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We study Privacy Pools, a novel smart contract-based privacy-enhancing protocol. The protocol introduces a 
mechanism for users to reveal certain properties of their transaction without having to reveal the transaction 
itself. The core concept involves allowing users to publish a zero-knowledge proof, demonstrating that their 
funds (do not) originate from known (un-)lawful sources, without publicly revealing their entire transaction 
history. This is achieved by proving membership in custom association sets, which are designed to demonstrate 
compliance with regulatory frameworks or social consensus. We illustrate how this mechanism can create a 
separating equilibrium between compliant and non-compliant withdrawals. Our work describes the technical 
underpinnings, incentives, and broader implications of this mechanism, highlighting how Privacy Pools-like 
protocols can create more private yet compliant blockchain transactions.
1. Introduction

Public blockchains are transparent by design. The basic idea is that 
anyone should have the option of validating transactions without hav-

ing to rely on centralized third parties. This reduces dependencies and 
may provide a neutral foundation for various applications, including 
but not limited to finance and self-sovereign identities.

However, the existence of a public dataset that contains each trans-

action of every blockchain address is problematic from a privacy point 
of view. Whenever someone transfers an asset to another address and/or 
interacts with a smart contract, the transaction will be forever visible 
on the blockchain.

Consider the following example: Alice goes to a restaurant and uses 
her blockchain wallet to pay for dinner. The recipient now knows Alice’s 
address and can analyze all past and future activities from that address. 
Similarly, Alice now knows the wallet address of the restaurant and 
could use this information to obtain the wallet addresses of other guests 
or look into the revenue of the restaurant. Third parties who know the 
restaurant’s wallet address and have the information that Alice is dining 
there (e.g., from social media) can easily derive Alice’s address and 
study her past and future transactions as well.

* Corresponding author.

Although the restaurant example might be considered a hypothet-

ical scenario, the fundamental concept applies to every transaction 
conducted on a public blockchain. Each action performed on a pub-

lic blockchain is publicly recorded and accessible to everyone, enabling 
third parties to analyze users’ financial transactions and behavioral pat-

terns.

These issues have led to the emergence of privacy-enhancing pro-

tocols. They allow users to deposit funds into the protocol using one 
address and withdraw them from the protocol at a later point in time 
using another address. All deposits and withdrawals are still visible on 
the blockchain, but the link between a specific deposit and its with-

drawal counterpart is no longer public.

One of the best-known privacy-enhancing protocols is Tornado Cash. 
It succeeded in solving the above-mentioned issues and allowing users 
to retain some privacy. However, besides legitimate users trying to 
protect their data, Tornado Cash has also been used by various bad 
actors. Deposit data suggest that hacker groups have transferred funds 
from illicit sources through the protocol [1]. Evidence that the privacy-

enhancing protocol has also been used by a North Korean hacker group 
eventually led to the placement of the protocol’s smart contract ad-

dresses on the list of Specially Designated Nationals and Blocked Per-
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sons (commonly known as the SDN list) maintained by the Office of 
Foreign Assets Control (OFAC) in the United States.

Essentially, the critical issue with Tornado Cash was that legitimate 
users had limited options to dissociate themselves from the criminal 
activity that the protocol had attracted. Tornado Cash provides a com-

pliance tool that allows a user to create a proof of which deposit a 
given withdrawal came from. While this mechanism does allow peo-

ple to prove their innocence, it comes at the cost of having to trust a 
centralized intermediary and creates information asymmetries [2]. Con-

sequently, the mechanism saw little use.

This paper discusses an extension to this approach that enables users 
to publicly prove an informative, but still broad, claim about which de-

posits their withdrawal could have come from. It allows for membership 
proofs (“I prove that my withdrawal comes from one of these deposits”) 
or exclusion proofs (“I prove that my withdrawal does not come from one 
of these deposits”). The general concept has been proposed by Privacy 
Pools [3]. The present paper discusses this proposal and explains how 
to use its building blocks to reach a separating equilibrium between 
honest and dishonest protocol users.

Note that Privacy Pools provide additional options by extending the 
users’ action set. They can still provide more detailed proofs to spe-

cific counterparties, if needed. However, there will be cases in which 
a membership or exclusion proof is sufficient. Moreover, the option to 
publish these proofs publicly does have many advantages over bilateral 
disclosure.

Our paper is structured as follows. After this short introduction, we 
provide a technical background on zero-knowledge proofs and Privacy 
Pools. In Section 3, we discuss how association sets are used and con-

structed. In Section 4, we elaborate on further technical details and 
special cases. In Section 5, we discuss our findings and turn to practi-

cal considerations. Finally, in Section 6, we present the conclusion. We 
encourage the reader to also explore other privacy-enhancing proposals 
that strive to achieve a similar balance through different implementa-

tions, e.g., Ref. [4].

2. Technical background

In this section, we provide a short technical overview and discuss 
the technical building blocks and general principles of Privacy Pools-

like protocols.

2.1. Blockchain privacy before ZK-SNARKs

Historically, blockchain proponents have argued that blockchains 
can preserve privacy despite all transactions being transparent because 
they offer pseudonymity: You do not need to reveal any information 
about your offline identity to use a blockchain. Instead, users are iden-

tified by numerical “addresses”.

