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Aerial visible-to-infrared image translation aims to transfer aerial visible images to their corresponding 
infrared images, which can effectively generate the infrared images of specific targets. Although some 
image-to-image translation algorithms have been applied to color-to-thermal natural images and achieved 
impressive results, they cannot be directly applied to aerial visible-to-infrared image translation due to the 
substantial differences between natural images and aerial images, including shooting angles, multi-scale 
targets, and complicated backgrounds. In order to verify the performance of existing image-to-image 
translation algorithms on aerial scenes as well as advance the development of aerial visible-to-infrared 
image translation, an Aerial Visible-to-Infrared Image Dataset (AVIID) is created, which is the first specialized 
dataset for aerial visible-to-infrared image translation and consists of over 3,000 paired visible-infrared 
images. Over the constructed AVIID, a complete evaluation system is presented to evaluate the generated 
infrared images from 2 aspects: overall appearance and target quality. In addition, a comprehensive survey 
of existing image-to-image translation approaches that could be applied to aerial visible-to-infrared image 
translation is given. We then provide a performance analysis of a set of representative methods under 
our proposed evaluation system on AVIID, which can serve as baseline results for future work. Finally, we 
summarize some meaningful conclusions, problems of existing methods, and future research directions 
to advance state-of-the-art algorithms for aerial visible-to-infrared image translation.

Introduction

With the rapid development of infrared technology, the infra-
red camera equipped on unmanned aerial vehicles (UAVs) is 
increasingly applied for aerial photography. Aerial infrared 
images have been widely used in the military and in industrial, 
agricultural, and environmental settings, such as moving target 
detection [1–3] and tracking [4–6], photovoltaic panel error 
detection [7–9], image registration [10–12], and visible-infrared 
image fusion [13–16] because of their advantages, including 
high sensitivity to temperature variation, strong capability 
to penetrate through the fog, and powerful robustness when 
encountering the weak light condition.

Due to the high cost of an infrared camera or the limitations 
of taking photography conditions, obtaining many aerial infra-
red images of some specific targets is challenging. In this case, 
the mainstream method to obtain aerial infrared images is to 
employ the simulation software platform for target scene infra-
red simulation [17–21]. These methods first analyze the target 
attributes to obtain a simulated 3D model scene and then com-
pute the infrared radiation distribution of different materials 
in the scene according to the infrared radiation theory. Next, 
the radiation attenuation of the infrared radiation to the detec-
tor is calculated by the atmospheric transmission model. The 
imaging characteristics of the imaging sensor are then simu-
lated and added to the infrared radiation distribution. Finally, 
the simulated scene is gray-scaled to produce the final infrared 
image.

Compared with actual photography, the use of infrared 
simulation software to simulate aerial infrared images of tar-
gets can significantly save manpower, material resources, and 
financial capacity. At the same time, the simulated infrared 
images with various periods and different bands can be obtained 
by adjusting the parameters of the infrared radiation distribu-
tion model and the imaging sensor. However, these methods 
have problems such as low simulation degree of the target 
temperature model, huge intermediate parameters, high cou-
pling degree of each system, and complicated processing 
procedures, which could not be suitable for quickly obtaining 
many aerial infrared images. In this paper, we propose a new 
task called aerial visible-to-infrared image translation, which 
aims to generate aerial infrared images from visible images 
and has 3 main advantages:

• Due to the easy acquisition and lower photography cost of 
aerial visible images, aerial visible images can be translated into 
corresponding infrared images in a fast, efficient, and low-cost 
manner.

• Additional modality information can be provided by the 
aerial visible images to improve the performance of the aerial 
infrared images in downstream tasks.

• The translated aerial infrared and corresponding visible 
images can provide paired data support for cross-modality 
and domain adaptation tasks.

Though translating aerial visible images into corresponding 
infrared images has the advantage in terms of efficiency and 
speed compared to actually taking photography and infrared 
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simulation, 3 significant issues seriously limit the development 
of aerial visible-to-infrared image translation.

• Lacking an available dataset for aerial visible-to-infrared 
image translation experiments: So far, most datasets consist of 
color images and lack paired infrared images. Although there 
are several color-to-thermal datasets [22,23], they are all natural 
images, not taken from an aerial perspective, without diverse tar-
gets and complicated backgrounds like aerial images. Therefore, 
to the best of our knowledge, there are currently no available 
datasets for aerial visible-to-infrared image translation.

• Lacking a survey of methods that could apply to aerial 
visible-to-infrared image translation: The translation of aerial 
visible-to-infrared images can be considered as cross-modality 
learning, which makes it challenging to model the mapping. 
As far as we know, no specific approaches have been proposed 
to solve this problem. Therefore, a survey of methods that can 
be effectively applied to aerial visible-to-infrared image trans-
lation remains to be clarified.

• Lacking a complete evaluation system to evaluate the 
quality of generated images: Existing metrics for evaluating 
the similarity between images are mainly traditional perceptual 
indicators, such as MSE, peak signal-to-noise ratio (PSNR), 
and SSIM. However, they are too shallow functions to account 
for many nuances of human perception. In addition, evaluating 
the quality of the generated images only from the similarity of 
the appearance is obviously unreasonable. A more complete 
evaluation system to evaluate the quality of generated images 
is necessary.

In order to address the above issues and fully advance the 
development of aerial visible-to-infrared image translation, we 
propose a new specific dataset for aerial visible-to-infrared 
image translation, called AVIID (Aerial Visible-to-Infrared 
Image Dataset), consisting of over 3,000 paired visible-infrared 
images. The goal of AVIID is to provide researchers with an 
available data resource to evaluate and improve state-of-the-art 
algorithms. The aerial visible-to-infrared image translation aims 
to learn a mapping between 2 image domains, which can be 
regarded as a cross-modality image-to-image translation prob-
lem. Recently, image-to-image translation algorithms [16,24–42] 
among color image domains with the application of deep convo-
lutional neural networks (CNNs) [43–45] and generative adver-
sarial networks (GANs) [46–50] have made significant progress 
in a wide range of tasks, including style transfer [40,51,52], 
image inpainting [53], colorization [54], super-solution [55–58], 
dehazing [59,60], and denoising [61,62]. Some researchers 
have applied image-to-image translation approaches to color-
to-thermal image translation tasks [22,63,64] and achieved 
impressive results. For example, Kniaz and Knyaz [65] achieve 
multi-spectral person re-identification by using GAN for color-
to-thermal image translation. In this paper, we attempt to apply 
these image-to-image translation approaches to aerial visible- 
to-infrared image translation and make a comprehensive sur-
vey of these methods. In addition, we propose a complete 
evaluation system to evaluate the generated infrared images 
from the overall appearance and target quality. The overall 
appearance aims to determine the similarity between the gen-
erated infrared images and real ones from the visual percep-
tion. The target quality reflects the quality of the targets in 
the generated infrared images, which is important for some 
downstream tasks such as object detection and tracking. 
We further evaluate several representative image-to-image 
translation methods on AVIID under this proposed complete 

evaluation system, and the results can be seen as a baseline to 
advance the development of aerial visible-to-infrared image 
translation.

In summary, the major contributions of this paper are as 
follows:

• The first specific dataset for aerial visible-infrared image 
translation, AVIID, is constructed, which provides researchers 
with an available data resource to evaluate and advance state-
of-the-art algorithms.

• A comprehensive survey of up-to-date image-to-image 
translation algorithms that could be applied to aerial visible- 
to-infrared image translation is proposed to promote the 
development of this field.

• A complete evaluation system is presented to evaluate the 
generated infrared images in terms of the overall appearance 
and target quality. Several representative image-to-image trans-
lation methods are evaluated on AVIID under our proposed 
complete evaluation system. These results can be regarded as 
a baseline for future work.

• Some meaningful conclusions, problems of existing meth-
ods, and future research directions are summarized to advance 
state-of-the-art algorithms for aerial visible-to-infrared image 
translation.

The rest of this paper is organized as follows. We first provide 
a comprehensive survey of image-to-image translation meth-
ods that can be applied to aerial visible-to-infrared image trans-
lation in the “A Survey of Methods for Aerial Visible-to-Infrared 
Image Translation” section. The details of AVIID are then 
described in the “A Specific Dataset for Aerial Visible-to-
Infrared Image Translation” section. In the “Experiments and 
Results” section, the description of our proposed complete 
evaluation system and baseline results of representative meth-
ods on AVIID are given. Finally, the conclusion of our work is 
given in the “Conclusion” section.

A Survey of Methods for Aerial  
Visible-to-Infrared Image Translation
In this section, we comprehensively make a survey of image-
to-image translation methods that could be applied in aerial 
visible-to-infrared translation. Based on whether the method 
depends on paired images or not, we simply classify these meth-
ods into supervised and unsupervised categories. Supervised 
methods aim to learn a pixel-level mapping from the source 
domain to the target domain with the paired data for training, 
which limits their applications. In contrast, unsupervised meth-
ods only need 2 images from 2 different domains as training 
data to achieve image-to-image translation by adopting addi-
tional constraints. According to whether multi-modal outputs 
are generated based on one single image as input or not, these 
unsupervised methods can be further divided into 2 types: one-
to-one (single modal) and one-to-many (multi-modal). In 
addition, depending on the mapping relationship between the 
source and target domains, one-to-one unsupervised approaches 
can be further classified into 1-sided and 2-sided methods. 
One-sided unsupervised image-to-image translation methods 
can only translate the images from the source domain to the 
target domain. In contrast, 2-sided ones can achieve a bidirec-
tional mapping between the source domain and the target 
domain. Figure 1 shows an overview of these methods. In what 
follows, we will introduce each category of these methods in 
detail.
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Supervised image-to-image translation methods
Supervised image-to-image translation methods aim to learn 
a pixel-level mapping to achieve image translation from one 
domain to another based on paired data. Paired data means 
the training data are paired, and every image from the source 
domain has a corresponding image in the target domain. In 
this case, Pix2Pix is the first method to achieve task-agnostic 
image translation, which uses a conditional generative adver-
sarial network (cGAN) [21] to learn a mapping from input 
images to output images. Based on the framework of Pix2Pix, 
BicycleGAN adds a variational autoencoder (VAE) in cGAN to 
generate multiple outputs from a single input image. Additional 
details of Pix2Pix and BicycleGAN are as follows.

