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Fractional vegetation cover (FVC) is a critical biophysical parameter that characterizes the status of 
terrestrial ecosystems. The spatial resolutions of most existing FVC products are still at the kilometer 
level. However, there is growing demand for FVC products with high spatial and temporal resolutions in 
remote sensing applications. This study developed an operational method to generate 30-m/15-day FVC 
products over China. Landsat datasets were employed to generate a continuous normalized difference 
vegetation index (NDVI) time series based on the Google Earth Engine platform from 2010 to 2020. 
The NDVI was transformed to FVC using an improved vegetation index (VI)-based mixture model, which 
quantitatively calculated the pixelwise coefficients to transform the NDVI to FVC. A comparison between 
the generated FVC, the Global LAnd Surface Satellite (GLASS) FVC, and a global FVC product (GEOV3 
FVC) indicated consistent spatial patterns and temporal profiles, with a root mean square deviation 
(RMSD) value near 0.1 and an R2 value of approximately 0.8. Direct validation was conducted using ground 
measurements from croplands at the Huailai site and forests at the Saihanba site. Additionally, validation 
was performed with the FVC time series data observed at 151 plots in 22 small watersheds. The generated 
FVC showed a reasonable accuracy (RMSD values of less than 0.10 for the Huailai and Saihanba sites) and 
temporal trajectories that were similar to the field-measured FVC (RMSD values below 0.1 and R2 values 
of approximately 0.9 for most small watersheds). The proposed method outperformed the traditional VI-
based mixture model and had the practicability and flexibility to generate the FVC at different resolutions 
and at a large scale.

Introduction

Fractional vegetation cover (FVC) is usually defined as the areal 
proportion of the vegetation to the total surface [1]. FVC, which 
reflects the distribution status and coverage degree of surface 
vegetation, is widely used in ecological environmental assess-
ments and climate change simulations [2–4]. High-quality FVC 
products with high spatiotemporal resolutions over large areas 
are in high demand for soil erosion risk assessments, precision 
agriculture studies, and urban ecosystem research [5–10].

Until now, the spatial resolutions of most published FVC 
products were at the kilometer level, which cannot meet the 

requirements for a spatially refined description of surface veg-
etation (Table 1) [11]. In recent years, the amount of remotely 
sensed data with a high spatial resolution at the meter or even 
submeter level (e.g., Sentinel-2, Gaofen series satellites) has 
increased. These datasets provide more valuable data sources 
for the production of finer FVC products. The enhancement of 
the spatial resolution of FVC products is currently trending 
[10,12,13]. In addition, observations conducted with a high 
temporal frequency can record relatively complete cycles of 
vegetation growth and benefit vegetation phenology research 
and timely crop monitoring [14,15]. However, there is a lack 
of fine spatial resolution (30 m or finer) FVC datasets that also 
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have a high temporal frequency, e.g., 30-m resolution products 
based on Landsat imageries typically have an annual or seasonal 
frequency [16–18]. Therefore, it is valuable to develop FVC prod-
ucts with higher temporal resolution than those with monthly 
intervals [19].

Various methods have been established to estimate FVC on a 
regional or global scale. These methods can be categorized into 
four types: empirical methods, machine learning approaches, 
physical models, and vegetation index (VI)-based mixture models 
[20–23]. Approximately 35% of the relevant studies on FVC 
employ the VI-based mixture model due to its practicality [24]. 
However, two endmember parameters of the VI-based mixture 
model highly influence the accuracy of FVC: the VI values of fully 
vegetated (Vv) and bare soil pixels (Vs). These parameters are typi-
cally acquired through empirical statistics [25,26], whereas it is 
difficult to obtain accurate endmember VI values, especially for 
areas lacking fully vegetated pixels and areas lacking bare soil pix-
els, e.g., semiarid lands and evergreen forests [27]. Although the 
VI-based mixture model is one of the most prevalent methods for 
estimating FVC, the challenges of obtaining Vv and Vs values still 
limit the accuracy of the VI-based mixture model.

A novel algorithm using multiangle data to obtain the two 
endmember VI values (MultiVI) showed reasonable accuracy 
in the retrieval of FVC [28]. In contrast to the traditional 
methods that statistically obtain a limited number of Vv and 

Vs values (e.g., fixed values for land cover types), the MultiVI 
method can generate pixelwise endmember VI values. The 
implementation of MultiVI requires VIs at two large observing 
angles, which are typically obtained from multiangle datasets 
with coarse resolutions, such as the products from the Moderate 
Resolution Imaging Spectroradiometer (MODIS) and the Earth 
Polychromatic Imaging Camera (EPIC) [13,28]. Generally, the 
improved VI-based mixture model with Vv and Vs values 
obtained using the MultiVI method is feasible for generating 
large-area, high-frequency, and high-resolution FVC products 
[29]. However, there is still a lack of studies on the application 
and validation of the MultiVI method for the generation of 
FVC products with medium or high resolutions.

Therefore, an operational VI-based mixture model was pro-
vided to generate fine-spatial-resolution and high-frequency 
FVC products with good quality over a regional or global scale 
in this paper. The Vv and Vs values derived from the MODIS data 
using the MultiVI algorithm were applied to Landsat images to 
generate 30-m/15-day FVC products from 2010 to 2020 over 
China. First, the 30-m/15-day normalized difference vegetation 
index (NDVI) datasets were generated based on a time-series 
harmonic model with extensive data archives and the computing 
capabilities of Google Earth Engine (GEE). Subsequently, the two 
endmember NDVI values of the VI-based mixture model were 
derived using the MultiVI algorithm to convert the Landsat 

Table 1. Brief summary of the primary existing global or regional FVC datasets

Name Sensor
Resolution, revisit 

interval
Spatial range Temporal range Algorithm Reference

Global Monthly 
Greenness Fraction

AVHRR 0.15°, 30 days Global 1985–1990 The VI-based 
mixture model

[20]

POLDER FVC POLDER 6 km, 10 days Global 1996–1997, 2003 Neural network [21,73]

LSA SAF FVC SEVIRI 3 km, daily/ 
10 days

Europe, Africa, 
South America

2005–current The decomposi-
tion of linear 
mixed model

[74,75]

TOAVEG FVC MERIS 0.3 km,  
30 days/10 days

Europe 2002–2012 Neural network [76]

CYCLOPES FVC SPOT/ 
VEGETATION

1 km, 10 days Global 1999–2007 Neural network [22]

GEOV1/2 FVC SPOT/ 
VEGETATION, 

PROBA-V

1/112°, 10 days Global 1999–2020 Neural network [77]

GEOV3 FVC Sentinel-3/OLCI, 
PROBA-V

1/3 km, 10 days Global 2014–current Neural network [32]