Satoshi Nakamoto’s Bitcoin white paper makes this exact claim, ar-

guing that “privacy can still be maintained by breaking the flow of 
information in another place: by keeping public keys anonymous. The 
public can see that someone is sending an amount to someone else but 
without information linking the transaction to anyone” [5]. Unfortu-

nately, this level of privacy has proven to be far insufficient in the 
face of modern clustering and analysis tools [6,7]. Non-financial ap-

plications make maintaining privacy even more difficult, as they often 
require users to publish other kinds of information about themselves on-

chain. For example, registering a name on decentralized domain name 
services such as ENS [8] involves making a transaction on the Ethereum 
blockchain and creating a public link between your transactions and 
your ENS name.

For this reason, there has been a movement toward improving pri-

vacy on public blockchains by introducing more powerful technology. 
The earliest non-trivial privacy solution that saw a significant degree 
2

of adoption was CoinJoin [9]. CoinJoin involved small groups of users 
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coming together and mixing their coins with each other within a sin-

gle transaction. Looking at the chain, one could only see the total set of 
inputs and outputs of a given round of the CoinJoin protocol and not 
which input corresponds to which output. The theory was that a user 
could participate in many rounds of the CoinJoin protocol with differ-

ent groups of people, thereby hiding the source of their assets among 
many possible inputs. Monero took this a step further by using a link-

able ring signature scheme [10] to allow users to mix their coins with a 
few other users’ coins without requiring any off-chain interaction. With 
improvements in technology [11], the number of participants in each 
mix grew, increasing the anonymity set of each transaction—the number 
of historical transactions that could have been the origin of that transac-

tion. However, such repeated small-group mixing techniques inevitably 
pose the risks of data leakage [12].

The next logical advancement in the quest for increased crypto-

graphic privacy involved the introduction of general-purpose zero-

knowledge proofs. This innovation is evident in Zerocash [13], and it 
has since been adopted by blockchains such as Zcash [14] and on-chain 
smart contract systems such as Tornado Cash. Such systems allow the 
anonymity set of each transaction to potentially equal the entire set of 
all previous transactions. General-purpose zero-knowledge proofs of the 
type applied here are more commonly referred to in the industry and 
academic community as “ZK-SNARKs”.

2.2. ZK-SNARKs

ZK-SNARKs are a technology that allows a prover to prove mathe-

matical claims about some combination of public data and private data 
that the prover holds, in such a way that it satisfies two key properties:

• Zero-knowledge: Nothing about the private data is revealed, aside 
from the fact that the private data satisfy the claim that is being 
proven.

• Succinctness: The proof is short (in bytes) and can be verified very 
quickly, even if the underlying claim being proven involves a heavy 
and time-consuming computation.

ZK-SNARKs have received much attention among blockchain com-

munities for both of these reasons. What is very time- and resource-

intensive is the initial trusted setup of the public parameters used in the 
ZK system. However, this initial trusted setup needs to be performed 
only once for the whole system. The succinctness during the proving is 
key in use cases of ZK-SNARKs for scalability, such as ZK-rollups [15]. 
For the privacy use cases we describe here, succinctness is not as im-

portant, but the zero-knowledge aspect is essential.1

The “claim” proven by a ZK-SNARK is expressed as a type of pro-

gram that is often called a “circuit”. Mathematically, it suffices to think 
of it as a function 𝑓 (𝑥, 𝑤) → {True, False}, where 𝑥 is the public in-

put, 𝑤 is the private input, and 𝑓 (.) is the function being computed. A 
ZK-SNARK proves that, for a given 𝑥 known both by the prover and the 
verifier, the prover knows a 𝑤 such that 𝑓 (𝑥, 𝑤) returns True.

2.3. Example: ZK-SNARKs in Zcash and Tornado Cash-like systems

Minor variations exist between different versions of Zcash and dif-

ferent versions of systems that have been inspired by Zcash, such as 
Tornado Cash. However, the basic logic that they depend on is very sim-

ilar. This section describes a simple version that roughly corresponds to 
how these protocols work.

A “coin” consists of a secret 𝑠 held by its owner. The secret in this 
context can be any data that is only known to the owner. Two values 
can be derived from 𝑠:
1 For a more comprehensive introduction to ZK-SNARKS see Refs. [16,17].
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Fig. 1. Structure of a Merkle tree, highlighting the Merkle branch for a given 
value in the tree. Orange is the leaf 𝐿 that is being proven; the bottom row of 
the tree represents the entire dataset. Green is the root hash 𝑅. Blue is the path 
from the leaf to the root. Purple are the sister nodes at each level. Note that the 
path can be computed by starting with the leaf and hashing it together with the 
sister node at each level, so there is no need to provide the path itself.

• The public “coin ID” 𝐿 = ℎ𝑎𝑠ℎ(𝑠 + 1)
• The nullifier 𝑈 = ℎ𝑎𝑠ℎ(𝑠 + 2)

The term ℎ𝑎𝑠ℎ refers to a cryptographic hash function, such as 
SHA256. Given 𝑠, the coin ID and the nullifier can be computed. Given 
a set of nullifiers and public coin IDs, however, the pseudo-random be-

havior of the hash function ensures that one cannot tell which nullifier 
is connected to which coin ID unless one knows the secret 𝑠 that gener-

ated both.

