to achieve a broader detection bandwidth with
more reflected signals over a large band of frequencies. Table 1
summarizes the relevant compositions on location independent
HAR and provides information about the type of algorithm
used, the type of signal (e.g., CSI), and the equipment required
for the data collection to give a general overview of the com-
plexity and feasibility of the method.

3 Primarily and Problem Analysis
3.1 CSI Mathematical Analysis

We leverage the ubiquity of CSI as the primary means for
capturing activity data. CSI is a crucial indicator of the chan-
nel link states in MIMO systems. CSI provides a high level
of sensitivity to the variations of the channel link, making it
superior to other signals due to its fine-grained nature and rela-
tively small size. The mathematical representation of CSI is
shown in Equation.

y=Hx+n (1)

where y represents the vectors of the transmitter and
receiver, The transmission equation represents H as a com-
plex matrix of CSI values and n as the channel noise [19].
MIMO enables multiple channels to increase transmission
rate by creating H matrix of connection links, represented
as Eq. 2:
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Tool Freq GHz Activity Accuracy %  Performance and limitations

Classifier

Table 1 Benchmarking HAR with location independency utilizing CSI

References Method
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Limited to specific hardware equipment.
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5.82 Gesture

NN Intel 5300 NIC

C

Using body velocity pattern for predicting

[41]

Requires multiple Aps. Different people have

activities

different body velocity and speed preforming
actions. Only tested by dynamic activities

The CSI estimates the magnitudes and phases hﬁv’fN’ of
the ith subcarrier for the link between the receiver antenna
and the transmitter antenna [28]. Hence, the CSI entry corre-
sponds to the channel frequency response, as Eq. 3 indicates.

N
h(f) =Y aexp 3)
=1

where N represents the summation of total multipaths of the
subcarriers, a; represent the attentions and 7, is the propa-
gation delay of signal through path /. The WIFI CSI ratio
illustrates how surrounding objects affect, weaken, and scat-
ter OFDM signals during transmission [14, 38]. On the one
hand, the uncertainty in the power amplifier of the RF chain
regularly leads to impulsions and burst noise in the ampli-
tude of the CSI. Additionally, the disparity in the frequency
band between transceivers causes a time-varying phase to
offset in each CSI sample, which quickly supports this per-
spective and disrupts the phase variation caused by human
motion and mathematically represented in Eq. 4 as:

L
H(f,t) = 6(t)e‘j¢(l) Z Al(t)e_jzndl;) “
1=1

whereby 4(t) represents the intensity of impulsive noise and
¢(t) represents the time-varying phase offset. L represents
the total number of propagating routes, lambda represents
the wavelengths, and A,(t) and d,(t) represents the signal’s
attenuation and the L pathway’s length, respectively. Over-
all, the environment significantly impacts the wireless sig-
nals used to capture the CSI measurements. Furthermore,
the accuracy of human activity recognition is also influ-
enced by the positioning and orientation of the person being
monitored.

3.2 LSTM Networks

LSTM networks are particularly well-suited for this task due
to their ability to capture and analyze long-term dependen-
cies within sequential data effectively. This characteristic is
crucial for accurately identifying patterns and trends within
the analyzed signals. Within the LSTM architecture, the
facilitation of information removal or addition to the cell
state is proficiently governed by specialized components
called gates shown in Fig. 1. These gates act as discretion-
ary conduits for the passage of information. Structurally,
they are comprised of a sigmoid neural network layer and
a pointwise multiplication operation, operating in tandem
to exert meticulous control over the information flow [11].
The input set of the CSI vector is defined as
X =Xy, hy, h, ... .h,, the output set is y =y, ¥, ¥, ....Y,
And the hidden layers ash = {hy, h,, ... ..h }. In the initial
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Fig. 1 Interacting layers within
an LSTM module [11]
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stage of LSTM model, a crucial determination is made
regarding the selective discarding of information from the
cell state. This pivotal decision employs a sigmoid layer
called the “forget gate layer.” By examining the previous
hidden state h, _, and the current input X, this layer gen-
erates an output value ranging between 0 and 1 for each
component within the initial cell state C,_ .

In contrast to the input aggregation and processing
mechanisms employed by RNNs, LSTM networks exhibit
a more suitable architecture for prolonged data recogni-
tion as an input gate. Incorporating a forget gate allows
for comparing the internal memory and new incoming
data, facilitating selective overwrite. This dynamic pro-
cess enables the smooth propagation of gradients across
sequential steps. The LSTM comprises an input gate,
forget gate, output gate, and memory cell to effectively
manipulate the data to be forgotten, recognized, and
retained. The gating technique, encompassing both the
activation function (sigmoid function) and element-wise
multiplication, is selected to govern the flow of pertinent
data. The resulting output value, confined within the [0,
1] range, facilitates subsequent multiplication and regu-
lates the data flow. The relevant initialization gates are
assigned values close to or equal to 1, thereby mitigating
any detrimental impact on initial training stages.
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3.3 Correlation of Dynamic Activities and CSI
with Environment

The analysis of activities, as depicted in Fig. 2, indicates
that dynamic activities confirm exceptional diversity in
their packet transmission. The diversity in packet transmis-
sion facilitates precise discrimination of various activities.
Moreover, the dynamic activities exhibit variations in both
amplitude and phase, which consequently manipulate the
velocity of movement.

