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Abstract
Human Activity Recognition (HAR) is widely used in various applications, from smart homes and healthcare to the Internet 
of Things (IoT) and virtual reality gaming. However, existing HAR technologies suffer from limitations such as location 
dependency, sensitivity to noise and interference, and lack of flexibility in recognizing diverse activities and environments. 
In this paper, we present a novel approach to HAR that addresses these challenges and enables real-time classification and 
absolute location-independent sensing. The approach is based on an adaptive algorithm that leverages sequential learning 
activity features to simplify the recognition process and accommodate variations in human activities across different people 
and environments by extracting the features that match the signal with the surroundings. We employ the Raspberry Pi 4 and 
Channel State Information (CSI) data to extract activity recognition data, which provides reliable and high-quality signal 
information. We propose a signal segmentation method using the Long Short-Term Memory (LSTM) algorithm to accurately 
determine the start and endpoint of human activities. Our experiments show that our approach achieves a high accuracy of 
up to 97% in recognizing eight activities and mapping activities associated with environments that were not used in training. 
The approach represents a significant advancement in HAR technology and has the potential to revolutionize many domains, 
including healthcare, smart homes, and IoT.
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Abbreviations
HAR  Human activity recognition
IoT  Internet of things
RPi  Raspberry Pi
CSI  Channel state information
LSTM  Long short-term memory
CNN  Convolutional neural network
BVP  Body velocity profile
MIMO  Multiple input multiple output
NIC  Network interface card
Bi-LSTM  Bidirectional long short-term memory
GRU   Gated recurrent units

Tx  Transmitter
Rx  Receiver

1 Introduction

Human Activity Recognition (HAR) is a modern technology 
with various domains, including smart cities, health care, 
security surveillance, virtual reality, gaming, and location-
based services [6]. Wearable sensor-based, and camera-
based methods are the conventional approaches for HAR. 
Although these approaches are promising and widely used, 
they have limitations that make them unsuitable for all appli-
cation scenarios. Wearable sensor-based approaches require 
users to wear sensors on their bodies, which can be uncom-
fortable or inconvenient in some situations. On the other 
hand, camera-based methods require cameras to be installed 
in the environment where the activity is taking place, which 
can be intrusive and raise privacy concerns.

In recent years, researchers have focused on various appli-
cations of WiFi sensing, such as remote control in smart 
homes [14, 16], localization [18, 24], monitoring driving 
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conditions [32], gesture recognition [1, 15], activity recog-
nition [5, 30, 31] and other human–computer interactions 
and medical applications [24]. WiFi signals can be used as a 
short-range passive radar by measuring their interaction with 
movement and the environment [14]. Moreover, the systems 
track locations and movements by analyzing how signals are 
reflected and deflected environment [29, 39].

Using WiFi for HAR with location independence is a 
promising area that has the potential to enhance the per-
formance and applicability of activity recognition systems. 
This technology provides a robust and reliable approach that 
accurately recognizes human activities regardless of the sen-
sor’s condition, making it an attractive solution for various 
real-world scenarios. Mainly, the CSI component comprises 
several parameters, including amplitude, phase, and delay 
information, which is used to determine the quality of the 
wireless link. To use CSI for HAR, researchers use machine 
learning algorithms to analyze changes in the CSI as a per-
son moves through the wireless environment [13, 14]. By 
detecting changes in the CSI’s amplitude, phase, and delay 
information, it is possible to accurately recognize human 
activities such as walking, running, and sitting. Location 
dependency makes it difficult to generalize the model to dif-
ferent locations and situations and restricts the technology’s 
ability to be transferable across multiple sites, which is cru-
cial for commercialization [5, 10, 40].

Location-independent sensing refers to the ability of 
a technology to work in different environments, sites, or 
locations without any changes in its configuration or per-
formance [5, 27]. Existing Wi-Fi-based HAR approaches 
rely heavily on training data collected from specific loca-
tions or environments. This dependence on location limits 
the generalizability and scalability of the models. A robust 
HAR system should be able to accurately classify activi-
ties in different environments and adapt seamlessly to new 
environments without retraining [20]. Overcoming location 
dependency is crucial for deploying Wi-Fi-based HAR sys-
tems in diverse real-world settings. In addition, accurately 
classifying static activities, such as sitting, standing, or lying 
down, poses a substantial challenge in HAR. These activi-
ties share similar features and can be difficult to distinguish 
solely based on Wi-Fi signals. Existing models need help 
categorizing static activities, leading to lower accuracy in 
these categories. Improving the classification of static activi-
ties is essential for achieving comprehensive and reliable 
activity recognition [41].

To overcome this limitation, we propose an approach that 
leverages activity-adapted learning to enable feature trans-
fer between different locations and users based on a RNN- 
LSTM structure. This approach allows accurate recognition 
of activities based on location, balances performance with 
reducing the need for a large amount of training data and 
allows learning from the user’s interactions. This framework 

introduces a systematic approach for accurately classifying 
dynamic and static activities. It leverages logical sequence 
classifiers and LSTM-based feature extraction to enhance 
activity recognition performance. The main contributions 
of this work can be summarized as follows:

• To present a logical approach used to reconstruct the CSI 
data, which allows static activities mapping based on a 
learning algorithm that adapts to new locations. The pro-
posed method employs a coarse-to-fine logical strategy 
generally applicable to various activity recognition sys-
tems.

• To design a location-independent real-time monitoring 
system that utilizes deep learning technology based on 
HAR. The proposed model incorporates LSTM networks 
for feature extraction from WiFi signals in our frame-
work. The utilization of LSTM networks enables the cap-
turing of long-term dependencies and temporal patterns 
within the sequential data. This advanced feature extrac-
tion technique enhances activity recognition accuracy 
by effectively modeling the complex relationships and 
dependencies in Wi-Fi-based activity data.