The blockchain keeps track of all coin IDs that have already been 
“created” and all “nullifiers” that have already been “spent”. Both sets 
are ever-growing (unless the protocol wishes to enforce a time limit on 
when coins must be spent).

The set of coin IDs is stored in a data structure called a Merkle tree: 
if the tree contains 𝑁 items, then each adjacent pair of items is hashed 
(leading to ⌈𝑁

2 ⌉ hashes), each adjacent pair of those hashes is hashed 
(leading to ⌈𝑁

4 ⌉ hashes), and so on until the entire data are committed 
to a single “root hash”.

Given a particular value in the tree and a root hash, one can provide 
a Merkle branch: the “sister values” that were hashed together at each 
step along the path from that value to the root. This Merkle branch is 
useful because it is a small (log2(𝑁) hashes) piece of data that can be 
used to prove that any particular value actually is in the tree. Fig. 1

shows an example of a Merkle tree with a height of 4.

When a user sends a coin to someone else, they provide (i) the nul-

lifier 𝑈 that they want to spend, (ii) the new coin ID 𝐿′ of the coin that 
they want to create (they would ask the recipient to give them this), 
and (iii) a ZK-SNARK.

The ZK-SNARK contains the following private inputs:

• The user’s secret 𝑠
• A Merkle branch in the coin ID tree, proving that the coin with the 

coin ID 𝐿 = ℎ𝑎𝑠ℎ(𝑠 + 1) was actually created at some point in the 
past

It also contains the following public inputs:

• 𝑈 is the nullifier of the coin being spent

• 𝑅 is the root hash that the Merkle proof is checking against

The ZK-SNARK proves two properties:

• 𝑈 = ℎ𝑎𝑠ℎ(𝑠 + 2)
• The Merkle branch is valid

Outside of the ZK-SNARK, the protocol also checks that

• 𝑅 is a current or historical root hash of the coin ID tree
3

• 𝑈 is not in the set of already-spent nullifiers
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Fig. 2. Some of the data structures involved in a privacy-preserving coin transfer 
system. The Merkle tree shown is the coin ID tree; the nullifier set is not shown 
but is also stored on-chain. While a given coin exists but has not yet been spent, 
the coin ID (𝐿) is on-chain, but the secret (𝑠) and the nullifier (𝑈 ) are only 
known by the holder of the coin.

If the transaction is valid, it adds 𝑈 to the set of spent nullifiers, and 
𝐿′ to the list of coin IDs. See Fig. 2 for an illustration.

Revealing 𝑈 prevents a single coin from being spent twice. However, 
no other information is revealed. All that the outside world sees is when

transactions are being sent; they gain no knowledge about the pattern 
of who is sending or receiving these transactions, or which coin is the 
“same coin” as the previous coin.

There are two exceptions to the above pattern: deposits and with-

drawals. In a deposit, a coin ID is created without requiring some pre-

vious coin to be invalidated. Deposits are not privacy-preserving in the 
sense that the link between a given 𝐿 and the external event that al-

lowed the 𝐿 to be added (in Tornado Cash, a deposit of ETH into the 
system; in Zcash, new ZEC coins being mined) is public. In other words, 
deposits are connected to their past transaction history. In a withdrawal, 
a nullifier is consumed without adding a new coin ID. This can break 
the withdrawal’s link to the corresponding deposit and, by extension, 
to the past transaction history. However, withdrawals can be linked to 
any future transactions occurring after the withdrawal event [2].

The first version of Tornado Cash had no concept of internal trans-

fers; it only allowed deposits and withdrawals. Later versions, still in 
the experimental (alpha) stage, also allow internal transfers and coins 
of arbitrary denominations, including support for the “splitting” and 
“merging” operations that the handling of arbitrary denominations re-

quires. We will discuss how to extend both basic privacy-preserving 
coin transfer systems and Privacy Pools to the arbitrary-denomination 
context in a later section.

2.4. ZK-SNARKs in Privacy Pools

The core idea of Privacy Pools is this: Instead of merely zero-

knowledge-proving that their withdrawal is linked to some previously-

made deposit, a user proves membership in a more restrictive association 
set. The association set could be the full subset of previously-made de-

posits, a set consisting only of the user’s own deposit, or anything in 
between. The user specifies the set by providing a Merkle root of the set 
as a public input.

For simplicity, we do not directly prove that the association set is ac-

tually a subset of the previously-made deposits; instead, we just require 
the user to zero-knowledge-prove two Merkle branches using the same 
coin ID as the leaf in both cases: (i) a Merkle branch into 𝑅, the root 
of the total set of coin IDs, and (ii) a Merkle branch into the provided 

association set root 𝑅𝐴. This is illustrated in Fig. 3.
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Fig. 3. A user zero-knowledge-proves two Merkle branches: One proving that their coin ID is somewhere in the coin ID tree, and another proving that the same coin 
ID is somewhere in the tree representing the user’s provided association set (represented by its root 𝑅 ).
The intention is that the full association set will be made available 
somewhere, either on-chain or in another location. This is the core con-

cept: Instead of requiring the user to specify exactly which deposit their 
withdrawal came from, or on the other extreme providing no infor-

mation at all beyond a proof of non-double-spending, we let the user 
provide a set of possible origins of their funds, and this set can be as 
wide or narrow as they wish. We encourage an ecosystem to form that 
makes it easier for users to specify association sets that align with their 
preferences. The rest of this paper will merely describe the infrastruc-

ture on top of, and the consequences of, this simple core mechanic.