Pix2Pix [24]: Pix2Pix investigates cGANs, a variant of GAN, 
as a general solution to image-to-image translation problems. 
The key idea of GAN is to simultaneously train the discrimi-
nator and the generator: the discriminator is designed to dis-
tinguish between the real data and the generated samples, while 

the generator aims to generate the fake samples that are as real 
as possible in order to convince the discriminator that the fake 
samples come from the real data. Given the paired image data 
(x, y), where x is from the source domain X and y is from the 
target domain Y. The cGANs aim to learn a mapping from the 
image x with a random latent vector z to the image y, y = G(x, z). 
The generator G is trained to produce outputs that cannot be 
distinguished from the “real” images in the target domain with 
an adversarial discriminator, D, which is trained to detect the 
generator’s “fakes” as soon as possible. The full objective of the 
cGANs can be expressed as

where G attempts to minimize this objective versus an adver-
sarial D that tries to maximize it. In addition, Pix2Pix adds an 
additional L1 distance constraint to the generator to make the 

(1)
cGAN (G,D)=

�(x,y)
[

logD
(

x, y
)]

+�(x,z)

[

log(1−D(x,G(x, z)))
]

,

Image-to-image
translation

UnsupervisedSupervised

One-to-one One-to-many

MUNIT

DRIT

Pix2Pix

BicycleGAN
One-sided Two-sided

MSGAN
DualGAN

CycleGAN

DiscoGAN

DistanceGAN

GCGAN

UNIT

DSMAP
CUT

DCLGAN

Fig. 1. Overview of image-to-image translation methods that could be applied to aerial visible-to-infrared image translation. Each color represents a category.
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translated image visually similar to its corresponding ground 
truth, which can be formulated as

Therefore, the final objective of Pix2Pix can be formulated as

where λ is a hyperparameter.
BicycleGAN [26]: Though Pix2Pix has achieved ambiguous 

results for image-to-image translation, it is prone to suffer from 
mode collapse, resulting in generating very similar images. To 
address this issue, BicycleGAN aims to enhance the relation-
ship between the output with the latent code, which helps to 
produce more diverse results. For the paired image data (x, y), 
BicycleGAN first maps the target domain image y to a specific 
latent code z by a VAE encoder, z = E(y). The latent code is 
encoded by the real data in the training process, but a random 
latent code may not yield realistic images at testing time. To 
avoid this, an additional KL loss is used to align the distribution 
of the latent code with the standard normal distribution. Then, 
BicycleGAN combines the latent code with the input image to 
translate it from the source domain to the target domain by 
cGANs like in Pix2Pix, ŷ = G

(

E
(

y
)

, x
)

. The translated image 
ŷ  is not necessarily needed to be close to the ground truth, 
which may suffer from mode collapse, but must be realistic. To 
achieve this, BicycleGAN recovers the latent code by the VAE 
encoder, ẑ = E

(

ŷ
)

, and utilizes an L1 loss to keep the consist-
ency between the recovered and the original latent code, which 
can be expressed as

Unsupervised image-to-image translation methods
One-to-one
Unsupervised image-to-image translation algorithms aim to 
learn a joint distribution by using images from the marginal 
distributions in individual domains. Since there exists an infinite 
set of possible joint distributions that can arrive at the marginal 
distributions, it is impossible to guarantee that a particular 
input and output correspond in a meaningful way without 
additional assumptions or constraints. As a consequence, var-
ious constraints have been proposed to achieve unsupervised 
image-to-image translation.

DistanceGAN assumes that the distance between 2 images 
in the source domain should be preserved after mapping them 
to the target domain. GCGAN develops a geometry-consistency 
constraint from the special property of images that simple 
geometric transformations will not change the semantic struc-
ture of images. CUT proposes a contrastive learning-based 
constraint to maximize the mutual information between the 
input and the output. These methods can be seen as one-sided 
unsupervised image-to-image translation because the mapping 
from the source domain to the target domain is unidirectional. 
In addition, some methods construct various specific constraints 
to achieve 2-sided unsupervised image-to-image translation. 
For example, CycleGAN, DualGAN, and DiscoGAN employ 
the cycle-consistency constraint, which aims to transfer an image 
in the source domain to the target domain, and this translated 
image can also be transferred back to the source domain. UNIT 

makes a shared-latent space assumption that also implies the 
cycle-consistency constraint. DCLGAN takes advantage of 
CycleGAN and CUT, employing the idea of mutual information 
maximization to enable 2-sided unsupervised image-to-image 
translation. More details of these methods are as follows.

DistanceGAN [37]: Let x ∈ X denote a random image 
from the source domain, and y ∈ Y represents a random 
target domain image. Unsupervised training data pairs are 
expressed as (xi, yj), i = 1, 2, …, N, where N means the size 
of the dataset. DistanceGAN presents a distance-preserving 
mapping, which aims to enforce that the distance between 
images in the source domain is preserved after mapping 
them to the target domain and can be formulated as

where d(.) is a predefined metric function to measure the dis-
tance between 2 samples, a and b are the linear coefficient and 
bias, and GXY(.) is the generator.

GCGAN [36]: GCGAN presents a geometry-consistency 
constraint in that a given specific geometric between the input 
images should be preserved after transferring them to the 
target domain. In detail, given a random image x from the 
source domain X, a specific geometric transformation f(.), and 
2 related translators GXY and GX̃Ỹ, the geometry-consistency 
constraint can be expressed as

where f−1(.) is the inverse of the transformation f(.).
CUT [40]: CUT proposes a novel constraint to maximize 

the mutual information between the corresponding input and 
output patches based on the intuition that each path in the 
output should reflect the content of the counterpart patch in 
the input and be independent of the domain. To achieve this, 
CUT uses a type of contrastive learning loss function, InfoNCE 
loss [66], which aims to learn an embedding that associates a 
patch of the output v and its corresponding patch of the input 
v+, while separating it from the other N noncorresponding 
patches of the input v−, which can be formulated as

where τ is a temperature hyperparameter. Intuitively, this loss 
can be seen as a classifier that attempts to classify v as v+.

CycleGAN [51]/DualGAN [29]/DiscoGAN [67]: CycleGAN, 
DualGAN, and DiscoGAN propose the cycle-consistency 
constraint to achieve the 2-sided unsupervised image-to-image 
translation. These methods construct 2 translators to learn 2 map-
pings simultaneously via transferring an image to the target 
domain and back, maintaining the fidelity of the input and the 
reconstructed image through the cycle-consistency constraint. 
Mathematically, for an image x from the source domain X, the 
translator GXY translates it to the target domain Y, and then this 
translated image is transferred back to the source domain by 
the translator GYX, and the cycle-consistency constraint is used 
to preserve the semantic structure of the reconstructed image and 
the input. For the domain Y, it is an inverse process and the whole 
objective of cycle-consistency constraint can be expressed as

(2)L1
(G) = �(x,y,z)

[

∥ y − G(x, z) ∥1
]

.

(3)G∗ = argmin
G

max
D

cGAN(G,D) + �L1
(G),

(4)
latent
1 = ∥ E

(

y
)

− E
(

G
(

E
(

y
)

, x
))

∥1.

(5)d
(

xi, xj

)

≈ a ⋅ d
(

GXY

(

xi
)

,GXY

(

xj

))

+ b,

(6)
GXY(x)≈ f −1

(

GX̃Ỹ

(

f (x)
))

,

GX̃Ỹ

(

f (x)
)

≈ f
(

GXY(x)
)

,

(7)

InfoNCE = − log

�

exp
�

v ⋅ v+∕�
�

exp (v ⋅ v+∕�) +
∑N

n=1 exp
�

v. v−n ∕�
�

�

,
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UNIT [25]: UNIT presents a shared-latent space assump-
tion, which assumes that a pair of corresponding images from 
different domains can be mapped to the same latent representa-
tion in a shared-latent space. Consequently, the latent code can 
be computed from each of the images, and these 2 images can 
also be recovered from the shared latent code. Based on this 
assumption, UNIT proposes a 2-sided unsupervised image-to-
image translation framework consisting of 6 sub-networks, 
including 2 domain image encoders EX and EY, 2 domain gen-
erators GX and GY, and 2 domain discriminators DX and DY. 
For any given pair of image data (x, y), the shared latent code 
can be obtained by encoders z = EX(x) = EY(y), and conversely, 
the images can be recovered from this latent code, x = GX(EY (y) 
and y = GY (EX(x). In this way, images from the source and 
target domains can be mutually transferred. However, to achieve 
this, a necessary condition to exist is the cycle-consistency 
constraint: x = GX(GY(EX(x)) and y = GY(GX(EY(y)). Therefore, 
from this perspective, the shared-latent space assumption also 
implies the cycle-consistency constraint.

DCLGAN [34]: Although the cycle-consistency constraint 
can ensure that the translated images have similar semantic 
information compared to the target domain, it enforces the 
relationship between the 2 domains to be bijective, which is 
too restrictive. At the same time, CUT has demonstrated the 
effectiveness of contrastive learning in one-sided unsupervised 
image-to-image translation. However, one embedding for 2 
separate domains may not capture the domain gap. To solve 
this, DCLGAN takes advantage of CycleGAN and CUT to pro-
pose a novel method based on contrastive learning and a dual 
learning setting to enable an efficient 2-sided domain mapping 
with unpaired data.

One-to-many
Though several methods have enabled unpaired image-to- 
image translation, they fail to generate multi-modal results. 
An effective way to handle multi-modal image-to-image trans-
lation is to perform image translation conditioned on the input 
image and a specific latent code. To achieve this, DRIT/DRIT++ 
and MUNIT assume that the image representation can be dis-
entangled into 2 spaces: a domain-invariant content space cap-
turing shared information across domains and a domain-specific 
style space. Then, to achieve translation, they recombine its 
content information with a random style feature sampled from 
the style space of the target domain. To improve the diversity, 
MSGAN presents a mode-seeking regularization term that 
maximizes the ratio of the distance between translated images 
with respect to the distance between latent vectors. DSMAP 
leverages domain-specific mappings for remapping latent fea-
tures in the shared content space to domain-specific content 
spaces, which is conducive to achieve more challenging style 
transfer tasks that require more attention on local and struc-
tural–semantic correspondences. These methods are de s cribed 
in detail as follows.