• To validate the proposed framework’s effectiveness and 
robustness by conducting extensive evaluations and com-
parisons with existing methods, including other RNN-
based approaches. Through this comparative analysis, 
we demonstrate the superiority and advantages of our 
framework in terms of activity recognition performance 
and address the limitations of previous methods. The 
evaluation provides empirical evidence of the efficacy 
of our approach and its potential to overcome the chal-
lenges in Wi-Fi-based HAR.

By addressing the challenges related to location depend-
ency, improving the classification accuracy of static activi-
ties, and leveraging advanced LSTM-based feature extrac-
tion, our work significantly contributes to the advancement 
of Wi-Fi-based HAR. Our proposed framework offers a more 
accurate and robust solution for activity recognition, thereby 
facilitating the deployment of Wi-Fi-based HAR systems in 
various real-world scenarios. To provide a concrete illustra-
tion of the motivations and practical implications, let’s con-
sider a smart home equipped with WiFi sensors that monitor 
the activities of its residents. In contrast to existing sensor-
based approaches, which require individuals to train models 
in every new location with every new activity, our proposed 
Wi-Fi-based HAR system eliminates the need for intrusive 
and inconvenient training efforts. The proposed model ena-
bles the model to generate fingerprinted dataset based on 
the new location by detecting dynamic activities. This non-
intrusive nature improves user comfort and enhances the 
overall user experience regarding activity monitoring and 
behavior analysis within a smart home environment.
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The remainder of this paper is structured as follows: 
Sect. 2 discusses the theoretical background and related 
works, followed by the problem analysis. Section 4 pre-
sents the methodology and experimental setup. Section 5 
describes the results and discussion. Finally, limitations and 
future works are highlighted, and concludes the paper.

2  Related Works

WiFi-based sensing is location-dependent compared to sen-
sor-based methods due to its sensitivity to the user’s orienta-
tion and environmental changes, posing a challenge to the 
technology’s transferability across various locations. How-
ever, research continues investigating new methods to over-
come these limitations. These methods include developing 
models independent of the user’s location and orientation 
and mapping the relationship between WiFi measurements 
and human actions or activities [7]. Practical approaches for 
addressing location dependency have been proposed in [9, 
22], which applied transform theories to practical applica-
tions. The recognition algorithm learns location and person 
independent features from different perspectives of CSI data. 
The state machine learns temporal dependency information 
from history classification results. According to the superpo-
sition of multipath, the received signal and its effect on the 
wireless channel for the same activity are greatly modified 
in different stages, and activity detection is tied to the trained 
location [17, 20, 25, 35].

Yang et al. developed FALAR, which leverages class-
estimated basis space singular value decomposition to elimi-
nate location information from the CSI data associated with 
static paths [35]. The system was tested on samples of five 
activity categories collected from eight locations, where four 
of the locations were used for training. The results showed 
that FALAR achieved a gesture recognition accuracy of 
90.6% for all eight locations. However, the system requires 
using the new OpenWrt firmware to obtain fine-grained CSI 
data from all 114 subcarriers. Lu et al. proposed WiHand to 
enhance gesture recognition in dynamic settings by separat-
ing background signals from gesture signals using low-rank 
and sparse decomposition [20]. Their tests revealed an aver-
age testing accuracy of 93% for untrained locations. How-
ever, the system relies on high signal transmission rates, 
which may lead to data packet loss.

Zhang et al. conducted additional research in this field, 
introducing Widar3.0, a gesture recognition system that 
uses body coordinate velocity profile (BVP) signals, and a 
CNN-GRU network to extract spatial and temporal features 
for classification [41]. Widar3.0 achieves an 85.3% average 
accuracy for recognizing gesture samples at the fifth location 
but requires at least three receivers and predefined zones for 
BVP data collection. Although Widar3.0 improves recognition 

performance by separating activity signals from background 
information, it is limited by specific hardware or deployment 
targets. Ding et al. introduced WiLiMetaSensing, a method 
that utilizes a CNN and LSTM network to extract location-
independent features for activity recognition [5]. Samples from 
source locations are used for meta-learning, and only a few 
samples from target locations are required for training. When 
four locations are used for training and 24 locations for testing, 
WiLiMetaSensing achieves an accuracy of 91.11% in one-shot 
learning. This approach decreases the number of target loca-
tion samples required for activity recognition but still requires 
a small number.

Another approach to improving location independence 
beyond model-based algorithms is array antennas and multi-
ple systems. In [8] and [33], antennas were utilized to improve 
location dependency by focusing detection on the person’s pre-
cision. However, this approach does not fully operate location-
dependently. In [4], the employment of UWB 5G transmission 
was used to improve the detection of multi-person estimation. 
Their work aims to achieve a broader detection bandwidth with 
more reflected signals over a large band of frequencies. Table 1 
summarizes the relevant compositions on location independent 
HAR and provides information about the type of algorithm 
used, the type of signal (e.g., CSI), and the equipment required 
for the data collection to give a general overview of the com-
plexity and feasibility of the method.

3  Primarily and Problem Analysis

3.1  CSI Mathematical Analysis

We leverage the ubiquity of CSI as the primary means for 
capturing activity data. CSI is a crucial indicator of the chan-
nel link states in MIMO systems. CSI provides a high level 
of sensitivity to the variations of the channel link, making it 
superior to other signals due to its fine-grained nature and rela-
tively small size. The mathematical representation of CSI is 
shown in Equation.

where y represents the vectors of the transmitter and 
receiver, The transmission equation represents H as a com-
plex matrix of CSI values and n as the channel noise [19]. 
MIMO enables multiple channels to increase transmission 
rate by creating H matrix of connection links, represented 
as Eq. 2:
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The CSI estimates the magnitudes and phases hNRNT

i
 of 

the ith subcarrier for the link between the receiver antenna 
and the transmitter antenna [28]. Hence, the CSI entry corre-
sponds to the channel frequency response, as Eq. 3 indicates.