In contrast, stationary activities, including empty, sitting,
and standing perspectives, display a lower degree of vari-
ability in packet transmission, making it more challenging
to distinguish them from one another. This underscores the
need to account for both the activity and the location when
analyzing CSI data from wireless networks. As illustrated
in Fig. 3, subcarrier variations are observed for distinct sta-
tionary postures, such as empty, sitting, and standing, in a
location where the frequency remains unchanged.

3.4 Environmental Effects of WiFi Sensing

Utilizing WiFi for human tracking and localization pre-
sents many challenges that necessitate careful considera-
tion to achieve accurate and reliable performance. Firstly,
multipath propagation occurs due to the intricate interplay

8 & 8 8
&2 g 3

400 500

Subcarriers

350 400 450 500 0 50

0 50 100 150 ggﬂckeim 300

100 150 200 250 300 350 400 450 500
Packets

250 300 350 400
Packets

150 200 450 500

Fig.2 Variation in amplitude in dynamic activities a standup, b walk, and ¢ run
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Fig.3 The amplitude and phase changes among static activities such as a empty, b standing, and c sitting

of reflections, diffractions, and scattering within indoor
environments, as indicated in Fig. 4. As a result, WiFi
signals traverse multiple paths and exhibit disparities in
signal strengths, rendering the accurate estimation of an
individual’s location based solely on WiFi measurements
a formidable task.

Moreover, NLOS conditions emerge when obstacles or
physical barriers obstruct the direct path between WiFi
access points and the tracked individual. WiFi signals
experience notable attenuation and distortions in such sce-
narios, culminating in inaccurate localization estimates.
Additionally, the vulnerability of WiFi signals to interfer-
ence and noise from diverse sources, including other WiFi
devices, electronic appliances, and environmental factors,
poses significant challenges. Such interference and noise
detrimentally affect the quality of the received signal, con-
sequently leading to localization errors. Another challenge
is the complex and unpredictable propagation of wireless
signals within indoor environments is affected by severe
signal attenuation, reflection, and multipath effects. Equa-
tion 5 represents the Power propagated in space with var-
ied gains between transmitter and receiver. By determining
the environmental aspect, it is possible to analyze the envi-
ronmental effects of the signal to eliminate the dependency
on the environment. Starting from Power received Eq. 5.

Pt % G,,G, A* % F
P =
' (4x * R)

®

Pr represents the received power, Pt denotes the transmitted
power, Gt, Gr refer to the transmitted and received gains, A
is the signal wavelength and F is the propagation factor. The
R represents the propagation range. Additionally, one of the
significant challenges in HAR is the variability in how peo-
ple perform activities. People may perform the same activity
at different speeds, orientations, and methods, which leads
to signal variations and make it difficult to predict the type
of activity being performed accurately.

4 Methodology
4.1 System Overview

The process begins with data collection using RPi supported
by Nexmon firmware and TCPDUMP, as depicted in Fig. 5.
The raw CSI data is then subjected to MATLAB preproc-
essing and filtering stages. These stages aim to enhance
the quality and relevance of the collected data, ensuring its
suitability for subsequent analysis. The behavior recogni-
tion system’s critical component is utilizing LSTM networks
for feature extraction from the signal data. The architecture
described herein presents a sequential model that utilizes
LSTM layers for classification, as depicted in Fig. 5. The

Fig.4 Multi-path propagation
of WiFi

X

@ Springer




Human-Centric Intelligent Systems

LSTM
Layer 1
Dropout
LSTM
Layer 2
Dropout
LSTM
Layer 3

7]
(&]
5
o
=

Fig.5 Schematic of LSTM architecture layers

workflow commences with an initial input layer designed to
receive data input representing the length of the sequence.
Subsequently, this sequential data is passed through an
LSTM layer, a specialized recurrent neural network layer
designed to handle sequential information. Notably, the
LSTM layer incorporates memory cells that enable the
retention of information over time, thus effectively captur-
ing long-term dependencies within the data. A dropout layer
is comprised after the LSTM layer to introduce regulariza-
tion and mitigate overfitting. Dropout randomly deactivates
specific input units during training, thereby promoting the
independence of neuron learning.

The subsequent layer, “Fully Connected LSTM Layer 2,”
applies fully connected operations to the output from the
preceding LSTM layer. This fully connected layer facilitates
detecting intricate relationships and complex patterns within
the data by establishing connections between all neurons.
Moreover, the model features an output layer comprising two
fully connected neurons, serving as a classifier to catego-
rize the input data into one of two classes. An LSTM layer
labeled as “LSTM 3” is also present, presumably aimed at
capturing further temporal dependencies and information.
Dropout regularization is applied again in the subsequent
layer labeled “Dropout 3.” Finally, a fully connected layer is
employed before a softmax layer, which outputs probability
distributions across the seven possible classes. Ultimately,
the architecture culminates with the output layer, utilizing a
classifier to assign the input data to one of the seven prede-
fined output classes.

