
Blockchain: Research and Applications 5 (2024) 100176

Contents lists available at ScienceDirect

Blockchain: Research and Applications

journal homepage: www.journals.elsevier.com/blockchain-research-and-applications

Research Article

Blockchain privacy and regulatory compliance: Towards a practical

equilibrium

Vitalik Buterin a, Jacob Illum b, Matthias Nadler c, Fabian Schär c,∗, Ameen Soleimani d

a Ethereum Foundation, Switzerland
b Chainalysis, United States of America
c University of Basel, Switzerland
d Privacy Pools, United States of America

A R T I C L E I N F O A B S T R A C T

Keywords:

Blockchain

Privacy

Regulation

Smart contracts

Zero-knowledge proofs

We study Privacy Pools, a novel smart contract-based privacy-enhancing protocol. The protocol introduces a
mechanism for users to reveal certain properties of their transaction without having to reveal the transaction
itself. The core concept involves allowing users to publish a zero-knowledge proof, demonstrating that their
funds (do not) originate from known (un-)lawful sources, without publicly revealing their entire transaction
history. This is achieved by proving membership in custom association sets, which are designed to demonstrate
compliance with regulatory frameworks or social consensus. We illustrate how this mechanism can create a
separating equilibrium between compliant and non-compliant withdrawals. Our work describes the technical
underpinnings, incentives, and broader implications of this mechanism, highlighting how Privacy Pools-like
protocols can create more private yet compliant blockchain transactions.
1. Introduction

Public blockchains are transparent by design. The basic idea is that
anyone should have the option of validating transactions without hav-

ing to rely on centralized third parties. This reduces dependencies and
may provide a neutral foundation for various applications, including
but not limited to finance and self-sovereign identities.

However, the existence of a public dataset that contains each trans-

action of every blockchain address is problematic from a privacy point
of view. Whenever someone transfers an asset to another address and/or
interacts with a smart contract, the transaction will be forever visible
on the blockchain.

Consider the following example: Alice goes to a restaurant and uses
her blockchain wallet to pay for dinner. The recipient now knows Alice’s
address and can analyze all past and future activities from that address.
Similarly, Alice now knows the wallet address of the restaurant and
could use this information to obtain the wallet addresses of other guests
or look into the revenue of the restaurant. Third parties who know the
restaurant’s wallet address and have the information that Alice is dining
there (e.g., from social media) can easily derive Alice’s address and
study her past and future transactions as well.

* Corresponding author.

Although the restaurant example might be considered a hypothet-

ical scenario, the fundamental concept applies to every transaction
conducted on a public blockchain. Each action performed on a pub-

lic blockchain is publicly recorded and accessible to everyone, enabling
third parties to analyze users’ financial transactions and behavioral pat-

terns.

These issues have led to the emergence of privacy-enhancing pro-

tocols. They allow users to deposit funds into the protocol using one
address and withdraw them from the protocol at a later point in time
using another address. All deposits and withdrawals are still visible on
the blockchain, but the link between a specific deposit and its with-

drawal counterpart is no longer public.

One of the best-known privacy-enhancing protocols is Tornado Cash.
It succeeded in solving the above-mentioned issues and allowing users
to retain some privacy. However, besides legitimate users trying to
protect their data, Tornado Cash has also been used by various bad
actors. Deposit data suggest that hacker groups have transferred funds
from illicit sources through the protocol [1]. Evidence that the privacy-

enhancing protocol has also been used by a North Korean hacker group
eventually led to the placement of the protocol’s smart contract ad-

dresses on the list of Specially Designated Nationals and Blocked Per-
Available online 22 December 2023
2096-7209/© 2023 THE AUTHORS. Published by Elsevier B.V. on behalf of Zhejiang
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

E-mail address: f.schaer@unibas.ch (F. Schär).

https://doi.org/10.1016/j.bcra.2023.100176

Received 14 September 2023; Received in revised form 7 December 2023; Accepted
University Press. This is an open access article under the CC BY-NC-ND license

 7 December 2023

http://www.ScienceDirect.com/
http://www.journals.elsevier.com/blockchain-research-and-applications
mailto:f.schaer@unibas.ch
https://doi.org/10.1016/j.bcra.2023.100176
https://doi.org/10.1016/j.bcra.2023.100176
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bcra.2023.100176&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

V. Buterin, J. Illum, M. Nadler et al.

sons (commonly known as the SDN list) maintained by the Office of
Foreign Assets Control (OFAC) in the United States.