where N represents the summation of total multipaths of the 
subcarriers, �l represent the attentions and �l is the propa-
gation delay of signal through path l. The WIFI CSI ratio 
illustrates how surrounding objects affect, weaken, and scat-
ter OFDM signals during transmission [14, 38]. On the one 
hand, the uncertainty in the power amplifier of the RF chain 
regularly leads to impulsions and burst noise in the ampli-
tude of the CSI. Additionally, the disparity in the frequency 
band between transceivers causes a time-varying phase to 
offset in each CSI sample, which quickly supports this per-
spective and disrupts the phase variation caused by human 
motion and mathematically represented in Eq. 4 as:

whereby �(t) represents the intensity of impulsive noise and 
�(t) represents the time-varying phase offset. L represents 
the total number of propagating routes, lambda represents 
the wavelengths, and  A1(t) and  d1(t) represents the signal’s 
attenuation and the L pathway’s length, respectively. Over-
all, the environment significantly impacts the wireless sig-
nals used to capture the CSI measurements. Furthermore, 
the accuracy of human activity recognition is also influ-
enced by the positioning and orientation of the person being 
monitored.

3.2  LSTM Networks

LSTM networks are particularly well-suited for this task due 
to their ability to capture and analyze long-term dependen-
cies within sequential data effectively. This characteristic is 
crucial for accurately identifying patterns and trends within 
the analyzed signals. Within the LSTM architecture, the 
facilitation of information removal or addition to the cell 
state is proficiently governed by specialized components 
called gates shown in Fig. 1. These gates act as discretion-
ary conduits for the passage of information. Structurally, 
they are comprised of a sigmoid neural network layer and 
a pointwise multiplication operation, operating in tandem 
to exert meticulous control over the information flow [11].

The input set of the CSI vector is defined as 
� = x0, h1, h2 … .ht , the output set is � = y0, y1, y2 … .yt 
And the hidden layers ash = {h1, h2,… ..ht} . In the initial 
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stage of LSTM model, a crucial determination is made 
regarding the selective discarding of information from the 
cell state. This pivotal decision employs a sigmoid layer 
called the “forget gate layer.” By examining the previous 
hidden state  ht − 1 and the current input X, this layer gen-
erates an output value ranging between 0 and 1 for each 
component within the initial cell state  Ct − 1.

In contrast to the input aggregation and processing 
mechanisms employed by RNNs, LSTM networks exhibit 
a more suitable architecture for prolonged data recogni-
tion as an input gate. Incorporating a forget gate allows 
for comparing the internal memory and new incoming 
data, facilitating selective overwrite. This dynamic pro-
cess enables the smooth propagation of gradients across 
sequential steps. The LSTM comprises an input gate, 
forget gate, output gate, and memory cell to effectively 
manipulate the data to be forgotten, recognized, and 
retained. The gating technique, encompassing both the 
activation function (sigmoid function) and element-wise 
multiplication, is selected to govern the flow of pertinent 
data. The resulting output value, confined within the [0, 
1] range, facilitates subsequent multiplication and regu-
lates the data flow. The relevant initialization gates are 
assigned values close to or equal to 1, thereby mitigating 
any detrimental impact on initial training stages.

3.3  Correlation of Dynamic Activities and CSI 
with Environment

The analysis of activities, as depicted in Fig. 2, indicates 
that dynamic activities confirm exceptional diversity in 
their packet transmission. The diversity in packet transmis-
sion facilitates precise discrimination of various activities. 
Moreover, the dynamic activities exhibit variations in both 
amplitude and phase, which consequently manipulate the 
velocity of movement.

In contrast, stationary activities, including empty, sitting, 
and standing perspectives, display a lower degree of vari-
ability in packet transmission, making it more challenging 
to distinguish them from one another. This underscores the 
need to account for both the activity and the location when 
analyzing CSI data from wireless networks. As illustrated 
in Fig. 3, subcarrier variations are observed for distinct sta-
tionary postures, such as empty, sitting, and standing, in a 
location where the frequency remains unchanged.

3.4  Environmental Effects of WiFi Sensing

Utilizing WiFi for human tracking and localization pre-
sents many challenges that necessitate careful considera-
tion to achieve accurate and reliable performance. Firstly, 
multipath propagation occurs due to the intricate interplay 

Fig. 1  Interacting layers within 
an LSTM module [11]

Fig. 2  Variation in amplitude in dynamic activities a standup, b walk, and c run



 Human-Centric Intelligent Systems

1 3

of reflections, diffractions, and scattering within indoor 
environments, as indicated in Fig. 4. As a result, WiFi 
signals traverse multiple paths and exhibit disparities in 
signal strengths, rendering the accurate estimation of an 
individual’s location based solely on WiFi measurements 
a formidable task.

Moreover, NLOS conditions emerge when obstacles or 
physical barriers obstruct the direct path between WiFi 
access points and the tracked individual. WiFi signals 
experience notable attenuation and distortions in such sce-
narios, culminating in inaccurate localization estimates. 
Additionally, the vulnerability of WiFi signals to interfer-
ence and noise from diverse sources, including other WiFi 
devices, electronic appliances, and environmental factors, 
poses significant challenges. Such interference and noise 
detrimentally affect the quality of the received signal, con-
sequently leading to localization errors. Another challenge 
is the complex and unpredictable propagation of wireless 
signals within indoor environments is affected by severe 
signal attenuation, reflection, and multipath effects. Equa-
tion 5 represents the Power propagated in space with var-
ied gains between transmitter and receiver. By determining 
the environmental aspect, it is possible to analyze the envi-
ronmental effects of the signal to eliminate the dependency 
on the environment. Starting from Power received Eq. 5.

Pr represents the received power, Pt denotes the transmitted 
power, Gt, Gr refer to the transmitted and received gains, λ 
is the signal wavelength and F is the propagation factor. The 
R represents the propagation range. Additionally, one of the 
significant challenges in HAR is the variability in how peo-
ple perform activities. People may perform the same activity 
at different speeds, orientations, and methods, which leads 
to signal variations and make it difficult to predict the type 
of activity being performed accurately.