GLASS FVC MODIS 500 m, 8 days Global 2000–2021 Neural network [30]

TRAGL FVC MODIS 1 km, 8 days Global 2000–2014 Gap fraction 
model

[23]

MuSyQ FVC MODIS; FY3A/
MERSI; FY3B/

MERSI

1 km, 5 days China-Asian 2013 The VI-based 
mixture model

[78]

Landsat FVC OLI 30 m, seasonal China 2013–2018 Neural network [13]

MultiHSVI FVC EPIC 10 km, daily Global 2016 The VI-based 
mixture model

[13]

HJ-1 FVC MODIS; HJ-1 30 m, 15 days China 2010 The VI-based 
mixture model

[11]

D
ow

nloaded from
 https://spj.science.org on January 15, 2024

https://doi.org/10.34133/remotesensing.0101


Zhao et al. 2023 | https://doi.org/10.34133/remotesensing.0101 3

NDVI datasets to FVC (hereafter referred to as MultiVI FVC). 
The accuracy of the MultiVI FVC was validated against the field-
measured reference FVC and popular FVC products, i.e., the 
Global LAnd Surface Satellite (GLASS) FVC and GEOV3 FVC, 
which were derived from machine learning methods and physical 
models with reasonable accuracy [30–32]. The Vv and Vs values 
acquired from the empirical statistics were also used to generate 
FVC (hereafter referred to as Statistical FVC) for comparison.

Study Areas and Datasets

Study areas
The study region includes the land region of China (Fig. 1). 
Figure 1 shows the 30-m fine land cover map of China (GLC_
FCS30-2015_V1.0) in 2015, along with the locations of the field 
measurement sites [33]. Additionally, Fig. 1 illustrates the eco-
logical and geographical zones of China classified based on 
temperature and moisture conditions (https://www.resdc.cn/
data.aspx?DATAID=125).

The field-measured FVC was acquired at sites in Huailai and 
Saihanba and 151 plots at Chinese soil and water conservation 
monitoring stations located in 22 small watersheds. The Huailai 
site (40°20′57″N, 115°47′03″E) is located on a flat plain, cover-
ing ~280 km2. The measurement plots are mainly on agricul-
tural lands, with summer corn as the primary crop, along with 
a few orchards. The Saihanba site (42°10′41″N, 116°57′52″E) 
is located at the National Forests Park in Hebei Province, China, 
where agriculture, pastoralism, and forestry coexist, and the 
land heterogeneity is relatively stable. The forest in Saihanba is 
artificial, consisting mainly of larch (Larix principis-rupprechtii 
Mayr.) and birch (Betula platyphylla Suk.). The crop types in 
this area include corn, wheat, and potatoes.

The FVC time series were obtained from Chinese soil and 
water conservation monitoring stations in 22 small watersheds 
in 2010. Each station corresponds to a small watershed, and 5 
to 7 sampling plots were chosen in each watershed. Figure 1 
shows the distribution of the 151 sampling plots, which span 
most of China and mainly cover the eastern region that is char-
acterized by relatively dense vegetation. These 151 plots are located 
in diverse climatic and topographical conditions, encompassing 
various vegetation types, including forests, grasslands, irrigated 
croplands, and rainfed croplands.

To describe the temporal trajectories of the FVC products 
from 2010 to 2020, nine BEnchmark Land Multisite ANalysis 
and Intercomparison of Products (BELMANIP2) sites were 
used (https://calvalportal.ceos.org/web/olive/site-description). 
These sites were homogeneous over a 10 km × 10 km area, 
nearly flat in topography, and nearly free of urban areas and 
permanent water bodies [34]. Therefore, the BELMANIP2 sites 
were suitable for validating vegetation parameters. Figure 1 
depicts the locations of the nine BELMANIP2 sites. The veg-
etation biomes in the BELMANIP2 sites include forests, grass-
lands, and croplands.

Field-measured reference FVC
The sampling plots at the Huailai site were specified on homo-
geneous land surfaces covered by croplands and orchards and 
had a plot size of 30 m × 30 m. The field-measured FVC datasets 
were acquired from digital images taken vertically over the 
vegetation. The camera was positioned on a long stick and held 
vertically to capture images of the vegetation (Fig. 2). Images 
were uniformly taken along two diagonal lines within each 

sampling plot [35,36]. For the woodlands and orchards, images 
were taken underneath the crown in a top-down direction to 
capture the understory vegetation coverage and in an upward 
direction to quantify the overstory coverage. The FVC was cal-
culated as the weighted sum of the overstory and understory 
vegetation coverage (fup and fdown in Eq. 1). Table 2 provides 
information on the field-measured FVC datasets.

The plots at the Saihanba site were mainly covered by forests 
and had a plot size of 45 m × 45 m. The FVC time series were 
measured at the 151 plots with a plot size of 60 m × 60 m at 22 
monitoring stations every 15 days in 2010 to acquire the tem-
poral dynamics of vegetation. Approximately nine photos were 
taken at each plot at the Huailai site, 20 were taken at each plot 
at the Saihanba site, and five were taken at each time series 
monitoring plot.

Low-quality images were omitted prior to calculating the 
FVC. In addition, the homogeneity of the plots was inspected 
using high-resolution remote sensing images on Google Earth. 
Plots with significant heterogeneity in their surrounding 90 m × 
90 m region (3 × 3 Landsat pixels) were excluded. A shadow-
resistant algorithm (SHAR-LABFVC) was implemented to 
extract the FVC from the digital images of the Huailai and 
Saihanba sites [37]. This algorithm can eliminate the shadow 
effect of photos, with a root mean square deviation (RMSD) 
of approximately 0.025 when validated with visual interpre-
tation and simulated photos. The matching software of the 
portable photographic instruments (PCOVER) was utilized 
to calculate FVC for the time series monitoring plots. The 
use of PCOVER software introduced an absolute error of 
approximately 5% [38,39].

Since the spatial extent of the field-measured sampling plots 
was much smaller than the pixels in the GLASS and GEOV3 
products, the FVC values measured in a coarse-resolution pixel 
were arithmetically averaged for the Huailai site. The field-
measured FVC at the Saihanba site was upscaled to 500 m using 
GF-1 data (http://www.sasclouds.com/chinese/home/), consid-
ering the spatial heterogeneity of this region. The GF-1 satellite 
is equipped with four wide field of view (WFV) cameras with 
a spatial resolution of 16 m. GF-1 WFV images of the Saihanba 
site collected from June to September 2015 were utilized. An 
empirical transfer function was employed to convert the GF-1 
NDVI map to FVC using Eq. 2 [40–44].

where a, b, and n are the conversion coefficients that transform 
the NDVI to FVC. The field-measured FVC values, along with 
their corresponding GF-1 NDVI values at the same pixels, were 
used to solve the equations through least squares regression. 
The obtained a, b, and n coefficients were applied to the GF-1 
NDVI map to convert it to an FVC map. Subsequently, the 
GF-1 FVC map was aggregated to a 500-m scale for comparison 
with the coarse-resolution FVC products (GLASS and GEOV3 
FVC).