In the subsequent stage of model training and hyper-
parameter tuning, the raw training data is further divided
into 80% for training purposes and 20% for validation to
evaluate the trained model. Five LSTM-based models are
evaluated using the validation data, and the hyperparam-
eters of the trained models are subsequently optimized
using the optimization approach. Finally, the hyperpa-
rameter-tuned models are assessed against the test results,
and their respective performance in activity recognition is
compared. The proposed scheme for location-independent
human activity recognition comprises two main phases:
offline training and online testing, as depicted in Fig. 6.
The system’s workflow encompasses four key components:

= —
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%) = —> Lie
(1} > 53
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3 (= s h= |
a8 8 T = ~* ©® g — Sitdown
o © >
4 1 [ -_— G
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w J

data collection, data preprocessing, feature representation,
and model training/testing. During the data collection, raw
CSI measurements are gathered to capture the environ-
mental variations. Data preprocessing involves calculating
the amplitude using the raw CSI and employing median
and outlier hamper filters to eliminate noise. The collected
data is then partitioned into time X subcarrier size samples,
which indicate the number of frames corresponding to an
activity multiplied by the number of subcarriers.

The data samples are then mapped to a high-dimen-
sional embedding space using LSTM for feature repre-
sentation. Concatenating models is a technique that com-
bines multiple models’ output to achieve higher accuracy
in classification tasks shown in Fig. 6. In this context, the
presented approach employs concatenating models to clas-
sify groups of activities into smaller categories. The initial
model is the fingerprinting model, which utilizes ampli-
tude subcarriers of the CSI to confirm whether a given
location is currently empty or has been occupied by a user.
The user would be required to capture several samples to
establish a baseline characterization of the empty environ-
ment at that site. Furthermore, the next classifier, model 2,
differentiates between dynamic and static activities. The
third classifier (model 3) classifies dynamic activities into
those with shifting movement (e.g., walking, running) and
those without moving movement (e.g., sitting down, stand-
ing up, falling). Another concatenated model is trained
to classify walking and running activities using model 4
for dynamic activities with movement. Additionally, logi-
cal and sequential classifications of activities with similar
features, such as sit-down and stand-up, and falls, are uti-
lized to classify these activities based on human logical
concepts.

The offline model concatenates the trained models with
significant blocks. Model 5 generates a new dataset for
static activities from dynamic activities and assembles a
trained model based on current environmental parameters.
Overall, the proposed system offers a robust and effective
solution for location-independent human activity recogni-
tion, with the potential to be applied in various real-world
scenarios.
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4.2 Preprocessing

A series of data-cleaning techniques were employed to
optimize the accuracy and reliability of the combined CSI
data. We first utilized a median filter approach to remove
potential outliers in the data, substituting anomalous val-
ues with the median value derived from the surrounding
data points. Despite this initial filtering step, some outliers
persisted in the dataset. To moderate the impact of these
remaining outliers, we employed Hampel fill outlier filters
that replaced any such values with the initial non-outlier
value in the dataset. Furthermore, a moving median filter
technique was applied to refine the data and reduce any
remaining noise, which involved calculating the median
value over data points. This filtering approach effectively
minimized minor fluctuations or inconsistencies in the
data. The standard deviation measures how much the
amplitude deviates from the mean value during data acqui-
sition, making it helpful in identifying amplitude outliers.
The denoising process starts by calculating the mean value
of the ith subcarrier of kth data packet according to Eq. 6.

- N
CSIAmp' = % Y csiAmp; ©)
k=1

where N is the number of samples, and [€[1, 2, ...., 56] is
the subcarrier index. Then we calculate the standard devia-
tion of the ith subcarrier from Eq. 7.
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RNl o _ csiami)
0= \| 5 Lo CSIAmp;, _ (CSIAmp, ~ CSIAmpT) ()

i is the index of the subcarriers, so we can get the V =[0,,0,,
..., 055, 05¢] Which is a variance matrix of the 56 subcarri-
ers. Assuming that the data packet to be filtered is k, the CSI
amplitude values are ICSIAmp;_ || and ICSIAmp, , | for each
adjacent data packet k — 1 and k+ 1, respectively. According
to Eq. 8, the filtered amplitude |Amplig,., is calculated by
averaging the three amplitude data values.

i 1
CStAmply, =

= §(|CSIAmp|§C_1 + |CSIAmp|}, + |CSIAmp], )

®)
For the processed amplitude CSIAmpy,.,, the covariance
matrix Cov(CSIAmpy;;er» CSIAmp) of CSIAmpy;,., and
CSIAmp! is calculated. After processing the CSI amplitude
values shown in Fig. 7, the filtered CSI amplitude values
are smoother, with the redundancy caused by various fac-
tors effectively removed and the abnormal values caused by
environmental factors filtered out.