3. Practical considerations and use cases

After this technical introduction, we now turn to the application side 
and analyze how privacy-enhancing protocols could be used in practice.

3.1. Use cases of association sets

To illustrate the value of this scheme in a law enforcement context, 
let us consider a simple example. Suppose that we have five users: Alice, 
Bob, Carl, David, and Eve. The first four are honest, law-abiding users 
who nevertheless want to preserve their privacy, but Eve is a thief. 
Suppose also that this is publicly known. The public may not know 
Eve’s real-world identity but they have enough evidence to conclude 
that the coins sent to the address that we are labeling “Eve” are stolen. 
This is often the case in practice: Most of the illicit funds that have been 
identified flowing into Tornado Cash have come from a DeFi protocol 
exploit, an event that is visible on the public blockchain.

When each of the five users withdraws, they have the choice of 
which association set they specify. Their association set must include 
their own deposit, but they can freely choose which of the other ad-

dresses to include. Let us first consider the incentives of Alice, Bob, 
Carl, and David. On the one hand, they want to maximize their pri-

vacy. This pushes them toward making their association sets larger. On 
the other hand, they want to reduce the chance that their coins will 
be viewed as suspicious by merchants or exchanges. They have an easy 
way to do this: They do not include Eve in their association set. There-

fore, for all four of them, the choice is clear: Make their association sets 
{Alice, Bob, Carl, David}.

Eve, of course, also wants to maximize her association set. However, 
she cannot exclude her own deposit and is therefore forced to make her 
association set equal to the set of all five deposits. The participants’ 
association set selection is shown in Fig. 4.

Despite the fact that Eve herself provides no information, by a simple 
process of elimination, we can make a clear inference: Withdrawal #5 
could only have come from Eve.

3.2. Association set construction

The previous section illustrates one possible way to use association 
sets in Privacy Pools-like protocols and how honest actors can disasso-

ciate themselves from bad actors. Note that the system does not rely on 
altruism on Alice, Bob, Carl, and David’s part; they have a clear incen-
4

tive to prove their disassociation.
𝐴

Fig. 4. The gray area in each row represents the respective user’s association set. 
In our simplified example, we assume that Alice, Bob, Carl, and David include 
all other “good” deposits in their respective association sets and exclude deposit 
5, which originates from a known illicit source. Eve, on the other hand, cannot 
create a proof that disassociates her withdrawal from her own deposit.

Fig. 5. The membership proof includes a specific collection of deposits in its as-

sociation set, while the exclusion proof’s association set consists of anything but 
a specific collection of deposits. From a technical perspective, they are identical 
as both prove against the Merkle root of an association set.

Now, let us have a closer look at the construction of association sets. 
In general, there are two major strategies for generating association 
sets. They are described as follows and visualized in Fig. 5.

• Inclusion (or membership): Identify a specific set of deposits for 
which we have specific evidence to believe that they are low-risk

and construct an association set containing only those deposits.

• Exclusion: Identify a specific set of deposits for which we have 
specific evidence to believe that they are high-risk and construct an 
association set containing everything but those deposits.

In practice, users will not manually pick and choose deposits to 
include in their association set. Rather, users will subscribe to inter-
mediaries, which we can call association set providers (ASPs), which 
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generate association sets that have certain properties. In some cases, 
ASPs can be constructed entirely on-chain, with no human (or AI) in-

tervention required. In other cases, ASPs would generate association 
sets on their own and publish the association sets either on-chain or in 
another location.

We strongly recommend that at least the Merkle root of the as-

sociation set should be published on-chain; this removes the ability 
of malicious ASPs to engage in certain types of attacks against users 
(e.g., giving different users different association sets in an attempt to 
deanonymize them). The sets as a whole should be available either by 
API or ideally on a low-cost decentralized storage system such as an 
IPFS.

The ability to download the entire association set is important be-

cause it allows users to generate proofs of membership in the association 
set locally without revealing any extra information, even to the ASP, 
about which deposit corresponds to the withdrawal that they are mak-

ing.

The following are some possible constructions for how ASPs might 
operate in practice:

• Add with delay, exclude bad actors: Any deposit is automati-

cally added to the association set after a fixed period of time (e.g., 
7 days); however, if the system detects that a given deposit is 
connected to known bad behavior (e.g., large-scale thefts or ad-

dresses on a government-published sanctions list), the deposit is 
never added. In practice, this could be implemented through either 
community-curated sets or existing transaction screening service 
providers that already perform the work of identifying and track-

ing deposits connected to bad behavior.

• $N per month per person: To join the association set, a deposit’s 
value must be less than a fixed maximum, and the depositor must 
zero-knowledge-prove that he/she holds some proof-of-personhood 
token (e.g., either a government-backed national ID system or a 
lighter mechanism, such as social media account verification). To 
prevent Sybil attacks (structuring of payments), a nullifier mech-

anism, with an extra parameter mixed in representing the cur-

rent month, is used to ensure that each identity can submit a 
deposit into the association set exactly once per month. This de-

sign attempts to implement the spirit of many common anti-money 
laundering (AML) rules today, where low-value payments below a 
certain threshold are allowed a much higher level of privacy than 
high-value payments. Note that this can be implemented entirely 
as a smart contract, requiring no manual oversight to maintain the 
ongoing operation.