4  Methodology

4.1  System Overview

The process begins with data collection using RPi supported 
by Nexmon firmware and TCPDUMP, as depicted in Fig. 5. 
The raw CSI data is then subjected to MATLAB preproc-
essing and filtering stages. These stages aim to enhance 
the quality and relevance of the collected data, ensuring its 
suitability for subsequent analysis. The behavior recogni-
tion system’s critical component is utilizing LSTM networks 
for feature extraction from the signal data. The architecture 
described herein presents a sequential model that utilizes 
LSTM layers for classification, as depicted in Fig. 5. The 

(5)Pr =
Pt ∗ Gt∗Gr∗�

2 ∗ F

(4� ∗ R)2
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Fig. 3  The amplitude and phase changes among static activities such as a empty, b standing, and c sitting

Fig. 4  Multi-path propagation 
of WiFi
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workflow commences with an initial input layer designed to 
receive data input representing the length of the sequence. 
Subsequently, this sequential data is passed through an 
LSTM layer, a specialized recurrent neural network layer 
designed to handle sequential information. Notably, the 
LSTM layer incorporates memory cells that enable the 
retention of information over time, thus effectively captur-
ing long-term dependencies within the data. A dropout layer 
is comprised after the LSTM layer to introduce regulariza-
tion and mitigate overfitting. Dropout randomly deactivates 
specific input units during training, thereby promoting the 
independence of neuron learning.

The subsequent layer, “Fully Connected LSTM Layer 2,” 
applies fully connected operations to the output from the 
preceding LSTM layer. This fully connected layer facilitates 
detecting intricate relationships and complex patterns within 
the data by establishing connections between all neurons. 
Moreover, the model features an output layer comprising two 
fully connected neurons, serving as a classifier to catego-
rize the input data into one of two classes. An LSTM layer 
labeled as “LSTM 3” is also present, presumably aimed at 
capturing further temporal dependencies and information. 
Dropout regularization is applied again in the subsequent 
layer labeled “Dropout 3.” Finally, a fully connected layer is 
employed before a softmax layer, which outputs probability 
distributions across the seven possible classes. Ultimately, 
the architecture culminates with the output layer, utilizing a 
classifier to assign the input data to one of the seven prede-
fined output classes.

In the subsequent stage of model training and hyper-
parameter tuning, the raw training data is further divided 
into 80% for training purposes and 20% for validation to 
evaluate the trained model. Five LSTM-based models are 
evaluated using the validation data, and the hyperparam-
eters of the trained models are subsequently optimized 
using the optimization approach. Finally, the hyperpa-
rameter-tuned models are assessed against the test results, 
and their respective performance in activity recognition is 
compared. The proposed scheme for location-independent 
human activity recognition comprises two main phases: 
offline training and online testing, as depicted in Fig. 6. 
The system’s workflow encompasses four key components: 

data collection, data preprocessing, feature representation, 
and model training/testing. During the data collection, raw 
CSI measurements are gathered to capture the environ-
mental variations. Data preprocessing involves calculating 
the amplitude using the raw CSI and employing median 
and outlier hamper filters to eliminate noise. The collected 
data is then partitioned into time × subcarrier size samples, 
which indicate the number of frames corresponding to an 
activity multiplied by the number of subcarriers.

The data samples are then mapped to a high-dimen-
sional embedding space using LSTM for feature repre-
sentation. Concatenating models is a technique that com-
bines multiple models’ output to achieve higher accuracy 
in classification tasks shown in Fig. 6. In this context, the 
presented approach employs concatenating models to clas-
sify groups of activities into smaller categories. The initial 
model is the fingerprinting model, which utilizes ampli-
tude subcarriers of the CSI to confirm whether a given 
location is currently empty or has been occupied by a user. 
The user would be required to capture several samples to 
establish a baseline characterization of the empty environ-
ment at that site. Furthermore, the next classifier, model 2, 
differentiates between dynamic and static activities. The 
third classifier (model 3) classifies dynamic activities into 
those with shifting movement (e.g., walking, running) and 
those without moving movement (e.g., sitting down, stand-
ing up, falling). Another concatenated model is trained 
to classify walking and running activities using model 4 
for dynamic activities with movement. Additionally, logi-
cal and sequential classifications of activities with similar 
features, such as sit-down and stand-up, and falls, are uti-
lized to classify these activities based on human logical 
concepts.

The offline model concatenates the trained models with 
significant blocks. Model 5 generates a new dataset for 
static activities from dynamic activities and assembles a 
trained model based on current environmental parameters. 
Overall, the proposed system offers a robust and effective 
solution for location-independent human activity recogni-
tion, with the potential to be applied in various real-world 
scenarios.

Fig. 5  Schematic of LSTM architecture layers
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4.2  Preprocessing

A series of data-cleaning techniques were employed to 
optimize the accuracy and reliability of the combined CSI 
data. We first utilized a median filter approach to remove 
potential outliers in the data, substituting anomalous val-
ues with the median value derived from the surrounding 
data points. Despite this initial filtering step, some outliers 
persisted in the dataset. To moderate the impact of these 
remaining outliers, we employed Hampel fill outlier filters 
that replaced any such values with the initial non-outlier 
value in the dataset. Furthermore, a moving median filter 
technique was applied to refine the data and reduce any 
remaining noise, which involved calculating the median 
value over data points. This filtering approach effectively 
minimized minor fluctuations or inconsistencies in the 
data. The standard deviation measures how much the 
amplitude deviates from the mean value during data acqui-
sition, making it helpful in identifying amplitude outliers. 
The denoising process starts by calculating the mean value 
of the ith subcarrier of kth data packet according to Eq. 6.

where N is the number of samples, and I ∈ [1, 2, …., 56] is 
the subcarrier index. Then we calculate the standard devia-
tion of the ith subcarrier from Eq. 7.