Essentially, the critical issue with Tornado Cash was that legitimate
users had limited options to dissociate themselves from the criminal
activity that the protocol had attracted. Tornado Cash provides a com-

pliance tool that allows a user to create a proof of which deposit a
given withdrawal came from. While this mechanism does allow peo-

ple to prove their innocence, it comes at the cost of having to trust a
centralized intermediary and creates information asymmetries [2]. Con-

sequently, the mechanism saw little use.

This paper discusses an extension to this approach that enables users
to publicly prove an informative, but still broad, claim about which de-

posits their withdrawal could have come from. It allows for membership
proofs (“I prove that my withdrawal comes from one of these deposits”)
or exclusion proofs (“I prove that my withdrawal does not come from one
of these deposits”). The general concept has been proposed by Privacy
Pools [3]. The present paper discusses this proposal and explains how
to use its building blocks to reach a separating equilibrium between
honest and dishonest protocol users.

Note that Privacy Pools provide additional options by extending the
users’ action set. They can still provide more detailed proofs to spe-

cific counterparties, if needed. However, there will be cases in which
a membership or exclusion proof is sufficient. Moreover, the option to
publish these proofs publicly does have many advantages over bilateral
disclosure.

Our paper is structured as follows. After this short introduction, we
provide a technical background on zero-knowledge proofs and Privacy
Pools. In Section 3, we discuss how association sets are used and con-

structed. In Section 4, we elaborate on further technical details and
special cases. In Section 5, we discuss our findings and turn to practi-

cal considerations. Finally, in Section 6, we present the conclusion. We
encourage the reader to also explore other privacy-enhancing proposals
that strive to achieve a similar balance through different implementa-

tions, e.g., Ref. [4].

2. Technical background

In this section, we provide a short technical overview and discuss
the technical building blocks and general principles of Privacy Pools-

like protocols.

2.1. Blockchain privacy before ZK-SNARKs

Historically, blockchain proponents have argued that blockchains
can preserve privacy despite all transactions being transparent because
they offer pseudonymity: You do not need to reveal any information
about your offline identity to use a blockchain. Instead, users are iden-

tified by numerical “addresses”.

Satoshi Nakamoto’s Bitcoin white paper makes this exact claim, ar-

guing that “privacy can still be maintained by breaking the flow of
information in another place: by keeping public keys anonymous. The
public can see that someone is sending an amount to someone else but
without information linking the transaction to anyone” [5]. Unfortu-

nately, this level of privacy has proven to be far insufficient in the
face of modern clustering and analysis tools [6,7]. Non-financial ap-

plications make maintaining privacy even more difficult, as they often
require users to publish other kinds of information about themselves on-

chain. For example, registering a name on decentralized domain name
services such as ENS [8] involves making a transaction on the Ethereum
blockchain and creating a public link between your transactions and
your ENS name.

For this reason, there has been a movement toward improving pri-

vacy on public blockchains by introducing more powerful technology.
The earliest non-trivial privacy solution that saw a significant degree
2

of adoption was CoinJoin [9]. CoinJoin involved small groups of users
Blockchain: Research and Applications 5 (2024) 100176

coming together and mixing their coins with each other within a sin-

gle transaction. Looking at the chain, one could only see the total set of
inputs and outputs of a given round of the CoinJoin protocol and not
which input corresponds to which output. The theory was that a user
could participate in many rounds of the CoinJoin protocol with differ-

ent groups of people, thereby hiding the source of their assets among
many possible inputs. Monero took this a step further by using a link-

able ring signature scheme [10] to allow users to mix their coins with a
few other users’ coins without requiring any off-chain interaction. With
improvements in technology [11], the number of participants in each
mix grew, increasing the anonymity set of each transaction—the number
of historical transactions that could have been the origin of that transac-

tion. However, such repeated small-group mixing techniques inevitably
pose the risks of data leakage [12].

The next logical advancement in the quest for increased crypto-

graphic privacy involved the introduction of general-purpose zero-

knowledge proofs. This innovation is evident in Zerocash [13], and it
has since been adopted by blockchains such as Zcash [14] and on-chain
smart contract systems such as Tornado Cash. Such systems allow the
anonymity set of each transaction to potentially equal the entire set of
all previous transactions. General-purpose zero-knowledge proofs of the
type applied here are more commonly referred to in the industry and
academic community as “ZK-SNARKs”.