Satellite datasets
This study employed two types of satellite reflectance datasets 
to develop FVC products, including the Landsat surface reflec-
tance (SR) product and the MODIS Bidirectional Reflectance 

(1)FVC = fup +
(

1 − fup

)

∗ fdown

(2)FVC = (a∗NDVI+b)n
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Distribution Factor (BRDF) product. Landsat SR products from 
the Thematic Mapper (TM), Enhanced Thematic Mapper Plus 
(ETM+), and Operational Land Imager (OLI) were used to 
acquire the 30-m/15-day NDVI time series data model. Table 
3 illustrates the characteristics and usage of satellite reflectance 
datasets.

Landsat SR
Landsat Collection 2 SR products, which are conveniently acces-
sible on GEE, were used to calculate the time series NDVI 
datasets in this study. The Landsat SR images were preprocessed 
to acquire clear and unified NDVI values from different sen-
sors. The Landsat 5 ETM and Landsat 7 ETM+ SR values for 

Fig. 1. The 30-m land cover map of China. The solid brown circle represents the Huailai site. The solid pink circle indicates the Saihanba site. The solid red circles symbolize the 
151 plots of the Chinese soil and water conservation monitoring stations in 22 small watersheds. The solid green circles depict the BELMANIP2 sites. The Chinese ecological 
and geographical zones are numbered using Roman numerals.

D
ow

nloaded from
 https://spj.science.org on January 15, 2024

https://doi.org/10.34133/remotesensing.0101


Zhao et al. 2023 | https://doi.org/10.34133/remotesensing.0101 5

the red and near-infrared (NIR) bands were adjusted using a 
linear regression model to be more consistent with the Landsat 
8 OLI using the model parameters provided by Roy et al. [45]. 
The SR datasets have been atmospherically corrected and 
include a cloud, shadow, water, and snow mask produced using 
the CFunction of Mask (CFMask) algorithm [46]. All available 
Landsat images were masked using the corresponding quality 
bitmask bands to eliminate clouds, cloud shadows, and poor-
quality pixels. Figure 3 depicts the number of Landsat scenes 
utilized in this study for each year.

Terra/aqua MODIS BRDF
The MODIS BRDF product (MCD43A1) and its quality assess-
ment product (MCD43A2) (https://lpdaac.usgs.gov/products/
mcd43a1v006/) were applied to generate directional NDVI 
values as the input parameters of the MultiVI algorithm. The 
BRDF dataset is produced daily using 16 days of Terra and 
Aqua MODIS data. MCD43A1 provides the RossThick kernel 
(volume- scattering kernel), LiSparseR kernel (geometric- 
optical kernel), and isotropic kernel parameters for the semiem-
pirical linear kernel-driven model (RossThick-LiSparse Reciprocal, 
RTLSR) [47,48]. It can be used to calculate reflectance in any 
desired view and illumination direction [46]. The directional 
NDVI was computed with the red and NIR band kernel 
parameters. Subsequently, the directional NDVI values were 
applied to MultiVI to derive the endmember NDVI values of 
the VI-based mixture model. Using the MCD43A2 quality 
assessment product, snow, clouds, and low-quality pixels 
were excluded.

GLASS FVC product
The GLASS FVC has a temporal frequency of 8 days, two sets 
of spatial resolutions of 0.05° and 500 m (http://www.glass.
umd.edu/FVC/MODIS/). In this study, the 500-m GLASS FVC 
was used to validate the MultiVI FVC. The GLASS FVC was 
derived using a machine learning approach by building a rela-
tionship between MODIS reflectance and FVC. The training 
samples came from globally preprocessed Landsat images 
[30,31,49]. The validation result indicated that the RMSD of 
the GLASS FVC against the field-measured FVC was 0.087, 
and the correlation coefficient (R2) was 0.86 [50].

GEOV3 FCover product
The GEOV FCover is a series of FVC products developed by the 
Copernicus Program, and it has three major versions. The GEOV3 
FVC is the latest version and has been available since 2014 (https://
land.copernicus.eu/global/products/fcover). Similar to the previ-
ous two versions, the GEOV3 FVC is derived through neural 
networks (NNTs). The spatial resolution of the product has been 
improved to 1/3 km, and the temporal frequency is 10 days. An 
accuracy assessment with field measurements was conducted 
mainly over crops and resulted in an overall RMSD of 0.21 and a 
systematic mean overestimation of 0.16 [51]. The GLASS and 
GEOV3 FVC were used to assess the spatial and temporal consis-
tency of the MultiVI FVC.

Methods

The VI-based mixture model
The VI-based mixture model was used to estimate the continu-
ous 30-m/15-day FVC (Eq. 3) [20]. This model assumes that 
the reflectance or VI of the mixed pixel is composed of vegeta-
tion and soil, with their respective area proportions serving as 
weighting coefficients [52]. The pixel NDVI value is linearly 
decomposed by the two endmembers to acquire FVC.

Here, V is the NDVI value of the mixed pixel; Vv and Vs are 
the NDVI values of the pure pixel when it is fully vegetated and 
nonvegetated, respectively.

Retrieval of endmembers
The MultiVI algorithm was utilized to retrieve Vv and Vs for 
each pixel. The directional NDVI in the VI-based model (Eq. 4) 
is combined with the gap fraction model (Eq. 5) to establish 
constrained equations to calculate Vv and Vs (Eqs. 6 and 7) 
[28,53]:

(3)FVC =
V − Vs

Vv − Vs

Fig. 2. Image collection for field-measured reference FVC at the Huailai site.