(6)CSIAmpi =
1

N

N∑
k=1

CSIAmpi
k

i is the index of the subcarriers, so we can get the V = [�1,�2 , 
… , �55 , �56 ] which is a variance matrix of the 56 subcarri-
ers. Assuming that the data packet to be filtered is k, the CSI 
amplitude values are | CSIAmpi

k−1
 | and | CSIAmpi

k+1
 | for each 

adjacent data packet k − 1 and k + 1, respectively. According 
to Eq. 8, the filtered amplitude |Amp|ifilter is calculated by 
averaging the three amplitude data values.

For the processed amplitude  CSIAmpfilter, the covariance 
matrix Cov(CSIAmpfilter, CSIAmp) of  CSIAmpfilter and 
CSIAmpi is calculated. After processing the CSI amplitude 
values shown in Fig. 7, the filtered CSI amplitude values 
are smoother, with the redundancy caused by various fac-
tors effectively removed and the abnormal values caused by 
environmental factors filtered out.

4.3  Feature Extraction

LSTM is an advanced, recurrent neural network that excels at 
capturing long-term dependencies in sequential data. In the 
CSI context, LSTM enables feature extraction by leveraging 
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Fig. 6  System flowchart
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its memory retention, non-linear mapping, contextual under-
standing, and ability to handle variable-length sequences. It 
remembers relevant information, captures complex relation-
ships, understands temporal dynamics, and adapts to varying 
sequence lengths. Compared to traditional methods and sim-
pler models, LSTM’s strength lies in its capacity to uncover 
patterns, extract meaningful representations, and exploit tem-
poral dependencies, making it well-suited for feature extraction 
in CSI analysis [26].

To maintain the collected data’s integrity and prevent the 
loss of crucial signal features, we opted against utilizing prin-
cipal component analysis (PCA) or linear discriminant analysis 
(LDA) that reduces data dimensionality. Instead, we have used 
the complete set of collected data, organizing it systematically 
and coherently based on the amplitude of the CSI. Algorithm 1 
outlines the denoising procedure in a systematic manner and 
denoted for the expression of feature extraction of CSI feature 
matrices.

Fig. 7  Denoising process and removing outliers of CSI amplitude
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4.4  Model Classifier

4.4.1  Online Stage

The online stage pertains to the current state of a model 
undergoing training by feeding it with a dataset and adjust-
ing its parameters, enabling it to recognize patterns and 
make predictions on new data. In this work, the online 
stage is used to train models that classify various activities 
according to their characteristics, beginning with general 
activities such as empty locations and progressing to more 
specific ones that involve dynamics and static movements. 
The training process concatenates multiple models in a 
sequence, with the output of one model used as the input 
for the next model, resulting in a connected model that 
recognizes complex patterns and makes accurate predic-
tions. Figure 8 illustrates the concatenation process, where 
each model is depicted as a node or block in the diagram.

4.4.1.1 Trained Model 1—Empty Location Classifier CSI 
offers valuable insights into the occupancy status of a 
location by analyzing the strength and quality of wireless 
signals. After preprocessing the data and using the sub-
carrier amplitude, the LSTM model was trained to clas-
sify locations as empty. The underlying assumption is that 

any obstruction or blocking of wireless signals due to the 
presence of occupants in a site will cause changes in the 
amplitude of the CSI, enabling the model to detect the 
empty status of the location accurately.

4.4.1.2 Trained Model 2—Static/Dynamic Classifier The ini-
tial dissection of concatenated models involves the Model 2 
classifier, which aims to categorize activities as either static 
or dynamic. Although the activities within each group are 
unspecified, this model leverages frequency patterns to clas-
sify them effectively into two overarching groups with excep-
tional accuracy. It should be noted that this classifier is con-
sidered location-independent, as the frequency modulation 
feature operates independently of location, as shown in Fig. 9.

To classify dynamic activities, we utilize moving vari-
ance segmentation MVS of packet changes, which is more 
sensitive to subtle body movements because it uses a slid-
ing window to compute the sum of squared signals. Spe-
cifically, we calculate MVS within a sliding window using 
the following procedure in Eq. 9.

(9)
CSImvs(t) =

n∑
i=1

�
1

L−1

L∑
j=1

���CSIj∈L − �
���
2

�
,

� =
1

L

∑L

j=1
CSIj.

Fig. 8  Diagrammatic representation of training classifier concatenation via model concatenation

Fig. 9  Variation features of 
dynamic and static activities
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where n is the length of the captured packet, v(t) is the mov-
ing variance of CSI amplitude at the ith packets. The moving 
variance of a CSI stream consisting of n packets, Eq. (8) 
defines the variance based on the mean � and packet number 
(j) within a sliding window of length L. Additionally, i rep-
resents the current position of the packet number within the 
entire CSI stream. As a result, this observation has stimu-
lated the conception of an adaptable, dynamic threshold in 
its application across various activities. This threshold is 
intended to facilitate detecting dynamic activities and con-
sequent data segmentation. Consequently, the subsequent 
step involves further classifying dynamic activities into more 
refined subgroups, those with or without shifting positions.

4.4.1.3 Trained Model 3 (Dynamic Activities Classi‑
fier) Wireless channel variations occur during certain 
activities, which cause fluctuations in CSI measurements. In 
order to detect human activities and perform data segmenta-
tion, Moving Variance Segmentation (MVS) at Eq.  (8) is 
applied to the moving variance of CSI amplitude with sub-
carrier. And to achieve that, Model 3 is trained based on the 
phase shift shown in Fig. 10.

Furthermore, human activities are complex and have sim-
ilar features, making them difficult to classify accurately. 
For example, the activities of sitting down and standing up 
can be very similar regarding the data collected, as shown 
in Fig. 11. Furthermore, the variation in the sensor data for 

Fig. 10  Classifying dynamic activities into dynamic with/without movement based on the CSI amplitude a with movement (walk and run) and b 
without movement (sit-down and standup)

Fig. 11  Similarities between sit-down and standup, which makes it complex for the trained model to classify
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these activities can differ between locations, which makes it 
challenging to generalize activity recognition models across 
different environments.