4.3 Feature Extraction

LSTM is an advanced, recurrent neural network that excels at
capturing long-term dependencies in sequential data. In the
CSI context, LSTM enables feature extraction by leveraging
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Fig. 7 Denoising process and removing outliers of CSI amplitude

its memory retention, non-linear mapping, contextual under-
standing, and ability to handle variable-length sequences. It
remembers relevant information, captures complex relation-
ships, understands temporal dynamics, and adapts to varying
sequence lengths. Compared to traditional methods and sim-
pler models, LSTM’s strength lies in its capacity to uncover
patterns, extract meaningful representations, and exploit tem-
poral dependencies, making it well-suited for feature extraction
in CSI analysis [26].
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To maintain the collected data’s integrity and prevent the
loss of crucial signal features, we opted against utilizing prin-
cipal component analysis (PCA) or linear discriminant analysis
(LDA) that reduces data dimensionality. Instead, we have used
the complete set of collected data, organizing it systematically
and coherently based on the amplitude of the CSI. Algorithm 1
outlines the denoising procedure in a systematic manner and
denoted for the expression of feature extraction of CSI feature
matrices.

Algorithm 1: CSI Preprocessing, outlier removal and feature extraction.

Input: Raw CSl,,,, data< local median CSIAmp'

Output: Denoised CSI Data

I: CSIAmp Hi«CSlIraw-CSI pilot — CSI null subcarriers to remove pilot and null subcarriers

if CSIAmp!. — CSIAmp' >ko X o;

end if

Comparing the current CSIAmp (i) with o using Equation 6
CSIAmp'=CSIAmp(i)
CSlIpmp() < CSIAmp' outlier Hampel filter

CSlAmp_nampel_Denoisea()) ~CSIAmMp(i) median filter
CSlout [56 x 200] « Feature extraction from CSI Amplitude
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Fig.8 Diagrammatic representation of training classifier concatenation via model concatenation

4.4 Model Classifier
4.4.1 Online Stage

The online stage pertains to the current state of a model
undergoing training by feeding it with a dataset and adjust-
ing its parameters, enabling it to recognize patterns and
make predictions on new data. In this work, the online
stage is used to train models that classify various activities
according to their characteristics, beginning with general
activities such as empty locations and progressing to more
specific ones that involve dynamics and static movements.
The training process concatenates multiple models in a
sequence, with the output of one model used as the input
for the next model, resulting in a connected model that
recognizes complex patterns and makes accurate predic-
tions. Figure 8 illustrates the concatenation process, where
each model is depicted as a node or block in the diagram.

4.4.1.1 Trained Model 1—Empty Location Classifier CSI
offers valuable insights into the occupancy status of a
location by analyzing the strength and quality of wireless
signals. After preprocessing the data and using the sub-
carrier amplitude, the LSTM model was trained to clas-
sify locations as empty. The underlying assumption is that

Fig.9 Variation features of

Static Activity

any obstruction or blocking of wireless signals due to the
presence of occupants in a site will cause changes in the
amplitude of the CSI, enabling the model to detect the
empty status of the location accurately.

4.4.1.2 Trained Model 2—Static/Dynamic Classifier The ini-
tial dissection of concatenated models involves the Model 2
classifier, which aims to categorize activities as either static
or dynamic. Although the activities within each group are
unspecified, this model leverages frequency patterns to clas-
sify them effectively into two overarching groups with excep-
tional accuracy. It should be noted that this classifier is con-
sidered location-independent, as the frequency modulation
feature operates independently of location, as shown in Fig. 9.

To classify dynamic activities, we utilize moving vari-
ance segmentation MVS of packet changes, which is more
sensitive to subtle body movements because it uses a slid-
ing window to compute the sum of squared signals. Spe-
cifically, we calculate MVS within a sliding window using
the following procedure in Eq. 9.

n

CSImvs(t) = z:]

| < 2
5 2 [CSte = u] |
]:

Iyl
K = 12165

®

1500

dynamic and static activities

Amplitude

Dynamic Activity

LN A

Amplitude

0 50 100
Packets
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CSI Amplitude and Phase Varies due to shifting person’s position.
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Fig. 10 Classifying dynamic activities into dynamic with/without movement based on the CSI amplitude a with movement (walk and run) and b

without movement (sit-down and standup)

1400 i Slthwn

1200

1000

Amplitude
IS @ ®
o o o
8 8 8

)
=1
S

o
o
=)
N
S

30 40 50 60
Subcarriers

1400 T - T

1200

1000

Amplitude

60

Subcarriers

Fig. 11 Similarities between sit-down and standup, which makes it complex for the trained model to classify

where n is the length of the captured packet, v(t) is the mov-
ing variance of CSI amplitude at the ith packets. The moving
variance of a CSI stream consisting of n packets, Eq. (8)
defines the variance based on the mean y and packet number
(j) within a sliding window of length L. Additionally, i rep-
resents the current position of the packet number within the
entire CSI stream. As a result, this observation has stimu-
lated the conception of an adaptable, dynamic threshold in
its application across various activities. This threshold is
intended to facilitate detecting dynamic activities and con-
sequent data segmentation. Consequently, the subsequent
step involves further classifying dynamic activities into more
refined subgroups, those with or without shifting positions.