Table 2. Information on the field-measured FVC datasets

Field-measured 
FVC

Temporal 
coverage

Number of 
plots

Land cover 
type

Huailai FVC 2010, 06/06, 
06/19, 
06/23, 
07/02, 

07/10, 07/20, 
09/26

35 Orchards, 
croplands

Saihanba FVC 2015, 06/27, 
07/11–07/13, 

07/29–
07/31, 
08/03, 
09/12–
09/13

33 Forests, 
croplands, 
grasslands

Time-series 
FVC

2010, every 
15 days

151 Forests, 
croplands, 
grasslands D
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where F(θ) is the directional vegetation cover, which describes 
the vegetation coverage at view zenith angle (VZA) θ, V(θ) 
represents the NDVI value observed at VZA θ, P(θ)is the direc-
tional gap fraction, G(θ) is the mean projection of the unit 
foliage area [54], Ω is the clumping index, and LAI is the leaf 
area index. This study employed the nonlinear coefficient k 
to quantify the FVC with NDVI (Eq. 4), which may mitigate 
the saturation effect of the NDVI in densely vegetated pixels 
[26,41,55]. F(θ) has a complementary relationship with P(θ) 
and equals “1- P(θ)”; then, Eqs. 4 and 5 can be combined as:

G(θ)·Ω is relatively invariant to cosθ at large VZAs 
[27,28,56–58]. Therefore, the estimated equation is estab-
lished by combining the two observations for VZA at 55° 
and 60° and by cancelling out the angle-invariant param-
eters in Eq. 6:

where the subscript “i” stands for the given pixel. The unknown 
parameters Vv, Vs, and k can be solved utilizing Eq. 7 with 
angular observations over the whole year for each pixel through 
the least-squares method. For a given pixel, the directional 
NDVI at VZAs of 55° and 60°, i.e., Vi(55∘) and Vi(60∘), was com-
puted and quality-controlled using MCD43A1 and MCD43A2, 
respectively. The two maps of the endmember values, i.e., Vv 
and Vs, were generated with a spatial resolution of 500 m. They 
were then downscaled to a 30-m resolution using the spectral 
unmixing method [29,59]. The 500-m Vv and Vs in a MODIS 
pixel are assumed to be the weighted sum of the Vv and Vs of 
all land cover types in the area of this pixel. The weighted 
coefficients were represented by the area proportions of land 
cover types, which were acquired from the 30-m resolution 
global land cover map (GlobeLand 30, [60]). Then, the 500-m 
Vv and Vs values could be decomposed to a 30-m scale according 
to Eq. 8:

(4)F(�) =

(

V (�)−Vs

Vv−Vs

)k

(5)P(�) = e−G(�)⋅Ω⋅LAI∕cos�

(6)1−

(

V (�)−Vs

Vv−Vs

)k

= e−G(�)⋅Ω⋅LAI∕cos�

(7)

[

1−

(

Vi(60
◦)−Vs

Vv−Vs

)k
]cos60◦

=

[

1−

(

Vi(55
◦)−Vs

Vv−Vs

)k
]cos55◦

(8)

{

Vv,500=
∑n

k=1
fkVv,k

Vs,500=
∑n

k=1
fkVs,k

Table 3. Characteristics and usage of satellite reflectance datasets

Datasets Satellite sensor
Resolution, revisit 

interval
Temporal extent Usage

Landsat5 Surface 
Reflectance

Landsat 5-TM 30 m, 16 days 2009–2011 Generating 30-m/ 
15-day NDVI in 2010

Landsat7 Surface 
Reflectance

Landsat 7-ETM+ 30 m, 16 days 2009–2013 Generating 30-m/ 
15-day NDVI in 2010-

2014

Landsat8 Surface 
Reflectance

Landsat 8-OLI 30 m, 16 days 2013–2021 Generating 30-m/ 
15-day NDVI in 2013-

2020

MCD43A1 Terra/Aqua- MODIS 500 m, daily 2014 Retrieving the two end-
member NDVI values 

of the VI-based mixture 
model

MCD43A2 Terra/Aqua- MODIS 500 m, daily 2014 Quality assessment for 
MCD43A1

Fig. 3. Number of utilized Landsat scenes for each year in the study area. Fig. 4. Simple, advanced, and full models for NDVI based on all available clear Landsat 
observations between 2014 and 2016 for a crop pixel in northern China (42°34′42″N, 
121°54′13″E).
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where Vv,500 and Vs,500 are the Vv and Vs for a single MODIS pixel, 
respectively; fk is the area proportion of the land cover type k; 
Vv,k and Vs,k are the 30-m Vv and Vs for land cover type k; and n 
is the number of land cover types in this 500-m pixel area. To 
solve the equations, the 3 × 3 500-m pixels surrounding the given 
MODIS pixel were utilized. The solved Vv,k and Vs,k were then 
assigned as the 30-m endmember NDVI values for all the pixels 
of land cover type k within the area of the given MODIS pixel.

However, some pixels had insufficient observations to retrieve 
reasonable endmember NDVI values due to cloud contamination. 
The statistical endmember NDVI value was acquired through the 
time series statistics of Landsat NDVI images on the GEE platform 
with commonly used statistical criteria. The NDVI values of a 
given pixel over the whole year were sorted from smallest to larg-
est, and the 5% and 95% accumulative percentages of the NDVI 
values were Vs and Vv for the backup algorithm, respectively [60].

Generation of NDVI time series
Three different time series models were applied to estimate the 
temporally continuous Landsat NDVI values for each pixel. 

The form of the time series model depended on the number of 
available clear (hereafter, “clear” refers to the observations that 
are free of clouds, cloud shadows, and snow) observations and 
the temporal continuity of the available Landsat images. The 
time series models adopted could be categorized into three 
versions, namely, simple, advanced, and full, according to the 
complexity of the model parameters [61,62].

The simple time series model contained only four param-
eters, as shown in Eq. 9 [62]:

Here, x is the time variable and is represented by the Julian 
date; NDVIsimple(x) denotes the estimated NDVI values at time 
x; T represents the cycle period and is set as the number of days 
per year (T = 365.25); a0 represents the overall value of NDVI; 
a1 and b1 model the intra-annual change caused by phenology 
and the solar angle variation, respectively; and c1 models the long-
term trend for surface changes. The simple model is effective and 

(9)
NDVIsimple(x)=a0+a1 ∗ cos

(

2π

T
x
)

+b1 ∗ sin
(

2�

T
x
)

+c1 ∗x

Fig. 5. Flowchart of 30-m/15-day FVC production and validation.
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easy to use when interannual changes have a single peak. However, 
there are places with complex interannual changes that do not 
follow the simple model. Therefore, the advanced or full model, 
which can better fit the temporal trajectory, is recommended if 
more clear observations are available [61]. The advanced and full 
models are presented in Eqs. 10 and 11, respectively.