• $N per month per trusted community member: The same as 
$N per month per person but more restrictive: a user must prove 
membership in a high-trust community. The high-trust community 
agrees that its members provide privacy for each other.

• Real-time AI-based scoring: AI ASP systems could provide a risk 
score for each deposit in real-time, and the system would output an 
association set containing those deposits whose risk score is below 
a certain threshold. Potentially, the ASP could output multiple sets 
corresponding to multiple risk score threshold levels.

4. Further technical details

In this section, we analyze how the proposal could support arbitrary 
denominations and discuss special cases like re-proofing, bilateral direct 
proofs, and sequential proofs.

4.1. Supporting arbitrary denominations

The aforementioned simplified, privacy-preserving coin systems 
only support coin transfers in the same denomination. Zcash supports 
5

arbitrary denominations using an unspent transaction output (UTXO) 
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Fig. 6. The ZK-SNARK proves an additional claim that the encrypted denomi-

nations represent numbers such that the sum of the numbers on the output side 
does not exceed the sum of the numbers on the input side. Depending on the 
construction, it may also require an explicit proof that all of the newly created 
coin denominations are non-negative.

model. Each transaction can have multiple inputs (requiring the publi-

cation of a nullifier for each input) and multiple outputs (requiring the 
publication of a coin ID for each output). Each coin ID created must 
come with an encrypted denomination value. In addition to proving the 
validity of the nullifiers, each transaction must also come with an ad-

ditional proof proving that the sum of the denominations of the coins 
being created does not exceed the sum of the denominations of the coins 
being spent. Fig. 6 illustrates this additional proof.

This design can be extended to support deposits and withdrawals 
by simply treating the deposit as an (unencrypted) input and the with-

drawal as an (unencrypted) output. Alternatively, the design can be 
restricted to simplify the analysis. For example, one could allow only

partial withdrawals, allowing transactions to have one encrypted input 
and two outputs: one unencrypted output representing the withdrawal 
and an encrypted “change” output representing the remaining funds, 
which can be used in future withdrawals.

A natural question arises about how this design can be extended to 
support Privacy Pools. Simply plugging it into Privacy Pools “as-is” is 
not ideal because the transaction graph does not align with what we 
intuitively expect: if a user makes a deposit of 10 coins and then spends 
it in four successive withdrawals of 1+2+3+4 coins, what we want is 
to treat all four withdrawals as having the original 10-coin deposit as 
a source. But what we get is shown in Fig. 7, the first withdrawal has 
the 10-coin deposit as a source, but the second withdrawal has the 9-

coin change output created by the first withdrawal as its source, and so 
forth. This leads to problems in practice because the ASP must verify 
the intermediate deposits and add them to its association set.

If we want all four withdrawals in this example to be able to claim 
the original 10-coin deposit as their source, we need to solve two prob-

lems at the same time: (i) ensure that each partial withdrawal is not 
publicly linked to the others and (ii) allow each partial withdrawal to 
claim the deposit as a member of its association set.

If we only support partial withdrawals (and not more complicated 
multi-in/multi-out transactions), ensuring that each withdrawal has a 
single defined corresponding “original deposit”, then there are many 
ways in which we could do this directly. One natural, and very ex-

tensible, approach is to propagate some commitments to information 
through the transactions. For example, we could require a transaction 
to contain a commitment ℎ𝑎𝑠ℎ(𝑐𝑜𝑖𝑛𝐼𝐷+ℎ𝑎𝑠ℎ(𝑟)), adding some random 
value 𝑟 for blindness, and require the ZK-SNARK to prove that the com-

mitment in a transaction commits to the same value as its parent, if the 
parent itself is a withdrawal or simply commits to the original deposit’s 
coin ID, if the parent is a deposit. As a result, each transaction in the 
chain would have to contain a commitment to the original deposit coin 
ID, and this value would be proven to be included in the transaction’s 

provided association set.
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Fig. 7. In the UTXO graph, it appears that each withdrawal’s source is the change output of the previous partial withdrawal. But in an economic sense, the “real” 
source in each case is the original deposit.
To improve privacy against balance-summing attacks (e.g., if I de-

posit 10 coins, and then withdraw 7.2859 and later 2.7141, those two 
withdrawals could be correlated based solely on the amounts), we may 
want to also support coin merging: If I have a few coins left, I could 
merge them along with my next deposit. To adapt to such a scenario, 
we could require the transaction to commit to a set of coin IDs and a 
transaction with multiple inputs to commit to the union of its parents. 
A withdrawal would contain a proof that all of its committed coin IDs 
are in its association set.

4.2. Special cases

4.2.1. Re-proofing

To withdraw a deposit from a Privacy Pools-like protocol, the user 
needs the secret deposit information 𝑠. The same secret information is 
then used to construct association set membership proofs. Consider a 
situation where Alice withdrew her funds, and created and published 
an association set membership proof. Later, she would like to spend 
her funds at a merchant that requires a proof against a different set. 
As long as Alice holds on to her secret information, she will be able to 
generate a new proof against the merchant’s association set. Similarly, 
Alice could generate a new proof against an updated version of the 
initial association set. Keeping the secret information around gives Alice 
more flexibility but may introduce an additional risk of compromising 
Alice’s privacy if the secret is leaked at any point.