4.4.1.3 Trained Model 3 (Dynamic Activities Classi-
fier) Wireless channel variations occur during certain
activities, which cause fluctuations in CSI measurements. In
order to detect human activities and perform data segmenta-
tion, Moving Variance Segmentation (MVS) at Eq. (8) is
applied to the moving variance of CSI amplitude with sub-
carrier. And to achieve that, Model 3 is trained based on the
phase shift shown in Fig. 10.

Furthermore, human activities are complex and have sim-
ilar features, making them difficult to classify accurately.
For example, the activities of sitting down and standing up
can be very similar regarding the data collected, as shown
in Fig. 11. Furthermore, the variation in the sensor data for
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Fig. 12 Triggering changes of activities using change-point function to detect fall activity

these activities can differ between locations, which makes it
challenging to generalize activity recognition models across
different environments.

To address these challenges, our proposed model uses
a logical classify these two similar activities based on the
sequence of previous activities.

Logical Sequence Classifier

We employed a logical algorithm based on the human
activity flow process to improve the classification of
dynamic activities. The Algorithm involves a sequential
approach to activity classification, considering the rela-
tionship between current and preceding older activities to
make predictions about the activity in which an individual
is currently engaged. By analyzing the logical sequence
of actions, our model can accurately classify sit-down
and stand-up activities in various locations, regardless of
environmental factors. The present Algorithm provides
a logical framework for distinguishing between standing
up and sitting down at any location, despite their high
similarity and inherent classification difficulty. By incor-
porating changepoint functions, the Algorithm accurately

Walking Activity

1500

Amplitude

Fig. 13 Dynamic activities classification based on speed changes
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identifies changes in activity, including falls, by analyzing
the sequential patterns of activity depicted in Fig. 12.

4.4.1.4 Trained Model 4 (Dynamic Moving Activities Clas-
sifier) A narrow classification within the context of the
CSI measurements of a subcarrier, denoted as the discrep-
ancy between the observed value and the actual value,
is expressed where n represents the number of samples.
The variance is formally defined as the expectation of the
squared deviation of a random variable from its mean rep-
resented by Eq. 10 [34].

n n
1 2 1 EaS 2
=120 =5 2 (n-A)
i=1 i=1
In contexts, the arithmetic means A is a substitute for the

quantity H.Vi defined as V,=H;- H. 9, and this relationship
expressed mathematically as in Eq. 11.
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Furthermore, the CSI amplitude variance changes S? is
estimated using Eq. (12).

1 < I n w 1
S2=-) 82 =- V2 =
ngﬂ nn—l2 1 n—1

i=1 i=1

12)

where H, represents the amplitude of CSI matrix with
sample I, and H represents the mean center of the sample,
besides n represents the number of samples. We employed
this method to estimate the variance of the local range,
which enables discrimination between dynamic activity
signals based on the speed of variation shown in Fig. 13.

Algorithm 2 explains the systematic methodology for
achieving classifications of dynamic activities within the

framework of training models for Models 1-4. In order to
streamline this algorithm, we refer to Fig. 5, which illus-
trates an online stage for generating four trained models.
The process begins with Model 1 to check the occupation
of the location. If the site is empty, no further analysis is
performed. However, if the place is occupied, Model 2 is
employed to determine the type of activity, distinguishing
between dynamic and static movements. Next, Model 3
comes into play to classify dynamic activities into mov-
ing or non-moving activities. Finally, Model 4 extends
the classification further, providing more precise catego-
rization based on the speed of variations as described in
Egs. 9, 10, and 12.

Algorithm 2: Online Trainng Model Chssifiers

1:  Input: Denoised CSlout Matrix.
2: Output: Four trained concatenating models.
3:  while (true):
4: [MODEL 1] Check if Location is Empty
S Location «— empty, no activity to monitor;
6: [MODEL 2] Check if Location is Empty
7: Compute the moving variance of the current window using the MV technique
8: if MVS(t) # 0.05 x MVS(t+1) // Classify Static/Dynamic Activities.
9: If MVS has not changed
10: reset consecutive MVS - ”Static Activity”
11: else; MVS has changed,
12: increment Y7_,nsecutiveMVS and check if it meets the threshold
13: set the activity classification to MVS = "Dynamic Activity"
14: end if

[MODEL 3] dynamic activities classifier into (Dynamic with move ment /without move me nt)
15: Calculate the (MVS) technique for subcarriers phase e ~i®(9
16: Compare the current MV S(t) with previous MVS(t-1) amplitude to determine activity type
17: if §(t)eI®Mhas varied,

increment consecutive Matrix A > Equation (4),

18: check if it meets the threshold
19: elseif  threshold is reached
20: set the activity classification to "Dynamic with Movement"
21: else 5(t)e (M has not triggered threshold, reset the activity as Dynamic, but not moving from the
22: position.
23: Calculate the changes that occurred in CSli using changepoint.