To address these challenges, our proposed model uses 
a logical classify these two similar activities based on the 
sequence of previous activities.

Logical Sequence Classifier
We employed a logical algorithm based on the human 

activity flow process to improve the classification of 
dynamic activities. The Algorithm involves a sequential 
approach to activity classification, considering the rela-
tionship between current and preceding older activities to 
make predictions about the activity in which an individual 
is currently engaged. By analyzing the logical sequence 
of actions, our model can accurately classify sit-down 
and stand-up activities in various locations, regardless of 
environmental factors. The present Algorithm provides 
a logical framework for distinguishing between standing 
up and sitting down at any location, despite their high 
similarity and inherent classification difficulty. By incor-
porating changepoint functions, the Algorithm accurately 

identifies changes in activity, including falls, by analyzing 
the sequential patterns of activity depicted in Fig. 12.

4.4.1.4 Trained Model 4 (Dynamic Moving Activities Clas‑
sifier) A narrow classification within the context of the 
CSI measurements of a subcarrier, denoted as the discrep-
ancy between the observed value and the actual value, 
is expressed where n represents the number of samples. 
The variance is formally defined as the expectation of the 
squared deviation of a random variable from its mean rep-
resented by Eq. 10 [34].

In contexts, the arithmetic means Ĥ is a substitute for the 
quantity Ĥ.Vi defined as  Vi =  Hi − H . δ1 and this relationship 
expressed mathematically as in Eq. 11.

(10)S2 =
1

n

n∑
i=1

δ2
i
=

1

n

n∑
i=1

(
Hi − Ĥ

)2

(11)
n∑
i=1

δ2
i
=

n

n − 1

n∑
i=1

V2

i

Fig. 12  Triggering changes of activities using change-point function to detect fall activity

Fig. 13  Dynamic activities classification based on speed changes
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Furthermore, the CSI amplitude variance changes S2 is 
estimated using Eq. (12).

where Hi represents the amplitude of CSI matrix with 
sample I, and H represents the mean center of the sample, 
besides n represents the number of samples. We employed 
this method to estimate the variance of the local range, 
which enables discrimination between dynamic activity 
signals based on the speed of variation shown in Fig. 13.

Algorithm 2 explains the systematic methodology for 
achieving classifications of dynamic activities within the 

(12)

S2 =
1

n

n∑
i=1

δ2
i
=

1

n

n

n − 1

n∑
i=1

V2
i
=

1

n − 1

n∑
i=1

(
Ai − A

)2

framework of training models for Models 1–4. In order to 
streamline this algorithm, we refer to Fig. 5, which illus-
trates an online stage for generating four trained models. 
The process begins with Model 1 to check the occupation 
of the location. If the site is empty, no further analysis is 
performed. However, if the place is occupied, Model 2 is 
employed to determine the type of activity, distinguishing 
between dynamic and static movements. Next, Model 3 
comes into play to classify dynamic activities into mov-
ing or non-moving activities. Finally, Model 4 extends 
the classification further, providing more precise catego-
rization based on the speed of variations as described in 
Eqs. 9, 10, and 12.
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4.4.2  Offline Stage

The trained models are considered robust and location-inde-
pendent, as they accurately classify dynamic based on their 
variance of change, as demonstrated in the online stage. To fur-
ther enhance performance during the offline stage, we utilized 
the model structure supplemented with two grades: a static 
activities generator algorithm and self-trained classifier model 
for these activities. The new stages improves the model’s capa-
bility to identify and categorize more specific activities.
i. Generating Static Dataset

The partitioning of dynamic activity presents an oppor-
tunity to redefine it as static transformations between states 
that are themselves stationary. This notion is exemplified by 
the sit-down activity, as illustrated in Fig. 14, which com-
prises three discernible phases: standing, sitting, and the 
transitional movement connecting the two states. Identifying 
variations in the transitional direction allows for capturing 
diverse static postures and locations and acquiring a more 
comprehensive comprehension of the dynamic activity.

Similarly, the model facilitates the detection of varia-
tions in walking activity and subsequently partitions it into 
constituent standing frames, as illustrated in Fig. 15. This 
analytical approach engenders a heightened movement level, 
thereby enabling the monitoring of posture or movement 
pattern alterations at each position in a path.

This method enables a comprehensive representation of 
the body’s movements and responses to different positions, 
resulting in a more accurate and effective fingerprinting of 
new location models.

 ii. Model 5 (Static Activities Classifier)

The proposed approach in this study involves generat-
ing a static dataset using previous model classifiers and 
a logical classifier that is not dependent on location or 
orientation. This dataset is then utilized by Model 5, which 
introduces the advantage of fingerprinting and mapping 
static activities in a new environment without requir-
ing the model to be explicitly trained for each specific 
environment. The static activities are classified using an 
LSTM-trained model. This LSTM model is trained after 
a sufficient dataset for static activities has been generated 
to align with the nature of the task. The LSTM model 
takes input data that describes the static activity under 
consideration. The input data is then processed through 
a series of LSTM cells that effectively capture the tem-
poral dependencies within the input data sequence. By 
employing LSTM cells, the model effectively analyzes 
and understands the input data’s sequential nature, allow-
ing it to capture and utilize the long-term dependencies 
between different time steps. This capability enables the 
model to recognize patterns and dependencies within the 

Fig. 15  Generate samples of 
standing activity in different 
positions from walking activity

Fig. 14  Extracting static activity 
samples from sit-down activity
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input sequence, thereby facilitating the accurate classifi-
cation of static activities. Algorithm 3 breaks down the 

process of generating datasets of static activities and their 
type using Model 5.