The advanced model adds two parameters, a2 and b2, to the 
simple model to describe the bimodal intra-annual change. 
The full model has two more coefficients, a3 and b3, based on 
the advanced model to allow for trimodal intra-annual change. 
Figure 4 illustrates the NDVI time series values estimated using 
three different time series models based on all available clear 

(10)
NDVIadvanced(x)=NDVIsimple(x)

+a2 ∗ cos
(

4π

T
x
)

+b2 ∗ sin
(

4π

T
x
)

(11)

NDVIfull(x)=NDVIadvanced(x)

+a3 ∗ cos
(

6π

T
x
)

+b3 ∗ sin
(

6π

T
x
)

Fig. 6. (A to F) The seasonal spatial distributions of the MultiVI, GLASS, and GEOV3 FVC products in January and July 2015. White areas indicate no data values.
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Fig. 7. (A to E) Landsat false-color images and the corresponding MultiVI FVC, GLASS FVC, and GEOV3 FVC for various land covers. Each image represents a spatial extent of 
10 km × 10 km. The three FVC products share the same legend.
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Landsat observations between 2014 and 2016 for a crop pixel 
in northern China (42°34′42″N, 121°54′13″E). Since the pixel 
has sufficient clear observations for the full model estimation, 
the full model shows a more consistent temporal curve with 
the observations (Fig. 4).

Previous studies suggested that the total number of clear 
observations should be three times greater than the model coef-
ficients to acquire a robust and accurate time series model 
[61,62]. This criterion was followed in this study. Applying 
excessive observations of a long period would introduce long-
term trends spanning multiple years into the temporal trajec-
tories of the given year. To ensure the accuracy of fitting and 
obtain enough clear observations, the Landsat SR data from 
the year before the given year to the year after that were adopted 
to establish the time series model. The simple harmonic model 
was used if the total number of clear observations in the 3 years 
was greater than or equal to 12 and less than 18 (12 to 17). 
Otherwise, the advanced model was used if the total number 
of clear reflectance was greater than or equal to 18 but less than 
24 (18 to 23). The full model was applied if the total number 
of clear observations was greater than or equal to 24 (>24). An 
excessively large temporal gap between adjacent observation 
data can cause overfitting problems in the advanced and full 
models, as the additional coefficients induce extra freedom in 
the time series model [61]. Therefore, the temporal continuity 
of the clear observations was also used as one of the constraints 
when choosing the appropriate time series model. If any large 

gap (>44 days) existed in the clear observation time series, a 
simple model was utilized. Most pixels had enough clear obser-
vations to establish a suitable time series model. For the pixels 
that lacked useful data, the mean NDVI values of neighboring 
spatial or temporal pixels were used to fill the gaps.

Mapping 30-m/15-day FVC in China
The MultiVI FVC products covered the land region of China 
from 2010 to 2020, with spatial completeness and temporal con-
tinuity. The processing steps included the derivation of the Vv 
and Vs composite, generation of Landsat time series 30-m/ 15-day 
NDVI, calculation of FVC, and validation (Fig. 5).

Assessment and validation
Validation against field measurements and statistical FVC
The field-measured FVC in the Huailai and Saihanba sites was 
utilized to assess the MultiVI FVC, Statistical FVC, GLASS FVC, 
and GEOV3 FVC. The Statistical FVC was calculated using the 
VI-based mixture model in a traditional way. The NDVI values 
used for the calculation were the same as those used for the MultiVI 
FVC. The endmember NDVI values were acquired through empir-
ical statistics. Vv and Vs were extracted from the accumulative 
maximum and minimum of a 3-year time series dataset, respec-
tively, within a neighborhood centered at the given pixel [27].

To reduce the error caused by the geo-location bias, the MultiVI 
FVC and Statistical FVC values in 3 × 3 pixels around a measured 
plot were averaged for comparison with the field-measured FVC, 

Fig. 8. (A to D) The difference map between the MultiVI FVC, GLASS FVC, and GEOV3 FVC in January and July 2015.
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as suggested by Weiss et al. [63]. The correlation coefficient (R2) 
was used to indicate the relationship between the field-measured 
FVC and the validated FVC, and the RMSD was calculated to 
assess the accuracy.

The FVC observed at the 151 plots around the Chinese soil 
and water conservation monitoring stations in the 22 small water-
sheds was not originally designed for the validation of remotely 
sensed products. Therefore, the FVC time series was mainly used 
to validate the temporal profiles of the MultiVI FVC, considering 
the small number of photos for the plot (only five photographs 
for each plot in half a month; see the “Field-measured reference 
FVC” section) and the heterogeneity of the sites. The statistical 
metrics used for comparison were R2 and RMSD. Moreover, the 
average bias between the estimated FVC (the MultiVI FVC and 
Statistical FVC) and the field-measured FVC were calculated for 
each ecological and geographical zone across the 24 semimonthly 
time phases.

Intercomparison
The MultiVI FVC was validated using published FVC products 
whose accuracy has been assessed. The MultiVI FVC and the 
GEOV3 FVC were resampled to 500 m by averaging the pixel 
values within each 500-m pixel. Monthly mean FVC values in 
2015 were calculated for all three FVC products. The missing 
pixels were excluded, and only the valid pixels of all three products 
within the same period were compared. To further evaluate the 
consistency between the MultiVI FVC and other FVC products, 

statistical metrics, including the difference (DIFF), R2, and RMSD, 
were calculated to assess the agreement between the FVC prod-
ucts for each pixel.

To compare the temporal consistency, the FVC time series 
values from 2010 to 2020 were extracted from these FVC prod-
ucts at nine BELMANIP2 sites representing major vegetation 
biomes. The metrics R2 and RMSD were calculated to quantify 
the similarity and discrepancy between the temporal trajecto-
ries of the three FVC products.

Results

Spatial consistency
Figure 6 shows the monthly maps of the MultiVI FVC, GLASS 
FVC, and GEOV3 FVC products in January and July 2015. The 
white areas indicate missing values. The GEOV3 FVC product 
had many missing values, especially in winter and high-latitude 
zones, while missing values did not exist in the MultiVI FVC 
and the GLASS FVC. Since the time series harmonic model was 
used to retrieve a spatially and temporally continuous NDVI 
dataset, the MultiVI FVC derived from it exhibited good spa-
tiotemporal completeness. These three FVC products were gen-
erally consistent in terms of spatial patterns. The FVC showed 
a trend of higher values in the southeast and lower values in the 
northwest, which was consistent with the spatial distribution of 
precipitation. In January, high FVC values were mainly concen-
trated in the tropical and subtropical evergreen forests around 

Fig. 9. (A to D) The maps of R2 and RMSD between the MultiVI FVC, GLASS FVC, and GEOV3 FVC in 2015.
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Southwest China, while the grasslands in northeastern China 
had very low FVC values. In summer, the FVC values of the 
deciduous forests in the north increased. Furthermore, the FVC 
values of the three FVC products were low year-round over the 
Qinghai–Tibet Plateau and the sparse lands of Xinjiang Province 
in northwestern China, where the dominant biomes are mon-
tane grassland and desert scrubland, respectively. The spatial 
patterns of the three FVC products were consistent with the 
ecological and climatic conditions of China.