DRIT [52]/DRIT++[35]/MUNIT [27]: DRIT/DRIT++ 
and MUNIT assume that images from 2 domains can be decom-
posed into a domain-invariant content space and a domain-spe-
cific style space. The domain-invariant content space captures 
the shared information across 2 domains, while the style space 

captures domain-specific attributes. To transfer an image from 
the source domain to the target domain, they recombine its 
content code with a random style code sampled from the target 
domain space. Mathematically, for a given unpaired image data 
(x, y) random sampled from the source domain X and the target 
domain Y, DRIT/DRIT++ and MUNIT first use the content encod-
ers 

(

EXc ,E
Y
c

)

 and style encoders 
(

EXs ,E
Y
s

)

 to disentangle the images 
into the domain-variant content code, zc = EX

c (x) = EY
c (y), and 

domain-specific style codes, xs = EXs (x) and ys = EY
s (y). Then, 

they perform a cross- domain mapping to obtain translated 
images 

(

x̃, ỹ
)

 by recombining the content code with the spe-
cific style code to the generator, ỹ = GXY

(

EXc (x),E
Y
s

(

y
))

, and 
x̃ = GYX

(

EYc
(

y
)

,EXs (x)
)

, where GYX and GXY are cross- domain 
generators. After that, they apply the above cross-domain map-
ping one more time and leverage the cycle-consistency constraint 
to enforce the consistency between the reconstructed images 
and the original input images, which can be formulated as

MSGAN [68]: Existing cGANs tend to focus on conditional 
input images but ignore random latent vectors that significantly 
contribute to the diversity of outputs and thus suffer from mode 
collapse. To address this issue and improve the diversity of 
the generated images, MSGAN proposes a simple yet effective 
mode-seeking regularization term, which aims to maximize 
the ratio of the distance between generated images with respect 
to the corresponding latent vectors. Let an input image x from 
the domain X, 2 latent vectors z1, z2 from the latent space Z, 
and a cross-domain generator GXY that translates the input 
image with the latent vectors to the target domain, respectively. 
Then, the mode-seeking regularization term directly maximizes 
the ratio of the distance between the translated images to the 
distance between the latent vectors, which can be expressed as

where d(.) denotes the predefined distance metric.
DSMAP [39]: Previous multi-modal unsupervised image-

to-image translation methods often assume that the image 
representation can be decomposed into a shared domain-variant 
content space and a domain-specific space. However, this con-
tent space only considers the shared information across do-
mains but ignores the relationship between content and style, 
which may weaken the presentation of content. To address 
this issue, DSMAP leverages 2 additional domain-specific 
mapping functions to remap the content features in the shared 
domain-invariant content space into the domain-specific con-
tent spaces for different domains, which can be expressed as

where x, y are an unpaired image data randomly sampled 
from the domain X and domain Y, ΦC → Y, ΦC → X are the 

(8)
cycle−consistency=

∥x−GYX

(

GXY(x)
)

∥1+ ∥ y−GXY

(

GYX

(

y
))

∥1.

(9)

cycle−consistency=

∥x−GYX

(

EYc
(

ỹ
)

,EXs (x̃)
)

∥1+ ∥ y−GXY

(

EXc (x̃),E
Y
s

(

ỹ
))

∥1.

(10)ms =max
GXY

(

d
(

GXY,
(

x, z1
)

GXY

(

x, z2
))

d
(

z1 − z2
)

)

,

(11)
xYc =ΦC→Y

(

EXc (x)
)

,

yXc =ΦC→X

(

EYc
(

y
))

,
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domain-specific mapping functions, and EYc , EXc  are the domain- 
invariant encoders. By these domain-specific mapping func-
tions, the features in the shared content space could be aligned 
with the target domain to encode the domain-specific content 
features and thus improve the content representation ability for 
translation.

A Specific Dataset for Aerial Visible-to-Infrared 
Image Translation

In this section, we introduce AVIID, a specific dataset for aerial 
visible-to-infrared image translation in detail. AVIID consists 
of paired aerial visible and infrared images that are taken by a 
dual-light camera equipped on the UAV. Figure 2 shows the 
dual-light camera and the UAV. Table 1 describes the detailed 
parameters of the dual-light camera. Depending on the shoot-
ing time, various scenarios, and conditions of photography, 
we further divide AVIID into 3 subdatasets named AVIID-1, 
AVIID-2, and AVIID-3, respectively. Table 2 shows the overall 
comparison of the 3 subdatasets, and the details of them are 
described in the following.

AVIID-1
AVIID-1 contains 993 pairs of paired visible-infrared images 
with an image size of 434 × 434. The scenes of AVIID-1 are the 
roads, and the targets in the images are common vehicles, 
including cars, buses, vans, and trucks. These images are taken 
between 9 a.m. and 12 p.m. with temperatures ranging from 
28∘C to 32∘C. When taking images, the height of the UAV is 
about 15 m, the distance from the road is about 90 m, and the 
shooting angle of the dual-light camera is 90∘ horizontally. The 
scenarios in these images are very similar, mainly including 
various cars, trees beside the road, and houses in the distance. 
Therefore, using this subdataset for aerial visible-infrared image 
translation is relatively simple. Figure 3 shows some examples 
of AVIID-1.

AVIID-2
AVIID-2 contains 1,090 pairs of paired visible-infrared images 
with an image size of 434 × 434. The taking conditions and 

scenes of AVIID-2 are the same as AVIID-1, except that this 
subdataset is taken from 8 p.m. to 10 p.m., and the temperatures 
are between 26∘C and 28∘C. The images of AVIID-2 are taken 
under low-light conditions, resulting in much noise in the 
images, and even blurry targets and backgrounds, which is chal-
lenging for aerial visible-to-infrared translation compared with 
AVIID-1. Some examples of AVIID-2 can be seen in Fig. 4.

AVIID-3
AVIID-3 contains 1,280 pairs of paired visible-infrared images 
with an image size of 512 × 512. These images are taken by the 
UAV at 3 different heights, including about 50 m, 100 m, and 
150 m, and 2 different shooting angles of 45∘ and 60∘ vertically. 
The taking time is mainly from 2 p.m. to 5 p.m., and the tem-
peratures are between 30∘C and 34∘C. Compared with AVIID-1 
and AVIID-2, this dataset contains more types of vehicles and 
numerous targets of multiple densities, viewpoints, and scales. 
In addition, AVIID-3 is collected in various scenarios with 
more complicated backgrounds, including roads, bridges across 
rivers, parking lots, and streets of residential communities. 
Therefore, this dataset is more challenging for aerial visible- to-
infrared image translation and can be better used to evaluate 
the performance of different methods. Some figures of AVIID-3 
are displayed in Fig. 5.

Experiments and Results
In this section, we evaluate some representative image-to-image 
methods on AVIID. First, we present our experiment settings, 
including dataset usage, baseline methods, and training and 
testing procedure details. Then, our proposed complete evalu-
ation system that evaluates generated images from 2 aspects, 
overall appearance and target quality, is introduced in detail. 
Finally, the baseline results are given for future work.

Settings
We conduct experiments on all 3 subdatasets and set the ratios 
of the training set to be 50% and 80%, respectively, the left data 
for testing. We select 10 representative methods as baseline 
methods for our experiments, 2 supervised methods, includ-
ing Pix2Pix and BicycleGAN, and 8 unsupervised methods, 

Fig 2. (A) Dual-light camera. (B) UAV.
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including GCGAN, CUT, CycleGAN, UNIT, DCLGAN, MUNIT, 
DRIT, and MSGAN. In the training time, every image is first 
resized to 286 × 286, then random cropped to 256 × 256, and 
finally horizontally flipped with a probability of 0.5 for data 
augmentation. To train Pix2Pix, BicycleGAN, GCGAN, CUT, 
CycleGAN, and DCLGAN, we use the Adam optimizer with a 
learning rate of 0.0002 and a batch size of 4 for 1,000 epochs 
on NVIDIA RTX3090. For DRIT and MSGAN, the whole net-
works are also optimized by the Adam optimizer with a learn-
ing rate of 0.0001 for 1,200 epochs on GTX1080Ti and the batch 
size is also set to 4. With respect to UNIT and MUNIT, we use 
the Adam optimizer to train them for 200,000 iterations on 
NVIDIA RTX3090, the learning rate is 0.0001, the batch size 
is 4, and the weight decay is set to 0.0001. In the testing proce-
dure, the input image is resized to 256 × 256 without any data 
augmentation.

Complete evaluation system
Overall appearance evaluation
In order to evaluate the overall appearance quality of the gen-
erated images, we adopt the most widely used traditional per-
ceptual metrics, including MSE, PSNR, and SSIM. The details 
of these metrics are as follows.

MSE: MSE is used to evaluate the margin of the discrepancy 
between the pixels of the generated image and its ground truth, 
which can be defined as

where y and ŷ  where y and ŷrepresent the generated image and 
the corresponding real ones, and H and W are the height and 
width of the image, respectively.

PSNR: The PSNR aims to measure the degree of distortion 
for the generated image with respect to its corresponding 
ground truth, which can be expressed as

where max
(

ŷ
)

 means the max pixel of the real image. Higher 
PSNR indicates a smaller distortion of the generated image.

SSIM: SSIM can estimate the structural similarity between 
the generated image and the real image, which can be formu-
lated as

where c1 and c2 are constant, μy, �ŷ, σy, and �ŷ are the mean and 
variance of the generated image and the ground truth, respec-
tively, and �yŷ is their covariance. Higher SSIM means the gen-
erated image is more similar to its corresponding real image.

Though MSE, PSNR, and SSIM are the most widely used 
traditional perceptual metrics, they are relatively shallow 
functions and fail to account for many nuances of human 
perception. In recent years, regarding the deep features of deep 
CNN as a perceptual metric have been demonstrated to be an 
effective way and more consistent with human perception 
judgment. Therefore, to more accurately evaluate the quality 
of the generated images, we adopt three CNN-based percep-
tual metrics, including FID [69], KID [70], and LPIPS [71]. 
More details of FID, KID and LPIPS are as follows.