Another scenario arises in the context of investigations of a spe-

cific event. Suppose that some bad action involving on-chain coins takes 
place, and an initial investigation reveals a set of possible inputs that 
those coins could have come from. This could be because the coins in 
question came from a withdrawal whose association set was a small 
community or because of a combination of on-chain evidence and other 
evidence that revealed partial information about who was behind the 
event. In this case, the other members may want to prove their exclu-

sion from that event to prove their innocence, and the perpetrator’s 
identity would be revealed. Alternatively, if an event is controversial 
but many people support it even if they are not responsible themselves, 
they could refuse to provide such a proof.

4.2.2. Bilateral direct proofs

In some scenarios, a user may need to disclose the precise origin of 
their withdrawal to another party. For example, if Alice wants to deposit 
her withdrawn funds with a bank, the bank might ask for full informa-

tion about the funds’ origin. In response, Alice can create an association 
set that contains her deposit only and construct a proof against this set. 
We expect these proofs to be the exception, and they only contribute to-

wards partial privacy if they are shared bilaterally. Moreover, sharing 
this proof presumes a strong trust assumption that the recipient will not 
distribute it further.

Another more advanced option is that Alice zero-knowledge-proves 
that one of the following statements is true: (i) “this withdrawal is in 
this association set”, (ii) “I am the bank”, or (iii) “according to this 
specific timestamping service (can be a server or a blockchain), more 
than 10 seconds have passed since the creation of this proof”. Only 
the bank, which receives the proof in real-time (iii) and knows that 
they did not create the proof themselves (ii), would be able to trust the 
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proof: If the proof lands in someone else’s hands, it would be difficult to 
convince the recipient that the proof is not forged. This eliminates most 
of the counter-party risk regarding the leakage of privacy.

4.2.3. Sequential proofs

Let us imagine a long-term future scenario in which Privacy Pools-

like systems are not merely used occasionally but rather are used in the 
vast majority of transactions. This is the world that is desired by privacy-

first systems like Zcash. It introduces some new complexities that do 
not appear in the world where Privacy Pools is used occasionally.

To adapt to such a world, the following protocol modification would 
be required: Along with the deposit and withdrawal transaction types, 
the protocol would need to support an internal send operation, which 
consumes an existing coin ID and generates a new coin ID owned by 
someone else. From a protocol analysis perspective, this is equivalent to 
the sender withdrawing into the recipient’s address and then the recip-

ient immediately re-depositing, but it increases efficiency by reducing 
the number of steps and on-chain proofs from two to one.

Suppose that Alice sends a coin to Bob; that is, she makes an inter-

nal send that (perhaps partially) consumes a coin ID owned by Alice 
and creates a new coin ID with parameters provided by Bob. Bob then 
wants to immediately spend the coin, sending it to Carl, and he would 
prefer his spending transaction to be private as well. Here, we have our 
challenge: inclusion delays. In many of the configurations we proposed 
above, ASPs would not be willing to immediately add Bob’s new coin to 
their association set because they need to watch for the possibility that 
the source of funds is not Alice, but instead someone who just stole the 
funds from Alice’s wallet. The inclusion delay is there to give Alice time 
to report the incident or third parties time to detect it.

In another similar use case, “Alice” is a DeFi protocol, and Bob wants 
to withdraw funds from the DeFi protocol and immediately use those 
funds to privately pay Carl. This scenario has one fewer human being 
but is otherwise structurally very similar.

In a rapidly transacting economy, the same funds could move around 
multiple times per week or even more frequently, and inclusion delays 
would pose a serious challenge. One possible solution for this problem 
may simply be as follows: In the case where no coins in a user’s wallet 
are “mature” enough (not yet included in a relevant association set), the 
user could just send them through a non-privacy-preserving transaction. 
However, we propose a different alternative that leaks less information.

When Bob pays Carl, Bob also directly gives Carl the Merkle branch 
and secret that were used to generate the payment. This allows Carl to 
see what Bob sees: that the payment from Alice was in the history of 
the coin. If, later on, it turns out that a large number of coins associated 
with some bad actors were deposited and quickly re-circulated, Carl 
would be able to prove that his coins came from an ultimate source that 
was disconnected from the bad actor.

If Carl then sends the coins to David, he would pass along the Merkle 
branch and secret from Bob, and would also add his own. Now, suppose 
that David next sends his coins to Emma, but by the time he does this, 
the deposit that Alice made has been added to the association set. Then, 
David no longer needs to provide the Merkle branch or secret from 
Alice; instead, he can simply generate an association set membership 
proof on Alice’s behalf. Once Bob’s payment is added to the association 
set, Bob’s Merkle branch and secret similarly become obsolete. The con-

cept revolves around ensuring that each user acquires only the essential 
and minimal information required to have confidence in the funds they 

receive. Fig. 8 illustrates this example.
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Fig. 8. When David sends his transaction to Emma, he needs to provide the Merkle branch and secret from himself, Carl, and Bob, but not Alice, because Alice’s 
payment to Bob is now in the association set.
In practice, a coin may have multiple “sources”. Perhaps Bob is a 
coffee vendor and received 5 coins from Alice, 4 coins from Ashley, and 
7 coins from Anne, and at the end of the day he needed to send 15 coins 
to Carl to pay for dinner. David, in turn, perhaps received 15 coins from 
Carl and another 25 coins from Chris, and wanted to deposit 30 coins to 
Emma, who is an exchange. In these more complicated cases, we follow 
the same principle: History that is old enough that it has been added to 
association sets can be ignored, and history that is more recent needs to 
be passed forward.