Figure 7 illustrates the Landsat images under different land 
cover conditions, as well as the MultiVI FVC, GLASS FVC, and 
GEOV3 FVC. The MultiVI FVC displayed more distinct spatial 
details than the coarse-resolution FVC products due to its higher 
resolution.

Figure 8 shows the monthly difference between the MultiVI 
FVC and the other two FVC products for January and July 
2015. The difference between the MultiVI FVC and the other 
two FVC products was generally ±0.1 in most areas of China. 
High discrepancies appeared in irrigated cropland regions, 
especially in the two-harvest-per-year rice crop area of south-
eastern China. The MultiVI FVC values were slightly higher 
than the GLASS FVC values over the grasslands in northern 
China and lower than those over the deciduous forests in 
northeastern China (Fig. 8A and B). The GEOV3 FVC values 
were significantly higher than the MultiVI FVC values over 
the evergreen region in southwestern China during summer 
and lower during winter (Fig. 8C and D). This indicated that 
GEOV3 had a distinct seasonal variation for the evergreen 
broadleaf forests in southwestern China, while the seasonality 
of the MultiVI FVC and GLASS FVC was more stable in that 
region.

Temporal consistency
Figure 9A and C shows that the RMSD between the MultiVI 
FVC and the other FVC products was close to 0.1 in western, 
sparsely vegetated areas and did not exceed 0.2 in most areas. 
There was relatively low accuracy for the dense vegetation in 
the south, especially in the evergreen forests and near the 
missing pixels of the GEOV3 FVC. Figure 9B and D shows 
that the R2 maps present prominent strong correlations (0.8 
to 1) between the MultiVI FVC and the two other products 
for most of China. Weak correlations (0 to 0.2) were observed 
in the desert regions of northwest China and the Qinghai–
Tibet Plateau between the MultiVI FVC and the GEOV3 FVC, 
where the FVC values were consistently low (0.1) throughout 
the year. The lowest R2 values appeared mainly in flooded rice 
fields in eastern China. There were large areas of no data 
pixels in the R2 map due to a large amount of zero values of 
the GLASS FVC in the western grassland regions and missing 
pixels of the GEOV3 FVC.

Figure 10 illustrates the temporal profiles of the MultiVI 
FVC, GLASS FVC, and GEOV3 FVC over nine BELMANIP2 
sites, along with the R2 and RMSD values between these pro-
files. Since the GEOV3 FVC began in 2014, their missing 
periods were not presented. The MultiVI FVC and GLASS 
FVC showed good continuity in their time profiles, while the 
GEOV3 FVC had many missing values. The MultiVI FVC 
demonstrate lower RMSD and higher R2 values when com-
pared with the GLASS FVC than with the GEOV3 FVC. The 
RMSD between the MultiVI FVC and the GLASS FVC was 
below 0.15 at most sites, except for the rainfed cropland site 
(Fig. 10H). 

Fig. 10. (A to I) Time-series comparison of the MultiVI FVC, GLASS FVC, and GEOV3 
FVC from 2010 to 2020 for nine BELMANIP2 sites with different vegetation types. The 
R2 and RMSD values are also shown, and a subscript of “12” represents the MultiVI 
FVC and GLASS FVC, a subscript of “13” indicates the MultiVI FVC and GEOV3 FVC, 
and a subscript of “23” depicts the GLASS FVC and GEOV3 FVC.
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Figure 10A and B illustrates that the GEOV3 FVC exhibits 
a significantly higher seasonality than the MultiVI FVC and 
GLASS FVC at the two evergreen sites. The MultiVI FVC had 
smoother temporal profiles at these sites, leading to lower R2 
values when compared with the other FVC products. However, 
the RMSD between the MultiVI FVC and the GLASS FVC at 
these sites remained reasonable, measuring below 0.1. Figure 
10D shows that the MultiVI FVC was zero at the deciduous 
needleleaf forest site during winter, while the other two prod-
ucts had higher values. This discrepancy was also observed in 
the rainfed cropland, as shown in Fig. 10H. For the shrubland 
site, Fig. 10E demonstrates that the GEOV3 FVC showed a 
wider range of seasonal variations, which contributed to lower 
correlation and a higher RMSD compared to the other FVC 
products. At the grassland and herbaceous cover sites (Fig. 10F 
and G), the temporal profiles of the three products were con-
sistent throughout their trajectories, with R2 values above 0.8 
and RMSD values below 0.16. During the nongrowing season 
at these sites, the MultiVI FVC values were slightly higher than 
the values of the other two products.

Direct validation
Figure 11 depicts scatterplots of the FVC products versus the 
field-measured FVC at the Huailai site (Fig. 10A to C) and the 
Saihanba site (Fig. 10D to G). The majority of the points in Fig. 
10C were above the 1:1 line, indicating that the GLASS FVC 
values were higher than the field-measured FVC. The MultiVI 
FVC had slightly better accuracy when compared to the field-
measured FVC (RMSD = 0.0906) than the Statistical FVC 
(RMSD = 0.1586) and the GLASS FVC (RMSD = 0.1306). The 
correlation between the MultiVI FVC and the field-measured 
FVC (R2 = 0.8121) was also superior to the correlation between 
the Statistical FVC and the field-measured FVC (R2 = 0.7528), 
as well as better than the correlation between the GLASS FVC 
and the field-measured FVC (R2 = 0.7131).

Figure 11D shows that the accuracy of the MultiVI FVC 
(RMSD = 0.0951) was close to that of the GLASS FVC (RMSD = 
0.0959) yet superior to that of the Statistical FVC (RMSD = 
0.1393) and the GEOV3 FVC (RMSD = 0.1651). The majority 
of the points in Fig. 11G were above the 1:1 line, indicating that 
GEOV3 overestimated the values compared to the field-measured 
FVC. Figure 11E shows that several Statistical FVC values were 
saturated, indicating that the Vv from the empirical statistics 
method was probably underestimated.