LPIPS: LPIPS is a CNN-based perceptual metric and has 
been demonstrated to coincide greatly with human judgment. 
It can be computed by a weighted L2 distance between the deep 
features extracted by the deep CNN of the generated images 
and their ground truth

(12)MSE
(

y, ŷ
)

=
1

H ×W

H
∑
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W
∑

j=1

(
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)2
.
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Table 1. Detailed parameters of the dual-light camera

Visible camera parameters
Infrared camera  

parameters

Imaging 
sensor

Exmor CMOS Lens barrel 25 mm

HDMI output 1,080p/59.94 Horizontal 
field

24. 6∘

Signal-to-
noise ratio

Above 50 dB Vertical field 18. 5∘

Optical zoom 30 times Diagonal 
field angle

30. 4∘

Digital zoom 12 times Working 
form

Long wave 
(8 – 14 μm)

Viewing angle 63. 7∘ – 2. 3∘ Image  
resolution

640 × 480

Minimum ob-
ject distance

10 – 1,200 mm Spatial 
resolution

0.617 mrad

Table 2. The overall comparison of the 3 subdatasets

Subdataset Paired Various scenarios Multi-scale targets Time Temperature Image size Images

AVIID-1 ✓ ✘ ✘ Day 28–32 °C 434 × 434 993

AVIID-2 ✓ ✘ ✘ Night 26 – 28°C 434 × 434 1,090

AVIID-3 ✓ ✓ ✓ Day 30 – 34°C 512 × 512 1,280
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where Y and Ŷ  represent the generated images and the real 
ones, yl and ŷl are normalized deep features extracted from the 
l layer of the deep CNN, wl means the weighted parameters, 
and N is the number of the images. We use the AlexNet pre-
trained on the ImageNet as the deep feature extractor, and a 
lower LPIPS score indicates a better quantity of the generated 
images.

FID: FID is a widely used metric to estimate the distribution 
of real and generated images through deep features extracted 
by the last pooling layer of the Inception-V3 model trained 
on the ImageNet and compute the divergence between them, 
which can be formulated as

where m indicates the mean of the deep features, C means the 
covariance matrix, and Tr(.) is the trace operation. Intuitively, 

if the generated images are similar to the real ones, they should 
have lower FID values.

KID: KID is a metric similar to the FID, the Kernel Inception 
Distance, to be the squared MMD [15] between Inception 
representations and has a simple unbiased estimator. Cor-
respondingly, a lower KID means a better performance.

In the testing process, we randomly sample 150 test images 
and implement translation on them to get the corresponding 
infrared images for Pix2Pix, BicycleGAN, CycleGAN, GCGAN, 
UNIT, CUT and DCLGAN. As for one-to-many methods, we 
generate 10 examples per input and randomly select one as the 
final result. These generated images and counterpart real ones 
are used to calculate the metrics mentioned above for each 
method. We repeat the experiments 5 times and report the 
average score and standard variances of each metric.

Target quality evaluation
For aerial infrared images, generating as real targets as pos-
sible is essential for many tasks, such as object detection and 

(16)

FID
(

Y , Ŷ
)

= ∥ mY −m
Ŷ
∥22 + Tr

(

CY + C
Ŷ
− 2

(

CYCŶ

)
1
2

)

Fig. 3. Some examples of AVIID-1. The scenes of AVIID-1 contain the roads with various kinds of vehicles, including cars, buses, vans, and trucks.

Fig. 4. Some examples of AVIID-2. The scenes of AVIID-2 are the same as AVIID-1.
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Fig. 5. Some examples of AVIID-3. (A) The height of the UAV is about 50 m. (B) The height of the UAV is about 100 m. (C) The height of the UAV is about 150 m. The AVIID-3 contains 
various scenes with complicated background, including roads, bridges, parking lots, and streets, and the number images of each scene are 938, 134, 158, and 50, respectively.

Table 3. Overall appearance evaluation under 50% training ratio on AVIID-1. The best results are highlighted in bold

Methods Traditional perceptual metrics CNN-based perceptual metrics

MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

Pix2Pix 13.63 ± 0.13 25.46 ± 0.08 0.7303 ± 0.0016 0.2605 ± 0.0008 75.05 ± 2.04 0.0787 ± 0.0039
BicycleGAN 14.12 ± 0.69 25.16 ± 0.42 0.7260 ± 0.0270 0.2776 ± 0.0114 78.64 ± 4.97 0.0829 ± 0.0089

GCGAN 21.89 ± 1.50 21.39 ± 0.62 0.4976 ± 0.0427 0.2592 ± 0.0084 51.30 ± 6.09 0.0387 ± 0.0106

CUT 15.53 ± 0.65 24.37 ± 0.37 0.7073 ± 0.0251 0.1964 ± 0.0133 33.75 ± 3.62 0.0130 ± 0.0039
DCLGAN 14.94 ± 0.67 24.71 ± 0.40 0.7318 ± 0.0227 0.1932 ± 0.0126 33.47 ± 4.41 0.0136 ± 0.0036

CycleGAN 21.13 ± 0.42 21.66 ± 0.17 0.5309 ± 0.0141 0.2745 ± 0.0111 56.42 ± 4.69 0.0435 ± 0.0086

UNIT 17.85 ± 2.20 23.20 ± 1.06 0.6700 ± 0.0804 0.2351 ± 0.0184 42.32 ± 0.92 0.0245 ± 0.0018

DRIT 16.31 ± 0.51 23.92 ± 0.27 0.6824 ± 0.0207 0.2316 ± 0.0057 48.25 ± 2.27 0.0333 ± 0.0057

MUNIT 19.50 ± 1.60 22.39 ± 0.69 0.5958 ± 0.0548 0.2828 ± 0.0132 57.94 ± 2.64 0.0474 ± 0.0054

MSGAN 20.54 ± 0.16 21.98 ± 0.06 0.5592 ± 0.0074 0.3115 ± 0.0035 67.08 ± 1.79 0.0476 ± 0.0045
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Table 4. Overall appearance evaluation under 80% training ratio on AVIID-1. The best results are highlighted in bold

Methods Traditional perceptual metrics CNN-based perceptual metrics

MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓

Pix2Pix 13.56 ± 0.07 25.50 ± 0.04 0.7299 ± 0.0020 0.2572 ± 0.0014 71.75 ± 5.09 0.0733 ± 0.0086
BicycleGAN 13.84 ± 0.32 25.32 ± 0.20 0.7368 ± 0.0082 0.2737 ± 0.0075 74.93 ± 2.26 0.0742 ± 0.0025

GCGAN 21.88 ± 1.35 21.39 ± 0.55 0.4975 ± 0.0402 0.2556 ± 0.0097 51.46 ± 3.36 0.0373 ± 0.0049

CUT 14.93 ± 0.71 24.73 ± 0.44 0.7372 ± 0.0249 0.1922 ± 0.0079 32.68 ± 3.25 0.0111 ± 0.0024
DCLGAN 14.25 ± 0.91 25.11 ± 0.58 0.7481 ± 0.0285 0.1889 ± 0.0144 33.54 ± 4.05 0.0121 ± 0.0036

CycleGAN 21.35 ± 0.57 21.57 ± 0.24 0.5281 ± 0.0228 0.2968 ± 0.0128 63.57 ± 2.69 0.0534 ± 0.0047

UNIT 18.22 ± 1.50 22.99 ± 0.72 0.6499 ± 0.0608 0.2408 ± 0.0139 43.49 ± 1.93 0.0266 ± 0.0037

DRIT 16.38 ± 1.08 23.89 ± 0.57 0.6729 ± 0.0410 0.2251 ± 0.0099 46.80 ± 2.90 0.0301 ± 0.0043

MUNIT 18.50 ± 0.76 22.83 ± 0.36 0.6354 ± 0.0314 0.2737 ± 0.0058 55.17 ± 3.05 0.0424 ± 0.0054

MSGAN 19.69 ± 0.47 22.36 ± 0.20 0.5849 ± 0.0154 0.2860 ± 0.0043 58.29 ± 4.01 0.0381 ± 0.0050

Table 5. RmAP under the Faster RCNN object detection model on AVIID-1. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.260 ± 0.005 0.041 ± 0.007 0.326 ± 0.019 0.229 ± 0.011 0.031 ± 0.008 0.282 ± 0.033
BicycleGAN 0.344 ± 0.022 0.063 ± 0.013 0.506 ± 0.062 0.306 ± 0.028 0.080 ± 0.025 0.431 ± 0.051

GCGAN 0.441 ± 0.030 0.085 ± 0.043 0.735 ± 0.064 0.364 ± 0.036 0.041 ± 0.013 0.574 ± 0.082

CUT 0.548 ± 0.033 0.206 ± 0.054 0.814 ± 0.024 0.487 ± 0.009 0.143 ± 0.019 0.727 ± 0.021

DCLGAN 0.459 ± 0.043 0.105 ± 0.040 0.747 ± 0.045 0.351 ± 0.025 0.044 ± 0.017 0.547 ± 0.060
CycleGAN 0.494 ± 0.018 0.163 ± 0.040 0.779 ± 0.010 0.504 ± 0.037 0.163 ± 0.047 0.766 ± 0.041

UNIT 0.426 ± 0.052 0.071 ± 0.035 0.706 ± 0.053 0.403 ± 0.019 0.077 ± 0.030 0.644 ± 0.018

DRIT 0.398 ± 0.016 0.064 ± 0.009 0.677 ± 0.025 0.396 ± 0.021 0.058 ± 0.010 0.642 ± 0.047

MUNIT 0.441 ± 0.031 0.083 ± 0.021 0.711 ± 0.041 0.425 ± 0.013 0.063 ± 0.011 0.705 ± 0.036

MSGAN 0.441 ± 0.006 0.075 ± 0.015 0.711 ± 0.011 0.402 ± 0.008 0.073 ± 0.013 0.631 ± 0.026

Table 6. RmAP under the YOLOv3 object detection model on AVIID-1. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.177 ± 0.009 0.039 ± 0.021 0.376 ± 0.022 0.171 ± 0.013 0.040 ± 0.007 0.372 ± 0.042
BicycleGAN 0.212 ± 0.020 0.040 ± 0.020 0.470 ± 0.057 0.189 ± 0.020 0.050 ± 0.011 0.412 ± 0.045

GCGAN 0.327 ± 0.029 0.076 ± 0.011 0.711 ± 0.075 0.239 ± 0.036 0.025 ± 0.010 0.572 ± 0.077
CUT 0.424 ± 0.039 0.211 ± 0.034 0.753 ± 0.032 0.359 ± 0.012 0.135 ± 0.015 0.710 ± 0.031

DCLGAN 0.325 ± 0.048 0.091 ± 0.048 0.688 ± 0.048 0.244 ± 0.021 0.040 ± 0.012 0.596 ± 0.040

CycleGAN 0.374 ± 0.034 0.148 ± 0.042 0.726 ± 0.035 0.363 ± 0.036 0.136 ± 0.060 0.739 ± 0.039

UNIT 0.286 ± 0.045 0.059 ± 0.027 0.604 ± 0.055 0.266 ± 0.019 0.048 ± 0.011 0.636 ± 0.040

DRIT 0.280 ± 0.021 0.071 ± 0.010 0.630 ± 0.058 0.270 ± 0.023 0.057 ± 0.014 0.653 ± 0.018

MUNIT 0.320 ± 0.021 0.078 ± 0.030 0.668 ± 0.029 0.306 ± 0.018 0.050 ± 0.018 0.719 ± 0.026

MSGAN 0.324 ± 0.018 0.065 ± 0.014 0.698 ± 0.033 0.284 ± 0.012 0.076 ± 0.022 0.661 ± 0.023
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tracking. However, existing perceptual metrics mainly consider 
the overall appearance of the generated images but ignore the 
evaluation of the targets in the generated images. To address 
this issue, we propose a new metric named RmAP, which aims 
to measure the similarity of the targets between the generated 
images and the real ones and can be obtained by computing 
the absolute value of the mAP between the real and generated 
images on the same object detection framework as

where mAP is a widely used metric for evaluating the perform-
ance of object detection algorithms [72–74].