Set T« 10 € points at the rms level of the signal changes. //Fall Classifier
24: [MODEL 4]
25: To validate the CSI amplitude and the frequency changes of CSI amplitude using Va, 62 uing Equatin
26: (9,10)
27: Estimate variance changes S with threshold representing the speed of movement.
28: Input CSI amplitude Hi into the LSTM model for processing.
29: Use the trained model to obtain the activity based on the S speed of amplitude changes
30: If the variance changes S indicate faster movement, then classify the activity as running; otherwise,
31: classify the activity as walking.
32 end
33: end
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Fig. 14 Extracting static activity
samples from sit-down activity
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4.4.2 Offline Stage

The trained models are considered robust and location-inde-
pendent, as they accurately classify dynamic based on their
variance of change, as demonstrated in the online stage. To fur-
ther enhance performance during the offline stage, we utilized
the model structure supplemented with two grades: a static
activities generator algorithm and self-trained classifier model
for these activities. The new stages improves the model’s capa-
bility to identify and categorize more specific activities.
i. Generating Static Dataset

The partitioning of dynamic activity presents an oppor-
tunity to redefine it as static transformations between states
that are themselves stationary. This notion is exemplified by
the sit-down activity, as illustrated in Fig. 14, which com-
prises three discernible phases: standing, sitting, and the
transitional movement connecting the two states. Identifying
variations in the transitional direction allows for capturing
diverse static postures and locations and acquiring a more
comprehensive comprehension of the dynamic activity.

Similarly, the model facilitates the detection of varia-
tions in walking activity and subsequently partitions it into
constituent standing frames, as illustrated in Fig. 15. This
analytical approach engenders a heightened movement level,
thereby enabling the monitoring of posture or movement
pattern alterations at each position in a path.

@ Springer
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This method enables a comprehensive representation of
the body’s movements and responses to different positions,
resulting in a more accurate and effective fingerprinting of
new location models.

ii. Model 5 (Static Activities Classifier)

The proposed approach in this study involves generat-
ing a static dataset using previous model classifiers and
a logical classifier that is not dependent on location or
orientation. This dataset is then utilized by Model 5, which
introduces the advantage of fingerprinting and mapping
static activities in a new environment without requir-
ing the model to be explicitly trained for each specific
environment. The static activities are classified using an
LSTM-trained model. This LSTM model is trained after
a sufficient dataset for static activities has been generated
to align with the nature of the task. The LSTM model
takes input data that describes the static activity under
consideration. The input data is then processed through
a series of LSTM cells that effectively capture the tem-
poral dependencies within the input data sequence. By
employing LSTM cells, the model effectively analyzes
and understands the input data’s sequential nature, allow-
ing it to capture and utilize the long-term dependencies
between different time steps. This capability enables the
model to recognize patterns and dependencies within the
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Fig. 16 The layout of training
location at lab-hall
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Fig. 17 Confusion matrix analysis of HAR model performance at trained location
input sequence, thereby facilitating the accurate classifi-  process of generating datasets of static activities and their

cation of static activities. Algorithm 3 breaks down the  type using Model 5.

Algorithm 3: Static activities classifier.
Input: CSI Amplitude concatenating matrix CSIi from dynamic Activities detected based on Model 4
Output: Generate static activities from dynamic activities, and build model 5 that adapts new location
1: while (true) do:

Use the changepoint to detect changes at Equation (10) of signal S at Equation (12)

Define logic sequence classifier to label each triggered changes in dynamic activities

Augment the Ns samples in matrix with dimensions of (55x200)

Store file as labeled activity as, sit or stand

Train [model 5] based on labeled activities using generated data to categorize static activities into classes.
Estimate variance changes of CSI Angle using Equation 4 and labels activities according to the generated dataset
Input the CSI dataset Hi into the LSTM model for processing

Obtain the predicted class label from the LSTM model output for each static activity (such as, sit/stand)
Classify the activity as running; otherwise, classify the activity as walking.
end

o AR

_ o
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Fig. 18 Performance of model for lower samples of dataset

Table 2 Evaluation of the performance in five locations

Location Accuracy Location dimensions
Lab hall 97% 9I%x6m

Library-hall 92% 30x18m

Home 91% 4%x3m

Lab 92.2 20x16 m
Classroom 91 14x8 m

Classroom

Fig. 19 Testing model at untrained environments
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5 Results and Evaluation

The experimental setup and configuration settings are pre-
sented, followed by an assessment of the overall feasibility
and effectiveness of the system. Thirdly, the individual
modules comprising the system are scrutinized. Subse-
quently, the system’s robustness is assessed by analyzing
the impact of diverse data samples. Finally, the evaluation
of real-time classification and limitations are presented.