Figure 12 depicts a comparison of the field-measured FVC 
with the MultiVI FVC and Statistical FVC for the 24 temporal 
phases in 2010 over the 151 plots in 22 small watersheds. The FVC 
time series were categorized into 12 types based on the vegetation 
type and topography. The field-measured FVC, MultiVI FVC, 
and Statistical FVC were compared by calculating the average 
values for all sites of each type. The R2 and RMSD values between 
the field-measured FVC and MultiVI FVC (R2

M
 and RMSDM), as 

well as between the field-measured FVC and Statistical FVC (R2
S
 

and RMSDS), are also shown. The vegetation phenologies and 
temporal patterns of the field-measured FVC and MultiVI FVC 
showed good agreement, with RMSDM values below 0.1 and R2

M
 

values reaching 0.9 for most vegetation types. The MultiVI FVC 
demonstrated significantly higher accuracy than did the Statistical 
FVC, with RMSDM values below those of the RMSDS by up to 
0.17 (Fig. 12F). Deviations existed between the field-measured 
FVC and MultiVI FVC for different vegetation types. For the for-
est sites in Fig. 12A and B, the MultiVI FVC values were slightly 
lower than the field-measured FVC in the nongrowing season 
(winter), with RMSDM values below 0.1. For the moderate cover-
age grassland sites in Fig. 12E, the MultiVI FVC values were 
underestimated compared to the field-measured FVC from 
January to March, with the highest RMSD value (0.167) among 
the 12 vegetation types. For the sparse grassland sites in Fig. 12F, 
the MultiVI FVC and Statistical FVC were both overestimated 

Fig. 11. (A to G) Scatterplots of the FVC products versus the field-measured reference FVC. The R2 and RMSD values are also shown. N is the number of samples for each case.
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Fig. 12. (A to L) Time series of the MultiVI FVC, Statistical FVC, and field-measured FVC over the time series FVC monitoring plots for the 12 vegetation types in 2010. The 
width of the shading represents ±1 standard deviation. The R2 and RMSD values are also shown, the “M” subscript represents the MultiVI FVC, and the “S” subscript indicates 
the Statistical FVC.
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when compared to the field-measured FVC. However, the 
Statistical FVC demonstrated significantly higher overestimation 
(RMSDS = 0.2561) compared to the MultiVI FVC (RMSDM = 
0.0742). The largest discrepancy (close to 0.3) between the 
MultiVI FVC and field-measured FVC occurred in summer (June 
or July) over the mountainous croplands (Fig. 12K and L). For 
the croplands in the plains (Fig. 12G and H), the MultiVI FVC 
exhibited relatively high accuracy compared to those of the crop-
lands on mountainous and hilly terrain (Fig. 12I to L).

The 151 plots were categorized according to the Chinese eco-
logical and geographical zoning classification. Figure 13 illustrates 
the average bias between the MultiVI FVC and the field-measured 
FVC, as well as between the Statistical FVC and the field-measured 
FVC over 151 plots for ecological and geographical zones in 2010. 
In the middle temperate zone (Fig. 13A), both the MultiVI FVC 
and the Statistical FVC exhibited a general trend of overestimation 
compared to the field-measured FVC, especially in April and 
September, with biases of approximately 0.1. The bias of the 
MultiVI FVC was significantly lower than that of the Statistical 
FVC in the warm temperate zone (Fig. 13B) and the north sub-
tropical zone (Fig. 13C), with the mean absolute error (MAE) being 
more than 0.1 lower. In the warm temperate zone, the Statistical 
FVC tended to overestimate the results, while in the north sub-
tropical zone, it underestimated them by up to 0.3 compared to 
the field-measured FVC. In the middle subtropical zone (Fig. 13D), 
the MultiVI FVC was slightly underestimated compared to the 
field-measured FVC, particularly from June to September.

Discussion
The accuracy of the endmember NDVI values influenced the 
performance of the FVC derived using the VI-based mixture 
model. The Vv and Vs values are usually obtained using statisti-
cal methods based on remotely sensed images. However, the 

statistical criteria are hard to define for different areas since their 
climatology and vegetation biomes vary. Inappropriate statistical 
endmembers can introduce significant errors in FVC estima-
tion. The underestimation of the Vs results in an overestimation 
of FVC, with errors reaching 0.2 in grassland and shrubland 
areas [64]. This study introduced a novel framework for develop-
ing high-resolution FVC products over a large scale by applying 
the Vv and Vs values derived from MODIS data using the 
MultiVI algorithm to Landsat images. The 500-m endmembers 
were downscaled to 30 m based on the land cover dataset for 
further synergistic applications [29]. Song et al. demonstrated 
that downscaling of Vv and Vs significantly improved the accu-
racy of FVC estimation since the land cover types influenced 
the spatial heterogeneity within the endmember at a 500-m 
resolution [29]. The validation and analysis demonstrated that 
the MultiVI FVC outperformed the FVC derived using statisti-
cal endmembers, with lower RMSD (Fig. 12) and bias (Fig. 13) 
values compared to the field-measured FVC. Figure 13B and C 
shows large uncertainties in the Statistical FVC due to the 
absence of suitable Vv and Vs values for warm temperate and 
subtropical zones, respectively. GLASS FVC and GEOV3 FVC 
typically employ machine learning methods and physical mod-
els. Due to its simplicity and practicability, the VI-based mixture 
model for FVC estimation is easier to use and more flexible than 
machine learning methods. However, challenges in obtaining 
accurate Vv and Vs values limit its accuracy. The performance 
of the MultiVI FVC demonstrated that the VI-based mixture 
model incorporated with the MultiVI method improved the 
quality of FVC compared to the traditional VI-based mixture 
model. Additionally, the generation of the MultiVI FVC was not 
restricted by the data source or study area and could be applied 
to other satellite datasets with different resolutions, such as 
Sentinel, ZY-3, and GF-1 datasets, if the Vv and Vs maps are 
calculated in advance [29].

Fig. 13. (A to D) Average bias of the MultiVI FVC and the Statistical FVC versus the field-measured FVC over the time series FVC monitoring plots for each temporal phase and 
ecological and geographical zone in 2010. The mean absolute errors (MAEs) for the 24 time phases are also shown. The width of the shading represents ±1 standard deviation.
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Spatially complete, high-frequency satellite time series data 
are essential for generating easy-to-use FVC products. Due to 
the limited revisit cycle of the Landsat satellites, cloud contamina-
tion, and cloud shadow, data fusion is required to provide a spa-
tially continuous 30-m/15-day dataset with good quality. Various 
methods have been developed to fill the gaps in Landsat images. 
Commonly used approaches fuse the daily revisit MODIS data 
with Landsat data to generate a dataset with both fine spatial and 
high temporal resolutions [66–68]. However, these models usu-
ally employ weighted sum functions and moving windows to 
construct synthetic fusion data from Landsat and MODIS 
images. They have relatively high computational costs. Moreover, 
the prediction accuracy of these models is always sensitive to 
land heterogeneity and becomes less reliable when land surface 
changes occur at finer scales than that of the MODIS dataset 
[69,70]. In comparison to these methods, the harmonic models 
applied in this study are free of complicated neighbor calculations 
and are more suitable for implementation on GEE at a large scale. 
Three types of harmonic models with different numbers of coef-
ficients, i.e., the simple, advanced, and full versions, were auto-
matically selected according to the amount of Landsat data 
available. Due to this data-adaptive flexibility of the harmonic 
model, it is feasible to use Landsat data to produce a 30-resolution 
semimonthly FVC at the regional or continental scale. More 
types of Landsat-like satellite data, e.g., Sentinel-2, can be effi-
ciently adopted in this framework.