At testing time, we first use 80% of the real aerial infrared 
images to train 4 object detection models, including Faster 
RCNN [75], YOLOv3 [76], YOLOv5 [77], and YOLOx [78]. 
Then, we randomly select 150 generated images with their 
ground truth for each method and compute the absolute value 

of their mAP on every object detection model with 3 kinds of 
IOU settings. Similar to the overall appearance evaluation, we 
also repeat the experiments 5 times and report the average score 
and standard variances of RmAP.

Results and discussion

AVIID-1
Tables 3 and 4 show the means and standard variances of overall 
appearance evaluation metrics under 50% and 80% training 
ratio on AVIID-1, respectively. The results show that Pix2Pix 
performs better than BicycleGAN on both traditional and 
CNN-based perceptual metrics. DCLGAN and CUT perform 
similarly, outperforming other unsupervised methods on all 
appearance evaluation metrics, while CUT performs slightly 
worse. These results reveal that contrastive learning constraints 
can achieve a patch-level alignment by maximizing the mutual 
information between the corresponding input and output 

(17)RmAP = ∣ mAP(Y ) −mAP
(

Ŷ
)

∣ ,

Table 7. RmAP under the YOLOv5 object detection model on AVIID-1. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.154 ± 0.003 0.016 ± 0.003 0.277 ± 0.027 0.153 ± 0.015 0.013 ± 0.008 0.267 ± 0.058
BicycleGAN 0.202 ± 0.025 0.028 ± 0.008 0.369 ± 0.081 0.171 ± 0.017 0.027 ± 0.006 0.296 ± 0.063

GCGAN 0.314 ± 0.024 0.048 ± 0.011 0.678 ± 0.061 0.270 ± 0.038 0.010 ± 0.004 0.563 ± 0.107

CUT 0.441 ± 0.029 0.188 ± 0.057 0.736 ± 0.023 0.383 ± 0.013 0.100 ± 0.019 0.661 ± 0.038

DCLGAN 0.347 ± 0.040 0.078 ± 0.034 0.663 ± 0.077 0.269 ± 0.021 0.022 ± 0.010 0.523 ± 0.047

CycleGAN 0.377 ± 0.018 0.118 ± 0.013 0.686 ± 0.030 0.376 ± 0.030 0.090 ± 0.032 0.691 ± 0.066

UNIT 0.309 ± 0.058 0.056 ± 0.036 0.588 ± 0.086 0.292 ± 0.022 0.038 ± 0.014 0.541 ± 0.036
DRIT 0.287 ± 0.023 0.041 ± 0.009 0.584 ± 0.054 0.291 ± 0.021 0.028 ± 0.011 0.564 ± 0.041

MUNIT 0.316 ± 0.031 0.041 ± 0.014 0.614 ± 0.028 0.316 ± 0.017 0.045 ± 0.008 0.626 ± 0.019

MSGAN 0.317 ± 0.019 0.043 ± 0.019 0.652 ± 0.033 0.314 ± 0.016 0.048 ± 0.017 0.613 ± 0.021

Table 8. RmAP under the YOLOx object detection model on AVIID-1. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.065 ± 0.005 0.008 ± 0.007 0.211 ± 0.045 0.048 ± 0.018 0.015 ± 0.011 0.190 ± 0.041
BicycleGAN 0.114 ± 0.021 0.038 ± 0.010 0.314 ± 0.034 0.090 ± 0.014 0.049 ± 0.023 0.249 ± 0.012

GCGAN 0.152 ± 0.025 0.049 ± 0.013 0.367 ± 0.060 0.082 ± 0.016 0.034 ± 0.018 0.289 ± 0.036

CUT 0.256 ± 0.027 0.199 ± 0.061 0.428 ± 0.046 0.191 ± 0.015 0.121 ± 0.029 0.364 ± 0.015

DCLGAN 0.198 ± 0.021 0.119 ± 0.038 0.403 ± 0.040 0.116 ± 0.012 0.041 ± 0.008 0.282 ± 0.023
CycleGAN 0.203 ± 0.028 0.109 ± 0.036 0.392 ± 0.042 0.214 ± 0.051 0.171 ± 0.089 0.384 ± 0.046

UNIT 0.196 ± 0.043 0.088 ± 0.066 0.390 ± 0.017 0.177 ± 0.009 0.056 ± 0.013 0.385 ± 0.033

DRIT 0.174 ± 0.020 0.044 ± 0.017 0.387 ± 0.029 0.170 ± 0.015 0.050 ± 0.009 0.383 ± 0.030

MUNIT 0.190 ± 0.027 0.044 ± 0.027 0.397 ± 0.054 0.195 ± 0.020 0.062 ± 0.024 0.421 ± 0.047

MSGAN 0.223 ± 0.022 0.094 ± 0.036 0.437 ± 0.023 0.206 ± 0.013 0.123 ± 0.023 0.394 ± 0.024
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patches, thereby improving the overall appearance quality of 
generated images.

Tables 5 to 8 illustrate the means and standard variances of 
target quality evaluation metric under 4 objection detection 
models with 3 IOU settings on AVIID-1. The RmAP results 
indicate that supervised methods give significantly superior 
performance compared with unsupervised ones in terms of 
target quality, which is contrary to the conclusions drawn from 

the overall appearance evaluation. This suggests that the pixel- 
level mapping learned from the paired data is beneficial for 
generating fine-grained targets, while also indicating that the 
RmAP metric complements overall appearance evaluation metrics 
and thus more effectively evaluate the performance of algorithms. 
For unsupervised methods, contrastive learning-based methods 
do not achieve as excellent performance in target quality as 
excellent a performance in target quality as in overall appearance 

Input Ground Truth Pix2Pix BicycleGAN GCGAN CUT DCLGAN CycleGAN UNIT DRIT MUNIT MSGAN

Fig. 6. Some generated images for each method under 50% training ratio on AVIID-1.

Input Ground Truth Pix2Pix BicycleGAN GCGAN CUT DCLGAN CycleGAN UNIT DRIT MUNIT MSGAN

Fig. 7. Some generated images for each method under 80% training ratio on AVIID-1.
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Table 9. Overall appearance evaluation under 50% training ratio on AVIID-2. The best results are highlighted in bold

Methods Traditional perceptual metrics CNN-based perceptual metrics

MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓
Pix2Pix 17.23 ± 0.11 23.43 ± 0.05 0.6939 ± 0.0026 0.2745 ± 0.0015 66.72 ± 2.24 0.0633 ± 0.0038
BicycleGAN 22.60 ± 0.31 21.07 ± 0.12 0.6114 ± 0.0087 0.3417 ± 0.0021 92.70 ± 3.99 0.1035 ± 0.0071

GCGAN 22.75 ± 0.40 21.00 ± 0.15 0.5941 ± 0.0060 0.2685 ± 0.0058 59.02 ± 5.99 0.0549 ± 0.0106

CUT 16.16 ± 1.23 24.04 ± 0.69 0.7050 ± 0.0350 0.2246 ± 0.0181 37.84 ± 4.35 0.0170 ± 0.0048
DCLGAN 15.75 ± 1.23 24.26 ± 0.73 0.7230 ± 0.0333 0.2234 ± 0.0153 39.67 ± 2.79 0.0202 ± 0.0042

CycleGAN 26.86 ± 2.21 19.59 ± 0.67 0.5068 ± 0.0261 0.3236 ± 0.0161 68.60 ± 4.80 0.0641 ± 0.0085

UNIT 19.45 ± 1.04 22.38 ± 0.48 0.6566 ± 0.0327 0.2870 ± 0.0120 56.86 ± 4.05 0.0439 ± 0.0052

DRIT 20.82 ± 0.91 21.78 ± 0.37 0.6364 ± 0.0214 0.2575 ± 0.0056 45.70 ± 1.04 0.0310 ± 0.0029

MUNIT 19.32 ± 1.22 22.44 ± 0.56 0.6515 ± 0.0330 0.3017 ± 0.0087 67.02 ± 3.87 0.0622 ± 0.0069

MSGAN 23.02 ± 0.43 20.95 ± 0.17 0.5827 ± 0.0120 0.3197 ± 0.0033 63.88 ± 2.54 0.0453 ± 0.0033

Table 10. Overall appearance evaluation under 80% training ratio on AVIID-2. The best results are highlighted in bold

Methods Traditional perceptual metrics CNN-based perceptual metrics

PSNR ↑ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓
Pix2Pix 17.45 ± 0.04 23.32 ± 0.02 0.6915 ± 0.0023 0.2763 ± 0.0015 69.05 ± 1.77 0.0666 ± 0.0037
BicycleGAN 22.57 ± 0.28 21.08 ± 0.11 0.6120 ± 0.0061 0.3433 ± 0.0025 97.22 ± 3.72 0.1097 ± 0.0077

GCGAN 23.66 ± 0.65 20.66 ± 0.24 0.5798 ± 0.0175 0.2718 ± 0.0108 53.11 ± 4.83 0.0408 ± 0.0067

CUT 19.63 ± 2.82 22.42 ± 1.09 0.6504 ± 0.0171 0.2519 ± 0.0134 48.42 ± 5.72 0.0307 ± 0.0083

DCLGAN 14.69 ± 1.23 24.86 ± 0.74 0.7456 ± 0.0287 0.2195 ± 0.0122 43.49 ± 3.11 0.0226 ± 0.0034
CycleGAN 25.03 ± 1.60 20.19 ± 0.53 0.5505 ± 0.0113 0.3022 ± 0.0026 64.58 ± 5.72 0.0552 ± 0.0102