5. Discussion

Privacy Pools-like systems allow users to achieve more privacy 
around their financial transaction data while retaining the ability to 
prove their disassociation with known illicit activity. We expect that 
honest users will be incentivized to participate in such a scheme by a 
combination of two factors: (i) the desire for privacy and (ii) the desire 
to avoid suspicion.

5.1. Societal consensus and association sets

If there is a perfect consensus on which funds are “good” and which 
are “bad”, the system will lead to a simple separating equilibrium. All 
users with “good” assets have strong incentives and the ability to prove 
their membership in a “good”-only association set. Bad actors, on the 
other hand, will not be able to provide that proof. They could still de-

posit “bad” funds into the pool, but would not provide them with any 
benefits. Everyone could easily identify that the funds have been with-

drawn from a privacy-enhancing protocol and see that the withdrawal 
references an association set that includes deposits from questionable 
sources. More importantly, the “bad” funds would not taint the “good” 
funds. When funds from legitimate deposits are withdrawn, their owner 
can simply exclude all known “bad” deposits from their association set.

In cases where there is no global consensus and the conclusion on 
whether funds are perceived as “good” or “bad” depends on the societal 
perspective or the jurisdiction, association sets could differ significantly. 
Let us assume that there are two jurisdictions with distinct rule sets. 
Subject to jurisdictions, 𝐴 and 𝐵 could both use the same privacy-

enhancing protocol and choose to issue a proof that satisfies their re-

spective jurisdiction’s requirements. Both could easily achieve privacy 
within their own association set and exclude withdrawals that are not 
compliant under the respective jurisdiction. If necessary, one could is-
sue a membership proof against the intersection of both association 
sets and thereby credibly demonstrate that the deposit corresponding 
to their withdrawal is in line with the requirements of both jurisdic-

tions.

As such, the proposal is very flexible and should be regarded as neu-

tral infrastructure. On the one hand, it is censorship-resistant. It allows 
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anyone to affiliate with the association set of their choosing and remain 
private within their own community. On the other hand, outsiders can 
ask for proofs against specific association sets that are in compliance 
with their regulatory requirements. Therefore, even if there was a com-

munity of bad actors within the privacy-enhancing protocol, they could 
not obfuscate the questionable source of a deposit as long as the in-

formation is reflected accurately in the construction of the association 
set.

5.2. Association set properties

Association sets require certain properties for them to be effective. 
The sets need to be accurate so that users can trust that they can safely 
spend their funds after withdrawing them. In addition, the properties 
of each set should be stable, meaning they are unlikely to change over 
time. This limits the need for re-proofing withdrawals against new sets. 
Finally, to achieve meaningful privacy, it is important to ensure that 
the association set is sufficiently large and includes a wide variety of 
deposits. These characteristics are, however, in conflict with each other. 
Generally, large and diverse sets may have better privacy properties but 
are likely to be less accurate and stable, while smaller sets are easier to 
maintain but provide less privacy.

5.3. Practical considerations and competition

Regulated entities that accept crypto assets must ensure that the 
laws and regulations they are subject to permit the acceptance of such 
funds. Today, many of these entities rely on so-called transaction screen-

ing tools: software or services that analyze the blockchain to identify 
potentially suspicious activities, connections to illicit addresses, or other 
non-compliant transactions. Screening tools typically express the risk 
associated with each transaction through a risk score. This score is based 
on the destination of the transmitted funds and their transaction history. 
Privacy-enhancing protocols can be a challenge in that regard. They re-

move the visible link between deposits and withdrawals. Hence, in the 
presence of a privacy-enhancing protocol, a risk score would have to 
consider the proofs and assign a score based on the association set.

The tools and services for transaction screening are mainly provided 
by specialized companies with expertise in both blockchain analysis and 
relevant legal fields. Ideally, these companies (and everyone else) have 
access to all membership proofs and their corresponding association 
sets to provide accurate risk scores across all transactions. We therefore 
suggest that all proofs be stored on the blockchain or in another publicly 
accessible proof repository. The only exception is membership proofs 
of size one that are shared with a specific counterparty. For obvious 
reasons, these proofs should not be publicly available.

Having the proofs readily available on-chain introduces additional 
transaction costs but reduces the coordination effort, levels the playing 
field, and mitigates the risk that screening tool providers could have a 

quasi-monopoly due to their knowledge of non-public proofs.
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The general setup of Privacy Pools is very flexible. By creating spe-

cific association sets, the protocol can be customized to suit a large 
variety of use cases. Here are two examples of such specialized as-

sociation sets. (i) A consortium of commercial banks could create an 
association set that only includes their customers’ deposits. This guar-

antees that any withdrawal creating a proof against this set has un-

dergone the know your customer (KYC) and AML procedures at one of 
the banks involved but does not reveal which withdrawal belongs to 
which customer. (ii) In cases where a financial intermediary must doc-

ument the precise source of funds, they can request the user to provide 
proof against an association set that only includes the user’s deposit. 
This proof is then exchanged bilaterally with the intermediary, enabling 
them to track the funds as though the user never utilized Privacy Pools. 
While this requires the user to trust that the intermediary will not dis-

close the proof, ideally, it allows the user to comply with regulations, 
without having to disclose the information to the general public.