2.2. ZK-SNARKs

ZK-SNARKs are a technology that allows a prover to prove mathe-

matical claims about some combination of public data and private data
that the prover holds, in such a way that it satisfies two key properties:

• Zero-knowledge: Nothing about the private data is revealed, aside
from the fact that the private data satisfy the claim that is being
proven.

• Succinctness: The proof is short (in bytes) and can be verified very
quickly, even if the underlying claim being proven involves a heavy
and time-consuming computation.

ZK-SNARKs have received much attention among blockchain com-

munities for both of these reasons. What is very time- and resource-

intensive is the initial trusted setup of the public parameters used in the
ZK system. However, this initial trusted setup needs to be performed
only once for the whole system. The succinctness during the proving is
key in use cases of ZK-SNARKs for scalability, such as ZK-rollups [15].
For the privacy use cases we describe here, succinctness is not as im-

portant, but the zero-knowledge aspect is essential.1

The “claim” proven by a ZK-SNARK is expressed as a type of pro-

gram that is often called a “circuit”. Mathematically, it suffices to think
of it as a function 𝑓 (𝑥, 𝑤) → {True, False}, where 𝑥 is the public in-

put, 𝑤 is the private input, and 𝑓 (.) is the function being computed. A
ZK-SNARK proves that, for a given 𝑥 known both by the prover and the
verifier, the prover knows a 𝑤 such that 𝑓 (𝑥, 𝑤) returns True.

2.3. Example: ZK-SNARKs in Zcash and Tornado Cash-like systems

Minor variations exist between different versions of Zcash and dif-

ferent versions of systems that have been inspired by Zcash, such as
Tornado Cash. However, the basic logic that they depend on is very sim-

ilar. This section describes a simple version that roughly corresponds to
how these protocols work.

A “coin” consists of a secret 𝑠 held by its owner. The secret in this
context can be any data that is only known to the owner. Two values
can be derived from 𝑠:
1 For a more comprehensive introduction to ZK-SNARKS see Refs. [16,17].

V. Buterin, J. Illum, M. Nadler et al.

Fig. 1. Structure of a Merkle tree, highlighting the Merkle branch for a given
value in the tree. Orange is the leaf 𝐿 that is being proven; the bottom row of
the tree represents the entire dataset. Green is the root hash 𝑅. Blue is the path
from the leaf to the root. Purple are the sister nodes at each level. Note that the
path can be computed by starting with the leaf and hashing it together with the
sister node at each level, so there is no need to provide the path itself.

• The public “coin ID” 𝐿 = ℎ𝑎𝑠ℎ(𝑠 + 1)
• The nullifier 𝑈 = ℎ𝑎𝑠ℎ(𝑠 + 2)

The term ℎ𝑎𝑠ℎ refers to a cryptographic hash function, such as
SHA256. Given 𝑠, the coin ID and the nullifier can be computed. Given
a set of nullifiers and public coin IDs, however, the pseudo-random be-

havior of the hash function ensures that one cannot tell which nullifier
is connected to which coin ID unless one knows the secret 𝑠 that gener-

ated both.

The blockchain keeps track of all coin IDs that have already been
“created” and all “nullifiers” that have already been “spent”. Both sets
are ever-growing (unless the protocol wishes to enforce a time limit on
when coins must be spent).

The set of coin IDs is stored in a data structure called a Merkle tree:
if the tree contains 𝑁 items, then each adjacent pair of items is hashed
(leading to ⌈𝑁

2 ⌉ hashes), each adjacent pair of those hashes is hashed
(leading to ⌈𝑁

4 ⌉ hashes), and so on until the entire data are committed
to a single “root hash”.

Given a particular value in the tree and a root hash, one can provide
a Merkle branch: the “sister values” that were hashed together at each
step along the path from that value to the root. This Merkle branch is
useful because it is a small (log2(𝑁) hashes) piece of data that can be
used to prove that any particular value actually is in the tree. Fig. 1

shows an example of a Merkle tree with a height of 4.

When a user sends a coin to someone else, they provide (i) the nul-

lifier 𝑈 that they want to spend, (ii) the new coin ID 𝐿′ of the coin that
they want to create (they would ask the recipient to give them this),
and (iii) a ZK-SNARK.