UNIT 20.21 ± 2.03 22.08 ± 0.85 0.6393 ± 0.0541 0.2864 ± 0.0190 55.41 ± 4.56 0.0416 ± 0.0052

DRIT 20.82 ± 0.42 21.78 ± 0.17 0.6436 ± 0.0202 0.2452 ± 0.0063 44.87 ± 3.70 0.0286 ± 0.0054

MUNIT 20.52 ± 0.20 21.90 ± 0.08 0.6186 ± 0.0092 0.3173 ± 0.0098 80.07 ± 0.95 0.0762 ± 0.0054

MSGAN 23.36 ± 0.23 20.82 ± 0.08 0.5819 ± 0.0054 0.2942 ± 0.0023 52.28 ± 3.10 0.0286 ± 0.0054

Table 11. RmAP under the Fater RCNN object detection model on AVIID-2. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.266 ± 0.009 0.025 ± 0.008 0.370 ± 0.043 0.279 ± 0.023 0.024 ± 0.005 0.418 ± 0.069
BicycleGAN 0.438 ± 0.011 0.076 ± 0.028 0.777 ± 0.039 0.424 ± 0.020 0.098 ± 0.020 0.732 ± 0.032

GCGAN 0.385 ± 0.007 0.037 ± 0.010 0.685 ± 0.021 0.365 ± 0.041 0.049 ± 0.020 0.647 ± 0.071

CUT 0.461 ± 0.080 0.106 ± 0.044 0.702 ± 0.119 0.499 ± 0.040 0.151 ± 0.041 0.761 ± 0.027

DCLGAN 0.388 ± 0.033 0.062 ± 0.022 0.669 ± 0.068 0.350 ± 0.011 0.048 ± 0.012 0.597 ± 0.031
CycleGAN 0.476 ± 0.044 0.103 ± 0.038 0.795 ± 0.056 0.392 ± 0.031 0.075 ± 0.018 0.669 ± 0.050

UNIT 0.419 ± 0.037 0.074 ± 0.028 0.708 ± 0.045 0.392 ± 0.056 0.070 ± 0.024 0.668 ± 0.085

DRIT 0.412 ± 0.007 0.039 ± 0.012 0.724 ± 0.017 0.385 ± 0.051 0.045 ± 0.024 0.666 ± 0.105

MUNIT 0.464 ± 0.019 0.081 ± 0.026 0.767 ± 0.049 0.444 ± 0.045 0.088 ± 0.036 0.758 ± 0.042

MSGAN 0.424 ± 0.032 0.049 ± 0.020 0.733 ± 0.057 0.392 ± 0.018 0.034 ± 0.012 0.708 ± 0.030
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quality and even perform worse than other approaches. For 
instance, DRIT has achieved much lower RmAP values than 
DCLGAN on Faster RCNN and YOLOv5 object detection algo-
rithms under 50% training ratio with 3 kinds of IOU settings. 
Similarly, GCGAN also gives better results on the YOLOv3 
model under the 80% training ratio for all IOU settings. The 
possible reason for this phenomenon may be that the patch-level 
alignment can be seen as the coarse-grained mapping between 
the input and output images compared with the pixel-level 
mapping, which could lead to blurriness and distortion of tar-
gets in the generated images. This phenomenon becomes more 
serious in aerial images, mainly because there often exist many 
small and geometric discrepancy targets (such as cars and buses 
in our dataset).

Figures 6 and 7 display some generated images for each 
method under 50% and 80% training ratio on AVIID-1, respec-
tively. By comparing these generated examples, we can find that 

the vehicles generated by DCLGAN and CUT have geometric 
distortion and blurred edges compared with Pix2Pix, espe-
cially CUT, which further confirms our assumption.

AVIID-2
Tables 9 and 10 show the means and standard variances of 
overall appearance evaluation metrics under 50% and 80% 
training ratio on AVIID-2, respectively. Through the results, we 
can get conclusions similar to those of AVIID-1 that Pix2Pix 
performs superiorly to BicycleGAN, and DCLGAN achieves 
the best performance followed by CUT in the unsupervised 
methods. It is worth noting that BicycleGAN gets a much lower 
performance than Pix2Pix, which is different from AVIID-1. 
The reason may be that the visible images in AVIID-2 are 
seriously affected by weak light and noise, resulting in large 
discrepancies between them and their corresponding infrared 
images, especially the backgrounds. As a result, the generator 

Table 12. RmAP under the YOLOv3 object detection model on AVIID-2. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.148 ± 0.013 0.027 ± 0.016 0.333 ± 0.073 0.151 ± 0.012 0.020 ± 0.001 0.382 ± 0.035
BicycleGAN 0.284 ± 0.013 0.046 ± 0.014 0.657 ± 0.045 0.259 ± 0.009 0.073 ± 0.016 0.557 ± 0.032

GCGAN 0.246 ± 0.015 0.038 ± 0.008 0.584 ± 0.026 0.245 ± 0.043 0.041 ± 0.017 0.564 ± 0.102

CUT 0.314 ± 0.080 0.097 ± 0.054 0.603 ± 0.109 0.368 ± 0.049 0.151 ± 0.050 0.677 ± 0.036

DCLGAN 0.260 ± 0.029 0.053 ± 0.017 0.595 ± 0.049 0.236 ± 0.008 0.032 ± 0.008 0.530 ± 0.017
CycleGAN 0.321 ± 0.060 0.082 ± 0.033 0.676 ± 0.076 0.264 ± 0.028 0.059 ± 0.012 0.594 ± 0.052

UNIT 0.281 ± 0.030 0.056 ± 0.016 0.624 ± 0.049 0.261 ± 0.047 0.062 ± 0.024 0.575 ± 0.049

DRIT 0.272 ± 0.013 0.040 ± 0.012 0.633 ± 0.013 0.269 ± 0.034 0.041 ± 0.013 0.596 ± 0.041

MUNIT 0.327 ± 0.027 0.089 ± 0.041 0.682 ± 0.020 0.308 ± 0.043 0.103 ± 0.053 0.652 ± 0.032

MSGAN 0.289 ± 0.028 0.041 ± 0.015 0.631 ± 0.036 0.257 ± 0.015 0.034 ± 0.018 0.588 ± 0.018

Table 13. RmAP under the YOLOv5 object detection model on AVIID-2. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.164 ± 0.013 0.010 ± 0.005 0.326 ± 0.038 0.150 ± 0.016 0.007 ± 0.005 0.334 ± 0.052
BicycleGAN 0.296 ± 0.014 0.027 ± 0.015 0.688 ± 0.032 0.268 ± 0.016 0.028 ± 0.006 0.624 ± 0.040

GCGAN 0.275 ± 0.006 0.020 ± 0.011 0.650 ± 0.014 0.270 ± 0.039 0.022 ± 0.006 0.607 ± 0.077

CUT 0.349 ± 0.099 0.083 ± 0.047 0.685 ± 0.126 0.399 ± 0.060 0.090 ± 0.032 0.748 ± 0.051

DCLGAN 0.284 ± 0.021 0.025 ± 0.013 0.635 ± 0.033 0.247 ± 0.009 0.018 ± 0.005 0.550 ± 0.031
CycleGAN 0.343 ± 0.058 0.041 ± 0.026 0.721 ± 0.074 0.278 ± 0.030 0.032 ± 0.005 0.607 ± 0.058

UNIT 0.296 ± 0.042 0.034 ± 0.017 0.641 ± 0.046 0.284 ± 0.055 0.031 ± 0.017 0.593 ± 0.094

DRIT 0.295 ± 0.012 0.017 ± 0.010 0.690 ± 0.010 0.295 ± 0.045 0.025 ± 0.007 0.625 ± 0.072

MUNIT 0.357 ± 0.033 0.052 ± 0.027 0.726 ± 0.040 0.345 ± 0.045 0.063 ± 0.038 0.708 ± 0.027

MSGAN 0.319 ± 0.023 0.027 ± 0.025 0.703 ± 0.019 0.295 ± 0.022 0.030 ± 0.015 0.640 ± 0.036
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may pay too much attention to the latent vector encoded from 
infrared images in the translating process, which leads to the 
distortion of details in the generated images. In addition, the 
values of overall appearance evaluation metrics obtained by 
each method are significantly lower than those on AVIID-1, 
indicating that AVIID-2 is more challenging.

Tables 11 to 14 illustrate the means and standard variances 
of target quality evaluation metric under 4 objection detection 
models with 3 IOU settings on AVIID-2. From the RmAP 
results, we can find that Pix2Pix has achieved a better perform-
ance than all other methods by a large margin in terms of 
target quality, which is similar to AVIID-1. As for the unsu-
pervised approaches, DCLGAN achieves superior results 

on AVIID-2. For example, it gives the best performance on the 
Faster RCNN, YOLOv3, and YOLOv5 object detection mod-
els under 80% training ratio and a lower RmAP on the Faster 
RCNN and YOLOv5 under 50% training ratio when the IOU 
is set to 0.75.