5.4. Design choices and alternatives

A setup based on association sets, ZK-proofs, and voluntary disclo-

sure is very flexible. While this is great for ensuring that the proposal 
can potentially be adapted to various jurisdictions, one should be very 
careful with respect to specific design choices. In particular, we oppose 
two potential adjustments. We believe that they are problematic in their 
trust requirements, and may generate quasi-monopolistic market struc-

tures.

In the following, we briefly describe and discuss these alternative 
approaches.

1. Centralized access: Law enforcement agencies, crypto risk scoring 
providers, or similar actors could get access to see the links between 
a user’s transactions while they remain private from everyone else.

2. System-wide entry allowlisting: A privacy system can impose a re-

striction on what kinds of users can deposit coins into its pool, 
either requiring them to provide an additional proof or requiring 
deposits to wait for some time period during which a centralized 
risk scoring system could reject a deposit.

Both approaches are quite similar, in the sense that they give special 
privileges to specific entities. This would lead to complex governance 
questions: Who gets access to this information? Who has the power to 
manage permissions?

Private firms do not seem to be a good option because any special 
privileges would likely generate oligopolistic market structures, where 
a few firms have access to data that would allow them to provide these 
services, while everyone else would not be able to compete.

Similarly, there would be numerous governance and political ques-

tions if the power is given to public institutions, particularly in an 
international context. Even if a backdoor key is given to an institu-

tion that is 100% trustworthy today, does not misuse this power for a 
political agenda, and has no dependencies on other entities who might 
pressure it towards misusing its power, it would be naïve to believe 
that this is a static game. Organizations, their members, nation states, 
and the political structures within the organization change over time. 
There might be outside pressure, and the existence of these special priv-

ileges may generate additional incentives for bad actors to undermine 
and gain influence over the organization’s governance system.

Moreover, an attack from within or outside the organization or a 
mistake by a representative of the centralized entity could have far-

reaching consequences. We believe that the creation of such a central 
point of failure should be prevented.

That said, we acknowledge that different transaction sizes and situ-

ations may warrant different combinations of proofs. For example, for 
large transactions, many users will likely end up providing a basic exclu-

sion proof on-chain and additionally provide more detailed information 
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about the source to their counterparty.
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5.5. Further research potential

While this study provides an overview of how ZK-SNARK-based 
privacy-enhancing protocols could be used in a regulated environment, 
there are several areas that warrant further investigation.

First, it is important to be aware that the privacy obtained through 
these protocols depends on many different factors. Insufficiently large 
association sets, inappropriate root choices, and user mistakes may al-

low a dedicated attacker to link a withdrawal to a specific deposit. 
Moreover, the choices of other users can adversely affect your own pri-

vacy. In an extreme case, everyone else in the pool would publish a 
membership proof of size one, revealing the direct link between their 
deposit and withdrawal. Obviously, this would implicitly reveal the link 
between the only deposit and withdrawal transactions that are left. In 
a more nuanced example, the constraints from various membership 
proofs could be used to extract information and potentially link de-

posits and withdrawals with a high probability. Once the information 
from these proofs is combined with transactional metadata, the privacy 
properties of the protocol could be undermined. Last but not least, a 
malicious ASP could choose to compile the proposed association sets 
in a way that allows them to maximize the extractable information or 
inflate the perceived anonymity by adding deposits for which the cor-

responding withdrawals are known. All of these issues require further 
research to assess the privacy properties provided. In a similar vein, it 
would be interesting to further study the properties of the separating 
equilibrium, model how good and bad actors would behave under cer-

tain assumptions, and how public proofs of the former would affect the 
privacy of the latter.

Finally, legal scholars could further investigate specific disclosure 
requirements. The proposal outlined in this paper is highly adaptable, 
and insights from legal experts could aid in tailoring the protocol and 
the ecosystem around it to ensure compliance across various legal juris-

dictions.

6. Conclusion

In many cases, privacy and regulatory compliance are perceived as 
incompatible. This paper suggests that this does not necessarily have to 
be the case if the privacy-enhancing protocol enables its users to prove 
certain properties regarding the origin of their funds. For instance, sup-

pose that users can demonstrate that their funds have no ties to deposits 
from known illicit sources or prove that the funds are part of a specific 
set of deposits without revealing any further information.

Such a setup can generate a separating equilibrium where honest 
users are strongly incentivized to prove membership in a given, com-

pliant association set while still enjoying privacy within that set. Con-

versely, for dishonest users, it is impossible to provide such a proof. This 
allows honest users to disassociate themselves from third-party deposits 
that they do not agree with or might otherwise prevent them from us-

ing their funds in a regulated environment. We argue that the proposal 
is quite flexible and can be adapted to potentially satisfy a large variety 
of regulatory requirements.

The paper should be seen as a humble contribution towards a po-

tential future in which financial privacy and regulation can co-exist. 
We want to foster a discussion and shift the conversation in a more 
positive and constructive direction. Cooperation between practition-

ers, academics from various fields, policymakers, and regulators will 
be needed to extend and modify this proposal, with the ultimate goal 
of creating privacy-enhancing infrastructure that can be used in a regu-

lated environment.
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