Fig. 16  The layout of training 
location at lab-hall

Fig. 17  Confusion matrix analysis of HAR model performance at trained location

Algorithm 3:  Static activities classifier.
Input: CSI Amplitude concatenating matrix CSIi from dynamic Activities detected based on Model 4
Output: Generate static activities from dynamic activities, and build model 5 that adapts new location
1: while (true) do:
2: Use the changepoint to detect changes at Equation (10) of signal   S at Equation (12)
3: Define logic sequence classifier to label each triggered changes in dynamic activities
4: Augment the Ns samples in matrix with dimensions of (55x200)
5: Store file as labeled activity as, sit or stand
6: Train [model 5] based on labeled activities using generated data to categorize static activities into classes.
7: Estimate variance changes of CSI Angle using Equation 4 and labels activities according to the generated dataset
8: Input the CSI dataset Hi into the LSTM model for processing
9: Obtain the predicted class label from the LSTM model output for each static activity (such as, sit/stand)
10: Classify the activity as running; otherwise, classify the activity as walking.
11: end 
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5  Results and Evaluation

The experimental setup and configuration settings are pre-
sented, followed by an assessment of the overall feasibility 
and effectiveness of the system. Thirdly, the individual 
modules comprising the system are scrutinized. Subse-
quently, the system’s robustness is assessed by analyzing 
the impact of diverse data samples. Finally, the evaluation 
of real-time classification and limitations are presented.

5.1  Experimental Setup and Layout

For experimentation, we utilized a Network Interface 
Card (NIC) Broadcom BCM43455c0, which supports the 
IEEE802.11n/ac standard with Multi-User Multiple Input 
Multiple Output (MU-MIMO) and is suitable for frequency 
bands of 20 MHz, 40 MHz, and 80 MHz. This work focused 
on testing the 20 MHz and 80 MHz frequency bands. For 
this experiment, we used the Raspberry Pi operating system 

Table 2  Evaluation of the performance in five locations

Location Accuracy Location dimensions

Lab hall 97% 9 × 6 m
Library-hall 92% 30 × 18 m
Home 91% 4 × 3 m
Lab 92.2 20 × 16 m
Classroom 91 14 × 8 m

Fig. 19  Testing model at untrained environments

Table 3  Model performance 
evaluation

Model Accuracy (%)

LSTM 97.2
Bi_LSTM 98.4
GRU 93.4
CNN 92.1
CNN-LSTM 94

Fig. 18  Performance of model for lower samples of dataset
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version Raspbian Buster Kernel v5.109 on a Pi 4B. The RPi 
captures CSI data and is set to monitor mode at 20 MHz 
with 5 GHz using a transmitter (Tx) (AC1350 TP-LINK 
router) and a receiver (Rx) (RPi 4B), both of which use 
omnidirectional antennas. In this section, we present the 
overall accuracy using samples collected at 200 frames per 
second, utilizing 56 subcarriers for 20 MHz bandwidth and 
232 subcarriers for 80 MHz bandwidth. The model training 
procedure was carried out in a layout of the environment 
shown in Fig. 16 and then tested at the different environmen-
tal structures and varying distances between the transmitter 
(Tx) and receiver (Rx).

5.2  Overall Performance

5.2.1  Performance at Trained Location

We evaluated the performance of the proposed model 
through several stages engaged with capturing sufficient 
files for each activity in the designated location and subse-
quently assessing their accuracy. We started by capturing 
data for dynamic activities, and the same number of files 
were generated for static activities. Two frequencies, 2.4GHz 
and 5GHz, were utilized to further evaluate the model’s effi-
cacy, with bandwidths of 20 and 80 MHz respectively. The 
resulting evaluation was then compared between the two 
frequencies. As depicted in Fig. 17, the model trained on 
the higher resolution dataset, based on 80 MHz, exhibited 
superior performance. Nonetheless, it is essential to note that 
using a higher-resolution dataset requires more processing 
time due to its larger size.

In addition to evaluating the model’s performance with 
a more significant number of samples, it is also essential to 
evaluate the performance when the model is trained with few 
samples. One analysis evaluated the performance of a model 
trained with only 50 samples per activity. The results showed 
that the model achieved an accuracy of 96.25%, indicating 
that the model was able to perform well even with a limited 
number of training samples. One explanation for the stable 
accuracy with fewer samples is that the LSTM algorithm 
learns high-level features that are robust to variations in the 
data. This allows the model to generalize well to new data 
even when limited training data is available (Fig. 18).

5.2.2  Performance Across Different Environments

A set of experiments were conducted to evaluate the cross-
environment performance of the proposed model. The first 
experiment involved training the model using a dataset 
collected in the Lab room and testing it in four different 
environments. During this experiment, the trained model 
was utilized to run in real time and generate new static 
datasets for static activities. The results of these experi-
ments are presented in Table 2.

The model trained using the dataset collected in the 
classroom achieved an impressive accuracy of 97% in the 
trained environment and accuracy of approximately 92% in 
the other untrained four locations. These findings indicate 
that the proposed model could classify labeled activities 
based on the concatenating sequence and maintain stable 
performance even when the environment changes as shown 
in Fig. 19. This suggests that the proposed model has the 
potential to be deployed in various environments and still 
maintain high levels of accuracy in activity recognition 
and fall detection.

5.3  Module Study

5.3.1  Trained Model Evaluation

In order to further evaluate the performance of the proposed 
model, various types of neural networks were employed, 
including RNNs) with LSTM, bi-LSTM, GRU, CNN, and 
CNN-LSTM. The performance of each model was compared 
to determine the optimal architecture for the task at hand. It 
was found that the LSTM model provided stable accuracy 
for the trained data, mainly when dealing with sequential 
activities and real-time classification. This is due to the 
ability of LSTM to handle long-term dependencies in the 
data. On the other hand, the bi-LSTM and GRU models did 
not significantly improve accuracy compared to the LSTM 
model. The CNN and CNN-LSTM models, while showing 
high accuracy in certain situations, were found to be less 
effective in handling sequential data (Table 3).