Figures 8 and 9 display some generated images for each 
method under 50% and 80% training ratio on AVIID-2, respec-
tively. From these figures, we can see that some generated 
images have blurred backgrounds and geometric distortion 
of the targets, which is more severe in supervised methods. This 
phenomenon may indicate that pixel-level mapping becomes 
too strict when the visible images are severely disturbed by weak 
light and noise, thus degrading the quality of the generated 

Table 14. RmAP under the YOLOx object detection model on AVIID-2. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.123 ± 0.012 0.012 ± 0.006 0.341 ± 0.063 0.126 ± 0.012 0.014 ± 0.009 0.364 ± 0.034
BicycleGAN 0.236 ± 0.011 0.055 ± 0.010 0.450 ± 0.035 0.219 ± 0.016 0.062 ± 0.021 0.401 ± 0.035

GCGAN 0.206 ± 0.018 0.030 ± 0.014 0.449 ± 0.029 0.186 ± 0.019 0.025 ± 0.013 0.394 ± 0.027

CUT 0.244 ± 0.075 0.125 ± 0.073 0.442 ± 0.052 0.288 ± 0.037 0.174 ± 0.068 0.483 ± 0.023

DCLGAN 0.194 ± 0.019 0.050 ± 0.023 0.432 ± 0.057 0.167 ± 0.013 0.033 ± 0.011 0.356 ± 0.037

CycleGAN 0.185 ± 0.027 0.049 ± 0.018 0.391 ± 0.044 0.161 ± 0.020 0.029 ± 0.004 0.346 ± 0.045
UNIT 0.249 ± 0.033 0.064 ± 0.028 0.475 ± 0.031 0.229 ± 0.046 0.065 ± 0.032 0.468 ± 0.020

DRIT 0.239 ± 0.011 0.068 ± 0.012 0.482 ± 0.049 0.236 ± 0.030 0.060 ± 0.025 0.444 ± 0.023

MUNIT 0.288 ± 0.031 0.115 ± 0.055 0.487 ± 0.045 0.278 ± 0.044 0.101 ± 0.061 0.461 ± 0.040

MSGAN 0.256 ± 0.022 0.106 ± 0.035 0.448 ± 0.025 0.233 ± 0.012 0.057 ± 0.034 0.452 ± 0.028

Input Ground Truth Pix2Pix BicycleGAN GCGAN CUT DCLGAN CycleGAN UNIT DRIT MUNIT MSGAN

Fig. 8. Some generated images for each method under 50% training ratio on AVIID-2.
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images. In this case, patch-level alignment is less strict than 
pixel-level mapping; thus, contrastive learning-based meth-
ods can better preserve the clarity of backgrounds and the 
geometry of targets in the generated images.

AVIID-3
Tables 15 and 16 show the means and standard variances of 
overall appearance evaluation metrics under 50% and 80% 
training ratio on AVIID-3, respectively. From the results, we 
can find that Pix2Pix still performs better than BicycleGAN, 
which is similar to AVIID-1 and AVIID-2. However, in the 
unsupervised methods, GCGAN gives a significantly improved 
performance of DCLGAN, which performs best on AVIID-1 
and AVIID-2 under all overall appearance quality metrics. This 

phenomenon may result in the conclusion that simple geometry- 
consistency constraint can effectively maintain the geometric 
shape of the targets (particularly tiny and dense cars in AVIID) 
during the translating process, which is beneficial to reduce 
the blur and detail distortions of the generated images in the 
case of various scenarios with more complicated backgrounds, 
while contrastive learning and cycle-consistency constraint 
are too strict.

Tables 17 to 20 illustrate the means and standard variances 
of target quality evaluation metric under 4 objection detec-
tion models with 3 IOU settings on AVIID-3. From the RmAP 
results, we can see that GCGAN achieves an overwhelming 
superiority in target quality compared with other unsu-
pervised methods, which further reflects the effectiveness of 

Input Ground Truth Pix2Pix BicycleGAN GCGAN CUT DCLGAN CycleGAN UNIT DRIT MUNIT MSGAN

Fig. 9. Some generated images for each method under 80% training ratio on AVIID-2.

Table 15. Overall appearance evaluation under 50% training ratio on AVIID-3. The best results are highlighted in bold

Methods Traditional perceptual metrics CNN-based perceptual metrics

MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓
Pix2Pix 22.29 ± 0.50 21.38 ± 0.19 0.5706 ± 0.0073 0.3699 ± 0.0030 96.05 ± 3.13 0.0201 ± 0.0016

BicycleGAN 26.96 ± 0.74 19.80 ± 0.26 0.4974 ± 0.0141 0.3980 ± 0.0061 97.11 ± 3.50 0.0183 ± 0.0036
GCGAN 24.95 ± 0.46 20.47 ± 0.13 0.5495 ± 0.0034 0.3305 ± 0.0034 77.01 ± 1.36 0.0065 ± 0.0014
CUT 28.90 ± 0.81 19.18 ± 0.20 0.4856 ± 0.0075 0.3825 ± 0.0027 87.41 ± 1.63 0.0088 ± 0.0008

DCLGAN 26.57 ± 1.06 19.86 ± 0.33 0.5087 ± 0.0134 0.3820 ± 0.0111 91.62 ± 4.61 0.0155 ± 0.0052

CycleGAN 28.63 ± 1.75 19.19 ± 0.49 0.4939 ± 0.0187 0.3617 ± 0.0070 85.92 ± 3.83 0.0068 ± 0.0017

UNIT 29.12 ± 0.93 19.06 ± 00.26 0.4919 ± 0.0171 0.3690 ± 0.0055 89.90 ± 3.38 0.0088 ± 0.0013

DRIT 28.03 ± 1.57 19.41 ± 0.51 0.5078 ± 0.0215 0.3860 ± 0.0104 114.19 ± 2.74 0.0295 ± 0.0043

MUNIT 29.04 ± 0.58 19.08 ± 0.16 0.4806 ± 0.0159 0.3843 ± 0.0037 90.28 ± 1.50 0.0070 ± 0.0006

MSGAN 37.55 ± 1.03 16.96 ± 0.19 0.4595 ± 0.0157 0.4209 ± 0.0033 125.60 ± 3.48 0.0353 ± 0.0024
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 geometry-consistency constraint on generating high-quality 
targets.

Figures 10 and 11 display some generated images for each 
method under 50% and 80% training ratio on AVIID-3, respec-
tively. From the figures, we can find that GCGAN can maintain 
the geometric shape of targets to reduce distortions and blur, 
especially in the case of dense cars, which further proves our 
conclusion.

Conclusion
From the above experimental results and discussion, we can 
sum up some meaningful conclusions as follows.

• The pixel-level mapping learned from the paired data is 
beneficial for generating fine-grained targets. Therefore, super-
vised methods give significantly superior performance in target 
quality evaluation compared with unsupervised approaches.

• The contrastive learning constraint can be seen as a patch-
level mapping by maximizing mutual information between the 

corresponding input and output patches. This patch-level align-
ment can enhance the correspondence of the input and output 
patches, which helps to improve the quality of generating images, 
especially in weak light and noisy conditions.

• The geometry-consistency constraint is a simple and effec-
tive way to maintain the geometric shape of the targets (par-
ticularly tiny and dense targets) during the translating process, 
which can meaningfully reduce the blur and detail distortions 
of the generated images in the case of various scenarios with 
complicated backgrounds.

In addition, several problems of existing methods can 
be summarized from the experiment results and discussion, 
which can be seen as follows.

• Current approaches only consider migrating the global 
styles or attributes onto the entire images but ignore the con-
siderable discrepancy between targets and backgrounds in 
infrared attributes, resulting in unrealistic targets in the gen-
erated images.

Table 16. Overall appearance evaluation under 80% training ratio on AVIID-3. The best results are highlighted in bold

Methods Traditional perceptual metrics CNN-based perceptual metrics

MSE ↓ PSNR ↑ SSIM ↑ LPIPS ↓ FID ↓ KID ↓
Pix2Pix 20.66 ± 0.49 22.00 ± 0.18 0.5861 ± 0.0048 0.3628 ± 0.0029 96.50 ± 2.07 0.0183 ± 0.0022

BicycleGAN 25.37 ± 0.89 20.35 ± 0.32 0.5190 ± 0.0061 0.3826 ± 0.0045 100.81 ± 4.22 0.0180 ± 0.0029
GCGAN 22.86 ± 0.71 21.39 ± 0.24 0.5718 ± 0.0092 0.3146 ± 0.0052 75.31 ± 1.04 0.0076 ± 0.0005
CUT 27.02 ± 0.59 19.70 ± 0.18 0.5011 ± 0.0111 0.3723 ± 0.0100 88.32 ± 4.73 0.0094 ± 0.0026

DCLGAN 25.37 ± 0.93 20.25 ± 0.28 0.5161 ± 0.0167 0.3705 ± 0.0059 88.83 ± 2.54 0.0128 ± 0.0025

CycleGAN 27.95 ± 2.07 19.39 ± 0.63 0.5039 ± 0.0213 0.3610 ± 0.0111 86.51 ± 3.66 0.0081 ± 0.0019

UNIT 28.60 ± 0.50 19.22 ± 0.15 0.5129 ± 0.0175 0.3615 ± 0.0051 90.89 ± 1.56 0.0091 ± 0.0009

DRIT 24.94 ± 0.75 20.41 ± 0.27 0.5377 ± 0.0226 0.3683 ± 0.0058 112.83 ± 3.45 0.0293 ± 0.0041

MUNIT 29.47 ± 0.75 18.95 ± 0.25 0.4796 ± 0.0220 0.3880 ± 0.0010 93.36 ± 2.46 0.0085 ± 0.0017

MSGAN 32.66 ± 0.16 18.17 ± 0.31 0.4981 ± 0.0194 0.3965 ± 0.0023 114.28 ± 3.16 0.0288 ± 0.0029

Table 17. RmAP under the Faster RCNN object detection model on AVIID-3. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.272 ± 0.010 0.134 ± 0.016 0.344 ± 0.021 0.268 ± 0.012 0.098 ± 0.007 0.329 ± 0.035
BicycleGAN 0.396 ± 0.015 0.174 ± 0.012 0.607 ± 0.022 0.396 ± 0.020 0.161 ± 0.011 0.592 ± 0.030

GCGAN 0.328 ± 0.019 0.114 ± 0.016 0.495 ± 0.042 0.320 ± 0.014 0.108 ± 0.011 0.476 ± 0.032
CUT 0.427 ± 0.025 0.282 ± 0.034 0.570 ± 0.038 0.408 ± 0.027 0.238 ± 0.019 0.574 ± 0.048

DCLGAN 0.430 ± 0.045 0.280 ± 0.040 0.586 ± 0.065 0.396 ± 0.021 0.237 ± 0.032 0.557 ± 0.031

CycleGAN 0.410 ± 0.035 0.195 ± 0.033 0.604 ± 0.051 0.356 ± 0.033 0.169 ± 0.031 0.526 ± 0.047

UNIT 0.430 ± 0.052 0.244 ± 0.038 0.608 ± 0.067 0.374 ± 0.050 0.178 ± 0.040 0.547 ± 0.066

DRIT 0.424 ± 0.054 0.216 ± 0.077 0.617 ± 0.070 0.340 ± 0.042 0.155 ± 0.028 0.512 ± 0.085

MUNIT 0.476 ± 0.018 0.282 ± 0.012 0.658 ± 0.035 0.469 ± 0.054 0.333 ± 0.101 0.672 ± 0.078

MSGAN 0.441 ± 0.016 0.267 ± 0.044 0.627 ± 0.039 0.367 ± 0.037 0.182 ± 0.017 0.541 ± 0.072

D
ow

nloaded from
 https://spj.science.org on January 04, 2024

https://doi.org/10.34133/remotesensing.0096


Han et al. 2023 | https://doi.org/10.34133/remotesensing.0096 18

• Existing methods can only transfer styles or attributes 
between aerial visible and infrared images without taking into 
account the different properties of each modality. Consequently, 
the authenticity of generated images is poor.