5.1 Experimental Setup and Layout

For experimentation, we utilized a Network Interface
Card (NIC) Broadcom BCM43455c0, which supports the
IEEE802.11n/ac standard with Multi-User Multiple Input
Multiple Output (MU-MIMO) and is suitable for frequency
bands of 20 MHz, 40 MHz, and 80 MHz. This work focused
on testing the 20 MHz and 80 MHz frequency bands. For
this experiment, we used the Raspberry Pi operating system

Table 3. Model performance Model Accuracy (%)
evaluation
LSTM 97.2
Bi_LSTM 98.4
GRU 93.4
CNN 92.1

CNN-LSTM 94
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version Raspbian Buster Kernel v5.109 on a Pi 4B. The RPi
captures CSI data and is set to monitor mode at 20 MHz
with 5 GHz using a transmitter (Tx) (AC1350 TP-LINK
router) and a receiver (Rx) (RPi 4B), both of which use
omnidirectional antennas. In this section, we present the
overall accuracy using samples collected at 200 frames per
second, utilizing 56 subcarriers for 20 MHz bandwidth and
232 subcarriers for 80 MHz bandwidth. The model training
procedure was carried out in a layout of the environment
shown in Fig. 16 and then tested at the different environmen-
tal structures and varying distances between the transmitter
(Tx) and receiver (Rx).

5.2 Overall Performance
5.2.1 Performance at Trained Location

We evaluated the performance of the proposed model
through several stages engaged with capturing sufficient
files for each activity in the designated location and subse-
quently assessing their accuracy. We started by capturing
data for dynamic activities, and the same number of files
were generated for static activities. Two frequencies, 2.4GHz
and 5GHz, were utilized to further evaluate the model’s effi-
cacy, with bandwidths of 20 and 80 MHz respectively. The
resulting evaluation was then compared between the two
frequencies. As depicted in Fig. 17, the model trained on
the higher resolution dataset, based on 80 MHz, exhibited
superior performance. Nonetheless, it is essential to note that
using a higher-resolution dataset requires more processing
time due to its larger size.

0.25 Comparison of MSE between Models

o
N

0.15

Mean Squared Error (MSE)
o

o
o
a

LSTM Bi-LSTM GRU SVM CNN
Models

Fig.20 Comparison of mean squared error (MSE) between different
models

In addition to evaluating the model’s performance with
a more significant number of samples, it is also essential to
evaluate the performance when the model is trained with few
samples. One analysis evaluated the performance of a model
trained with only 50 samples per activity. The results showed
that the model achieved an accuracy of 96.25%, indicating
that the model was able to perform well even with a limited
number of training samples. One explanation for the stable
accuracy with fewer samples is that the LSTM algorithm
learns high-level features that are robust to variations in the
data. This allows the model to generalize well to new data
even when limited training data is available (Fig. 18).

5.2.2 Performance Across Different Environments

A set of experiments were conducted to evaluate the cross-
environment performance of the proposed model. The first
experiment involved training the model using a dataset
collected in the Lab room and testing it in four different
environments. During this experiment, the trained model
was utilized to run in real time and generate new static
datasets for static activities. The results of these experi-
ments are presented in Table 2.

The model trained using the dataset collected in the
classroom achieved an impressive accuracy of 97% in the
trained environment and accuracy of approximately 92% in
the other untrained four locations. These findings indicate
that the proposed model could classify labeled activities
based on the concatenating sequence and maintain stable
performance even when the environment changes as shown
in Fig. 19. This suggests that the proposed model has the
potential to be deployed in various environments and still
maintain high levels of accuracy in activity recognition
and fall detection.

5.3 Module Study
5.3.1 Trained Model Evaluation

In order to further evaluate the performance of the proposed
model, various types of neural networks were employed,
including RNNs) with LSTM, bi-LSTM, GRU, CNN, and
CNN-LSTM. The performance of each model was compared
to determine the optimal architecture for the task at hand. It
was found that the LSTM model provided stable accuracy
for the trained data, mainly when dealing with sequential
activities and real-time classification. This is due to the
ability of LSTM to handle long-term dependencies in the
data. On the other hand, the bi-LSTM and GRU models did
not significantly improve accuracy compared to the LSTM
model. The CNN and CNN-LSTM models, while showing
high accuracy in certain situations, were found to be less
effective in handling sequential data (Table 3).
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Fig.21 Performance analysis
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Fig.22 Real-time monitoring of activities

Generally, a BILSTM is slower than a unidirectional
LSTM due to its processing of the input sequence in both
forward and backward directions. This bidirectional nature
requires more computational resources and time, making
BiLSTM more computationally expensive than unidirec-
tional LSTM. We have utilized smaller layers in the model
design to optimize computational efficiency, as described
in the experimental settings. The results indicate that the
proposed LSTM model is well-suited for activity recogni-
tion and fall detection, particularly in real-time applica-
tions involving sequential data analysis. Despite the poten-
tial computational trade-off, the performance benefits of
LSTM in capturing long-term dependencies and accurately
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classifying activities justify its usage in these scenarios.
The model’s ability to handle sequential data with high
precision and real-time responsiveness highlights its effi-
cacy in practical applications.