Fig. 20  Comparison of mean squared error (MSE) between different 
models
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Generally, a BiLSTM is slower than a unidirectional 
LSTM due to its processing of the input sequence in both 
forward and backward directions. This bidirectional nature 
requires more computational resources and time, making 
BiLSTM more computationally expensive than unidirec-
tional LSTM. We have utilized smaller layers in the model 
design to optimize computational efficiency, as described 
in the experimental settings. The results indicate that the 
proposed LSTM model is well-suited for activity recogni-
tion and fall detection, particularly in real-time applica-
tions involving sequential data analysis. Despite the poten-
tial computational trade-off, the performance benefits of 
LSTM in capturing long-term dependencies and accurately 

classifying activities justify its usage in these scenarios. 
The model’s ability to handle sequential data with high 
precision and real-time responsiveness highlights its effi-
cacy in practical applications.

By leveraging the strengths of LSTM, we achieve reli-
able activity recognition and fall detection, paving the 
way for enhanced performance measures and an improved 
understanding of human behavior. Additionally. The mean 
square error (MSE) was calculated to compare the perfor-
mance of LSTM, BiLSTM, GRU, SVM, and CNN models 
shown in Fig. 20. The results showed that the RNN-based 
methods (LSTM, BiLSTM, and GRU) outperformed SVM 
and CNN regarding MSE, indicating their superiority in 

Fig. 21  Performance analysis 
using an available public dataset 
for selective activities [10, 27, 
37]

Fig. 22  Real-time monitoring of activities
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capturing the sequential nature of activities. Furthermore, 
the RNN methods, with their inherent recurrent connec-
tions, have a distinct advantage in extracting relevant fea-
tures from the complex and dynamic CSI data commonly 
encountered in activity recognition tasks. Therefore, RNN-
based approaches are preferred for sequential activities 
and feature extraction tasks, particularly when utilizing 
CSI data.

5.3.2  Public Database Evaluation

One of the significant challenges in WiFi CSI-based activ-
ity recognition is the need for publicly available standard 
datasets. While there are a few datasets available, such as 
StanWiFi [37], SignFi [21], HuAc [2, 3, 12], and CSI data 
based on images [23], these datasets are limited in scope and 
complexity. As previously stated, researchers employ vari-
ous architectures in their studies, such as the one used by [2], 
focusing on gesture recognition and utilizing 32 subcarriers 
and a 5300 NIC. However, when comparing this approach 
to that of [27], which focuses on activity behavior recogni-
tion and uses 64 subcarriers extracted using RPi Nexmon, it 
becomes clear that these architectures are not compatible in 
terms of hardware and activities. This incompatibility may 
result in poor performance when applied to other activity 
recognition datasets.

The proposed model utilizes public datasets to track and 
analyze human activity over time and exhibits high adapt-
ability to various environments with minimal adjustments. 
The evaluation of the trained model with a comparable pub-
lic dataset reveals its excellent performance in accurately 
recognizing and classifying similar activities. Specifically, 
Fig. 21 provides a comprehensive summary of the evaluation 
metrics, including precision which demonstrates the robust-
ness and generalizability of our approach.

Upon analyzing the works of [6, 36], the proposed models 
primarily concentrate on location-dependent sensing with 
a specific emphasis on dynamic activities. In contrast, the 
present model demonstrates the capacity to accurately clas-
sify static activities, irrespective of the user’s location, by 
mapping their activities in varying settings and generating 
datasets encompassing diverse orientations and positions. It 
enhances the robustness of the proposed models and broad-
ens their potential applications beyond dynamic activity 
recognition.

5.4  Real‑Time Classification Evaluation

This model presents a real-time model that accurately clas-
sifies pre-determined activities at the instance level. The 
model employs a Raspberry Pi 4B to continuously monitor 
CSI data and generate PCAP format files. A deep learning 
model uses MATLAB for activity classification to process 

the generated files. The data undergoes a series of steps to 
ensure optimal performance, including receiving, decod-
ing, preprocessing, and classifying. The process considers 
the available computation hardware capabilities and imple-
ments strategies to reduce data injection while achieving 
smooth propagation. The model’s performance was assessed 
in multiple environments, and the results indicate high 
accuracy in activity classification. Figure 22 illustrates the 
real-time monitoring process, depicting the classification 
results alongside labeled predicted activities, providing clear 
insights into the model’s performance.

6  Limitations and Future Works

The current implementation of WiFi CSI-based for HAR 
with location independence has limitations that need to be 
addressed. Specifically, the proposed model was designed 
only for certain activities, and different activities require 
separate analyses for each individual activity. Additionally, 
the model does not consider gesture recognition, which 
requires a different strategy for analysis and recognition. 
Although the presented model performs well in the ini-
tial stage of reading activities and enables the model to 
match activities to one another. The model is designed 
for a single user, and multiple sensing still needs to be 
improved. The beamforming could enhance the multiple 
sensing capabilities of the model. Model transformer mod-
els could also be another approach to recognizing activi-
ties for more than one person. Therefore, there is a need 
for further research and development to improve the pro-
posed model’s capabilities and overcome the challenges in 
location-independent sensing of human activities.

7  Conclusions

This work introduced a novel HAR system that facilitates 
location-independent sensing through an adaptive learning 
algorithm. The proposed system requires minimal effort to 
train in new locations and uses data acquired through loca-
tion-free sensing inspired by sequential activities learning. 
The system employs the LSTM feature representation and a 
metric learning-based human activity mapping and recog-
nition system to identify activities. Furthermore, the model 
extracts discriminative features for conditioning based on 
common characteristics of different locations. We evaluated 
the system’s performance on a comprehensive dataset and 
found that it achieved an average accuracy of 97% for trained 
indoor locations and 92% at untrained locations. Addition-
ally, the system adapts to the user’s activity speed with a 
small amount of self-augmented data. This feature allows 
the system to generalize to new locations and users with 
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minimal effort, which is crucial for practical deployment. 
Therefore, based on our results, we firmly conclude that the 
approach is feasible and robust for location-independent 
sensing.
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