• For aerial images with multi-scale dense targets, complex 
backgrounds, and diverse scenes, current methods struggle 
to capture the spatial differences between images, resulting in 
distortion and blurring of generated targets and backgrounds, 
significantly reducing the quality of generated images.

The above conclusions can provide meaningful guidance for 
investigating more efficient methods on more challenging data-
sets to facilitate the process of aerial visible-to-infrared image 
translation.

Conclusion
In this paper, we find that there lacks a benchmark dataset for 
aerial visible-to-infrared image translation experiments, thus 

severely limiting the development of this field. To solve the 
problem, we construct the first specific dataset, AVIID, con-
sisting of paired aerial visible and infrared images for aerial 
visible-to-infrared image translation. The purpose of AVIID 
is to provide researchers with an available data resource to 
evaluate and advance state-of-the-art algorithms for aerial 
visible-to-infrared image translation. Based on AVIID, we 
also propose a complete evaluation system to evaluate the 
generated infrared images from the overall appearance and 
target quality. In particular, a new metric named RmAP is 
proposed to evaluate the quality of targets in the generated 
images. Then, a comprehensive survey on image-to-image 
translation methods that could be applied to aerial visible -to-
infrared image translation is given. After that, several typical 
image-to-image translation approaches are evaluated using 
our proposed evaluation system on AVIID. These results can 
be seen as a baseline for future work. Finally, some mean-
ingful conclusions and problems of existing methods are 

Table 18. RmAP under the YOLOv3 object detection model on AVIID-3. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.249 ± 0.019 0.123 ± 0.025 0.462 ± 0.042 0.213 ± 0.011 0.066 ± 0.010 0.420 ± 0.028
BicycleGAN 0.396 ± 0.025 0.214 ± 0.036 0.715 ± 0.032 0.357 ± 0.012 0.157 ± 0.032 0.658 ± 0.033

GCGAN 0.315 ± 0.009 0.141 ± 0.015 0.600 ± 0.033 0.300 ± 0.004 0.116 ± 0.026 0.580 ± 0.007
CUT 0.427 ± 0.016 0.376 ± 0.060 0.683 ± 0.032 0.407 ± 0.026 0.309 ± 0.036 0.663 ± 0.056

DCLGAN 0.430 ± 0.024 0.362 ± 0.038 0.683 ± 0.064 0.403 ± 0.030 0.327 ± 0.038 0.641 ± 0.042

CycleGAN 0.370 ± 0.030 0.190 ± 0.021 0.686 ± 0.068 0.351 ± 0.030 0.229 ± 0.043 0.599 ± 0.044

UNIT 0.415 ± 0.050 0.292 ± 0.070 0.692 ± 0.080 0.368 ± 0.064 0.233 ± 0.075 0.632 ± 0.079

DRIT 0.405 ± 0.064 0.253 ± 0.092 0.697 ± 0.068 0.329 ± 0.053 0.203 ± 0.057 0.568 ± 0.089

MUNIT 0.461 ± 0.032 0.343 ± 0.034 0.755 ± 0.064 0.456 ± 0.061 0.379 ± 0.104 0.716 ± 0.046

MSGAN 0.424 ± 0.034 0.310 ± 0.080 0.714 ± 0.044 0.351 ± 0.040 0.209 ± 0.035 0.623 ± 0.080

Table 19. RmAP under the YOLOv5 object detection model on AVIID-3. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.237 ± 0.012 0.090 ± 0.014 0.384 ± 0.025 0.205 ± 0.010 0.043 ± 0.006 0.317 ± 0.021
BicycleGAN 0.393 ± 0.018 0.153 ± 0.031 0.677 ± 0.021 0.377 ± 0.019 0.123 ± 0.019 0.641 ± 0.025

GCGAN 0.341 ± 0.004 0.106 ± 0.011 0.605 ± 0.032 0.331 ± 0.003 0.087 ± 0.018 0.603 ± 0.009
CUT 0.443 ± 0.020 0.295 ± 0.039 0.690 ± 0.031 0.422 ± 0.029 0.238 ± 0.027 0.696 ± 0.039

DCLGAN 0.438 ± 0.014 0.267 ± 0.041 0.689 ± 0.023 0.418 ± 0.037 0.254 ± 0.045 0.670 ± 0.052

CycleGAN 0.407 ± 0.030 0.174 ± 0.024 0.681 ± 0.051 0.392 ± 0.036 0.203 ± 0.046 0.645 ± 0.049

UNIT 0.465 ± 0.047 0.262 ± 0.064 0.731 ± 0.049 0.403 ± 0.071 0.200 ± 0.090 0.670 ± 0.068

DRIT 0.441 ± 0.068 0.221 ± 0.074 0.712 ± 0.084 0.356 ± 0.061 0.151 ± 0.053 0.617 ± 0.098

MUNIT 0.486 ± 0.040 0.296 ± 0.038 0.746 ± 0.049 0.493 ± 0.066 0.345 ± 0.108 0.760 ± 0.057

MSGAN 0.443 ± 0.041 0.234 ± 0.076 0.724 ± 0.046 0.361 ± 0.041 0.147 ± 0.018 0.633 ± 0.084
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summarized to advance state-of-the-art algorithms for aerial 
visible-to- infrared image translation. In addition, several 
future research directions of this field are analyzed and summa-
rized as follows.

• Current image-to-image translation methods are not con-
cerned with the imaging mechanism between the visible and 
infrared image. How to construct reasonable imaging mecha-
nism constraints to improve the realism of generated infrared 
images is a future research direction.

• The AVIID dataset proposed in this article are aerial 
remote sensing images taken by infrared camera equipped 
on the UAV. The visible-to-infrared image translation in sat-
ellite platform also deserves to be researched in the future.

• Existing image-to-image translation methods are mainly 
based on deep CNNs. However, due to the limitation compu-
tational resource, the parameters of the model cannot be 
infinitely large, so the size of the generated image is limited. 
Therefore, finding an effective way to transfer these approaches 
to large-scale areas is necessary.

• The quality of the generated images through image-to-
image translation methods is highly correlated with the simi-
larity between training and test data. Therefore, improving the 
transferability and generalizability of these methods is one of 
the research directions in the future.

• The radiation value of thermal images has a great relation-
ship with the atmospheric conditions, and when the infrared 

Table 20. RmAP under the YOLOx object detection model on AVIID-3. The best results are highlighted in bold

Methods 50% Training ratio 80% Training ratio

RmAP, IOU: RmAP, IOU:

0.5:0.95 0.5 0.75 0.5:0.95 0.5 0.75

Pix2Pix 0.134 ± 0.008 0.131 ± 0.023 0.221 ± 0.025 0.104 ± 0.005 0.084 ± 0.006 0.194 ± 0.020
BicycleGAN 0.299 ± 0.007 0.355 ± 0.023 0.359 ± 0.028 0.279 ± 0.006 0.288 ± 0.022 0.377 ± 0.024

GCGAN 0.228 ± 0.012 0.210 ± 0.013 0.329 ± 0.035 0.224 ± 0.008 0.196 ± 0.007 0.326 ± 0.035

CUT 0.281 ± 0.008 0.377 ± 0.035 0.363 ± 0.035 0.281 ± 0.027 0.351 ± 0.045 0.350 ± 0.027

DCLGAN 0.278 ± 0.025 0.365 ± 0.023 0.358 ± 0.052 0.272 ± 0.033 0.359 ± 0.062 0.347 ± 0.035

CycleGAN 0.284 ± 0.022 0.336 ± 0.043 0.380 ± 0.024 0.269 ± 0.030 0.339 ± 0.069 0.330 ± 0.042

UNIT 0.310 ± 0.029 0.431 ± 0.053 0.355 ± 0.052 0.266 ± 0.054 0.332 ± 0.118 0.329 ± 0.044

DRIT 0.283 ± 0.043 0.358 ± 0.106 0.356 ± 0.037 0.231 ± 0.045 0.265 ± 0.085 0.298 ± 0.031
MUNIT 0.330 ± 0.034 0.453 ± 0.078 0.384 ± 0.032 0.324 ± 0.050 0.475 ± 0.121 0.356 ± 0.026

MSGAN 0.285 ± 0.032 0.366 ± 0.073 0.370 ± 0.032 0.219 ± 0.032 0.241 ± 0.056 0.306 ± 0.031

Input Ground Truth Pix2Pix BicycleGAN GCGAN CUT DCLGAN CycleGAN UNIT DRIT MUNIT MSGAN

Fig. 10. Some generated images for each method under 50% training ratio on AVIID-3.
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images are taken at a very high height above the ground, solving 
the atmospheric compensation is a worthwhile problem.

Moreover, AVIID and PyTorch codes of these methods can 
be freely downloaded to advance the process of aerial visible- 
to-infrared image translation.
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Aerial visible-to-infrared image translation aims to transfer aerial visible images to their corresponding infrared images,
which can effectively generate the infrared images of specific targets. Although some image-to-image translation
algorithms have been applied to color-to-thermal natural images and achieved impressive results, they cannot be
directly applied to aerial visible-to-infrared image translation due to the substantial differences between natural images
and aerial images, including shooting angles, multi-scale targets, and complicated backgrounds. In order to verify the
performance of existing image-to-image translation algorithms on aerial scenes as well as advance the development of
aerial visible-to-infrared image translation, an Aerial Visible-to-Infrared Image Dataset (AVIID) is created, which is the
first specialized dataset for aerial visible-to-infrared image translation and consists of over 3,000 paired visible-infrared
images. Over the constructed AVIID, a complete evaluation system is presented to evaluate the generated infrared
images from 2 aspects: overall appearance and target quality. In addition, a comprehensive survey of existing image-
to-image translation approaches that could be applied to aerial visible-to-infrared image translation is given. We then
provide a performance analysis of a set of representative methods under our proposed evaluation system on AVIID,
which can serve as baseline results for future work. Finally, we summarize some meaningful conclusions, problems of
existing methods, and future research directions to advance state-of-the-art algorithms for aerial visible-to-infrared image
translation.
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