The ZK-SNARK contains the following private inputs:

• The user’s secret 𝑠
• A Merkle branch in the coin ID tree, proving that the coin with the

coin ID 𝐿 = ℎ𝑎𝑠ℎ(𝑠 + 1) was actually created at some point in the
past

It also contains the following public inputs:

• 𝑈 is the nullifier of the coin being spent

• 𝑅 is the root hash that the Merkle proof is checking against

The ZK-SNARK proves two properties:

• 𝑈 = ℎ𝑎𝑠ℎ(𝑠 + 2)
• The Merkle branch is valid

Outside of the ZK-SNARK, the protocol also checks that

• 𝑅 is a current or historical root hash of the coin ID tree
3

• 𝑈 is not in the set of already-spent nullifiers
Blockchain: Research and Applications 5 (2024) 100176

Fig. 2. Some of the data structures involved in a privacy-preserving coin transfer
system. The Merkle tree shown is the coin ID tree; the nullifier set is not shown
but is also stored on-chain. While a given coin exists but has not yet been spent,
the coin ID (𝐿) is on-chain, but the secret (𝑠) and the nullifier (𝑈) are only
known by the holder of the coin.

If the transaction is valid, it adds 𝑈 to the set of spent nullifiers, and
𝐿′ to the list of coin IDs. See Fig. 2 for an illustration.

Revealing 𝑈 prevents a single coin from being spent twice. However,
no other information is revealed. All that the outside world sees is when

transactions are being sent; they gain no knowledge about the pattern
of who is sending or receiving these transactions, or which coin is the
“same coin” as the previous coin.

There are two exceptions to the above pattern: deposits and with-

drawals. In a deposit, a coin ID is created without requiring some pre-

vious coin to be invalidated. Deposits are not privacy-preserving in the
sense that the link between a given 𝐿 and the external event that al-

lowed the 𝐿 to be added (in Tornado Cash, a deposit of ETH into the
system; in Zcash, new ZEC coins being mined) is public. In other words,
deposits are connected to their past transaction history. In a withdrawal,
a nullifier is consumed without adding a new coin ID. This can break
the withdrawal’s link to the corresponding deposit and, by extension,
to the past transaction history. However, withdrawals can be linked to
any future transactions occurring after the withdrawal event [2].

The first version of Tornado Cash had no concept of internal trans-

fers; it only allowed deposits and withdrawals. Later versions, still in
the experimental (alpha) stage, also allow internal transfers and coins
of arbitrary denominations, including support for the “splitting” and
“merging” operations that the handling of arbitrary denominations re-

quires. We will discuss how to extend both basic privacy-preserving
coin transfer systems and Privacy Pools to the arbitrary-denomination
context in a later section.

2.4. ZK-SNARKs in Privacy Pools

The core idea of Privacy Pools is this: Instead of merely zero-

knowledge-proving that their withdrawal is linked to some previously-

made deposit, a user proves membership in a more restrictive association
set. The association set could be the full subset of previously-made de-

posits, a set consisting only of the user’s own deposit, or anything in
between. The user specifies the set by providing a Merkle root of the set
as a public input.

For simplicity, we do not directly prove that the association set is ac-

tually a subset of the previously-made deposits; instead, we just require
the user to zero-knowledge-prove two Merkle branches using the same
coin ID as the leaf in both cases: (i) a Merkle branch into 𝑅, the root
of the total set of coin IDs, and (ii) a Merkle branch into the provided

association set root 𝑅𝐴. This is illustrated in Fig. 3.

Blockchain: Research and Applications 5 (2024) 100176V. Buterin, J. Illum, M. Nadler et al.

Fig. 3. A user zero-knowledge-proves two Merkle branches: One proving that their coin ID is somewhere in the coin ID tree, and another proving that the same coin
ID is somewhere in the tree representing the user’s provided association set (represented by its root 𝑅).
The intention is that the full association set will be made available
somewhere, either on-chain or in another location. This is the core con-

cept: Instead of requiring the user to specify exactly which deposit their
withdrawal came from, or on the other extreme providing no infor-

mation at all beyond a proof of non-double-spending, we let the user
provide a set of possible origins of their funds, and this set can be as
wide or narrow as they wish. We encourage an ecosystem to form that
makes it easier for users to specify association sets that align with their
preferences. The rest of this paper will merely describe the infrastruc-

ture on top of, and the consequences of, this simple core mechanic.

3. Practical considerations and use cases

After this technical introduction, we now turn to the application side
and analyze how privacy-enhancing protocols could be used in practice.