By leveraging the strengths of LSTM, we achieve reli-
able activity recognition and fall detection, paving the
way for enhanced performance measures and an improved
understanding of human behavior. Additionally. The mean
square error (MSE) was calculated to compare the perfor-
mance of LSTM, BiLSTM, GRU, SVM, and CNN models
shown in Fig. 20. The results showed that the RNN-based
methods (LSTM, BiLSTM, and GRU) outperformed SVM
and CNN regarding MSE, indicating their superiority in
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capturing the sequential nature of activities. Furthermore,
the RNN methods, with their inherent recurrent connec-
tions, have a distinct advantage in extracting relevant fea-
tures from the complex and dynamic CSI data commonly
encountered in activity recognition tasks. Therefore, RNN-
based approaches are preferred for sequential activities
and feature extraction tasks, particularly when utilizing
CSI data.

5.3.2 Public Database Evaluation

One of the significant challenges in WiFi CSI-based activ-
ity recognition is the need for publicly available standard
datasets. While there are a few datasets available, such as
StanWiFi [37], SignFi [21], HuAc [2, 3, 12], and CSI data
based on images [23], these datasets are limited in scope and
complexity. As previously stated, researchers employ vari-
ous architectures in their studies, such as the one used by [2],
focusing on gesture recognition and utilizing 32 subcarriers
and a 5300 NIC. However, when comparing this approach
to that of [27], which focuses on activity behavior recogni-
tion and uses 64 subcarriers extracted using RPi Nexmon, it
becomes clear that these architectures are not compatible in
terms of hardware and activities. This incompatibility may
result in poor performance when applied to other activity
recognition datasets.

The proposed model utilizes public datasets to track and
analyze human activity over time and exhibits high adapt-
ability to various environments with minimal adjustments.
The evaluation of the trained model with a comparable pub-
lic dataset reveals its excellent performance in accurately
recognizing and classifying similar activities. Specifically,
Fig. 21 provides a comprehensive summary of the evaluation
metrics, including precision which demonstrates the robust-
ness and generalizability of our approach.

Upon analyzing the works of [6, 36], the proposed models
primarily concentrate on location-dependent sensing with
a specific emphasis on dynamic activities. In contrast, the
present model demonstrates the capacity to accurately clas-
sify static activities, irrespective of the user’s location, by
mapping their activities in varying settings and generating
datasets encompassing diverse orientations and positions. It
enhances the robustness of the proposed models and broad-
ens their potential applications beyond dynamic activity
recognition.

5.4 Real-Time Classification Evaluation

This model presents a real-time model that accurately clas-
sifies pre-determined activities at the instance level. The
model employs a Raspberry Pi 4B to continuously monitor
CSI data and generate PCAP format files. A deep learning
model uses MATLAB for activity classification to process

the generated files. The data undergoes a series of steps to
ensure optimal performance, including receiving, decod-
ing, preprocessing, and classifying. The process considers
the available computation hardware capabilities and imple-
ments strategies to reduce data injection while achieving
smooth propagation. The model’s performance was assessed
in multiple environments, and the results indicate high
accuracy in activity classification. Figure 22 illustrates the
real-time monitoring process, depicting the classification
results alongside labeled predicted activities, providing clear
insights into the model’s performance.

6 Limitations and Future Works

The current implementation of WiFi CSI-based for HAR
with location independence has limitations that need to be
addressed. Specifically, the proposed model was designed
only for certain activities, and different activities require
separate analyses for each individual activity. Additionally,
the model does not consider gesture recognition, which
requires a different strategy for analysis and recognition.
Although the presented model performs well in the ini-
tial stage of reading activities and enables the model to
match activities to one another. The model is designed
for a single user, and multiple sensing still needs to be
improved. The beamforming could enhance the multiple
sensing capabilities of the model. Model transformer mod-
els could also be another approach to recognizing activi-
ties for more than one person. Therefore, there is a need
for further research and development to improve the pro-
posed model’s capabilities and overcome the challenges in
location-independent sensing of human activities.

7 Conclusions

This work introduced a novel HAR system that facilitates
location-independent sensing through an adaptive learning
algorithm. The proposed system requires minimal effort to
train in new locations and uses data acquired through loca-
tion-free sensing inspired by sequential activities learning.
The system employs the LSTM feature representation and a
metric learning-based human activity mapping and recog-
nition system to identify activities. Furthermore, the model
extracts discriminative features for conditioning based on
common characteristics of different locations. We evaluated
the system’s performance on a comprehensive dataset and
found that it achieved an average accuracy of 97% for trained
indoor locations and 92% at untrained locations. Addition-
ally, the system adapts to the user’s activity speed with a
small amount of self-augmented data. This feature allows
the system to generalize to new locations and users with
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minimal effort, which is crucial for practical deployment.
Therefore, based on our results, we firmly conclude that the
approach is feasible and robust for location-independent
sensing.
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