The MultiVI FVC had consistent spatial and temporal pat-
terns with the other popular products, i.e., the GLASS FVC and 
the GEOV3 FVC (Figs. 8 to 11). Overall, the MultiVI FVC values 
were lower than the GEOV3 FVC and higher than the GLASS 
FVC. The validation of the GEOV3 products demonstrated that 
the scale factor employed in CYCLOPES fCOVER to derive the 
GEOV FVC product might be too high, which results in over-
estimation [51]. Figure 8 shows that the MultiVI FVC values 
were slightly higher than the GLASS FVC over grasslands and 
lower over deciduous forests. The spatiotemporal comparison 
and validation of global-scale GLASS FVC with the GEOV FVC 
products also illustrated that the GLASS FVC had more pixels 
with low values close to 0 for grasslands and slightly higher val-
ues compared to the GEOV2 product over deciduous forests 
[71]. The uncertainty of the FVC estimation was below 0.1 for 
the Huailai and Saihanba sites in this study, which was compa-
rable to the GLASS FVC but higher than the accuracy of GEOV3 
(Fig. 11).

The uncertainty of the MultiVI FVC and the discrepancies 
between the three FVC products appeared to be relatively high 
for humid areas such as paddy rice fields (Fig. 9) and tropical 
zones with evergreen forests (Fig. 10A and B), which were indi-
cated to have accuracy problems according to the validation 
report of the GEOV3 product [51]. The evergreen forest areas 
in the tropical zone have year-round cloud coverage as well as 
rainy climates, which result in large data gaps in these areas. The 
lower data availability introduces greater uncertainties to the 
harmonic time series models and results in lower precision of 
the FVC derivation. Figure 10D and H demonstrates that the 
MultiVI FVC showed zero values during winter, which was cor-
related with the snow-covered surface. The MultiVI FVC should 
be used with caution in these areas since it was derived from 
optical remotely sensed imageries and cannot reflect the cover-
age status of the vegetation under snow. Since the MultiVI FVC 
was derived from the NDVI time series, it was affected by back-
ground effects. The water bodies and wet soil background might 

weaken the reflectance of vegetation, especially in the NIR band 
[64,72]. The anisotropy of the vegetation canopy is also weak-
ened and might introduce greater uncertainty in the MultiVI 
method using multiangle data to derive the endmember NDVI 
values of the VI-based mixture model. Additionally, other weak-
nesses of remote sensing reflectance and NDVI methods, such 
as topographic effects, may also be directly reflected in the FVC 
products, which may explain the lower accuracy in mountainous 
and hilly terrain in Fig. 12.

Conclusion
In this study, a pragmatic method was proposed for generating 
30-m/15-day FVC products based on the GEE platform. An 
improved VI-based mixture model was used to derive the FVC 
products from 2010 to 2020. The MultiVI algorithm was applied 
to generate the endmember maps of the VI-based mixture model 
at a 30-m resolution over China. The harmonic temporal inter-
polation method was subsequently employed to generate a 
spatially continuous 30-m/15-day NDVI. The MultiVI FVC 
products had a fine spatial resolution (30 m) and a semimonthly 
frequency. Therefore, these products could facilitate the moni-
toring of vegetation dynamics at a finer resolution compared 
to kilometer-level products. The quality and accuracy of the 
MultiVI FVC products were evaluated using other published 
FVC products and ground-measured datasets. The comparison 
with the GLASS FVC and the GEOV3 FVC products demon-
strated that the three products generally had similar spatial pat-
terns and temporal trajectories, with RMSD values close to 0.1 
and R2 values of approximately 0.8 (Figs. 9 and 10) in most areas 
of China. Relatively large discrepancies appeared in the tropical 
evergreen forest and paddy rice field areas. Direct validation 
with extensive vegetation biomes of croplands, forests, and grass-
lands and field-measured FVC time series datasets was also 
conducted. The accuracy of the MultiVI FVC against the field-
measured FVC was reasonable (RMSD = 0.0906 for the Huailai 
site and RMSD = 0.0951 for the Saihanba site). The MultiVI 
FVC showed similar temporal trajectories to the field-measured 
FVC time series in the 22 small watersheds, with RMSD values 
below 0.1 and R2 values reaching 0.9 for most vegetation types. 
Uncertainty was found in areas with complicated land surfaces, 
such as flooded paddy fields and hilly rainfed croplands. The 
enhanced VI-based mixture model improved the accuracy of 
FVC estimation compared to the traditional VI-based mixture 
model using statistical endmembers. The developed operational 
framework in this study showed practicability and flexibility in 
deriving fine-resolution and high-frequency FVC products at 
large scales with maps of endmember VIs.
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Fractional vegetation cover (FVC) is a critical biophysical parameter that characterizes the status of terrestrial
ecosystems. The spatial resolutions of most existing FVC products are still at the kilometer level. However, there is
growing demand for FVC products with high spatial and temporal resolutions in remote sensing applications. This study
developed an operational method to generate 30-m/15-day FVC products over China. Landsat datasets were employed
to generate a continuous normalized difference vegetation index (NDVI) time series based on the Google Earth Engine
platform from 2010 to 2020. The NDVI was transformed to FVC using an improved vegetation index (VI)-based mixture
model, which quantitatively calculated the pixelwise coefficients to transform the NDVI to FVC. A comparison between
the generated FVC, the Global LAnd Surface Satellite (GLASS) FVC, and a global FVC product (GEOV3 FVC) indicated
consistent spatial patterns and temporal profiles, with a root mean square deviation (RMSD) value near 0.1 and an R2
value of approximately 0.8. Direct validation was conducted using ground measurements from croplands at the Huailai
site and forests at the Saihanba site. Additionally, validation was performed with the FVC time series data observed at
151 plots in 22 small watersheds. The generated FVC showed a reasonable accuracy (RMSD values of less than 0.10
for the Huailai and Saihanba sites) and temporal trajectories that were similar to the field-measured FVC (RMSD values
below 0.1 and R2 values of approximately 0.9 for most small watersheds). The proposed method outperformed the
traditional VI-based mixture model and had the practicability and flexibility to generate the FVC at different resolutions
and at a large scale.
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