3.1. Use cases of association sets

To illustrate the value of this scheme in a law enforcement context,
let us consider a simple example. Suppose that we have five users: Alice,
Bob, Carl, David, and Eve. The first four are honest, law-abiding users
who nevertheless want to preserve their privacy, but Eve is a thief.
Suppose also that this is publicly known. The public may not know
Eve’s real-world identity but they have enough evidence to conclude
that the coins sent to the address that we are labeling “Eve” are stolen.
This is often the case in practice: Most of the illicit funds that have been
identified flowing into Tornado Cash have come from a DeFi protocol
exploit, an event that is visible on the public blockchain.

When each of the five users withdraws, they have the choice of
which association set they specify. Their association set must include
their own deposit, but they can freely choose which of the other ad-

dresses to include. Let us first consider the incentives of Alice, Bob,
Carl, and David. On the one hand, they want to maximize their pri-

vacy. This pushes them toward making their association sets larger. On
the other hand, they want to reduce the chance that their coins will
be viewed as suspicious by merchants or exchanges. They have an easy
way to do this: They do not include Eve in their association set. There-

fore, for all four of them, the choice is clear: Make their association sets
{Alice, Bob, Carl, David}.

Eve, of course, also wants to maximize her association set. However,
she cannot exclude her own deposit and is therefore forced to make her
association set equal to the set of all five deposits. The participants’
association set selection is shown in Fig. 4.

Despite the fact that Eve herself provides no information, by a simple
process of elimination, we can make a clear inference: Withdrawal #5
could only have come from Eve.

3.2. Association set construction

The previous section illustrates one possible way to use association
sets in Privacy Pools-like protocols and how honest actors can disasso-

ciate themselves from bad actors. Note that the system does not rely on
altruism on Alice, Bob, Carl, and David’s part; they have a clear incen-
4

tive to prove their disassociation.
𝐴

Fig. 4. The gray area in each row represents the respective user’s association set.
In our simplified example, we assume that Alice, Bob, Carl, and David include
all other “good” deposits in their respective association sets and exclude deposit
5, which originates from a known illicit source. Eve, on the other hand, cannot
create a proof that disassociates her withdrawal from her own deposit.

Fig. 5. The membership proof includes a specific collection of deposits in its as-

sociation set, while the exclusion proof’s association set consists of anything but
a specific collection of deposits. From a technical perspective, they are identical
as both prove against the Merkle root of an association set.

Now, let us have a closer look at the construction of association sets.
In general, there are two major strategies for generating association
sets. They are described as follows and visualized in Fig. 5.

• Inclusion (or membership): Identify a specific set of deposits for
which we have specific evidence to believe that they are low-risk

and construct an association set containing only those deposits.

• Exclusion: Identify a specific set of deposits for which we have
specific evidence to believe that they are high-risk and construct an
association set containing everything but those deposits.

In practice, users will not manually pick and choose deposits to
include in their association set. Rather, users will subscribe to inter-
mediaries, which we can call association set providers (ASPs), which

V. Buterin, J. Illum, M. Nadler et al.

generate association sets that have certain properties. In some cases,
ASPs can be constructed entirely on-chain, with no human (or AI) in-

tervention required. In other cases, ASPs would generate association
sets on their own and publish the association sets either on-chain or in
another location.

We strongly recommend that at least the Merkle root of the as-

sociation set should be published on-chain; this removes the ability
of malicious ASPs to engage in certain types of attacks against users
(e.g., giving different users different association sets in an attempt to
deanonymize them). The sets as a whole should be available either by
API or ideally on a low-cost decentralized storage system such as an
IPFS.

The ability to download the entire association set is important be-

cause it allows users to generate proofs of membership in the association
set locally without revealing any extra information, even to the ASP,
about which deposit corresponds to the withdrawal that they are mak-

ing.

The following are some possible constructions for how ASPs might
operate in practice:

• Add with delay, exclude bad actors: Any deposit is automati-

cally added to the association set after a fixed period of time (e.g.,
7 days); however, if the system detects that a given deposit is
connected to known bad behavior (e.g., large-scale thefts or ad-

dresses on a government-published sanctions list), the deposit is
never added. In practice, this could be implemented through either
community-curated sets or existing transaction screening service
providers that already perform the work of identifying and track-

ing deposits connected to bad behavior.

• $N per month per person: To join the association set, a deposit’s
value must be less than a fixed maximum, and the depositor must
zero-knowledge-prove that he/she holds some proof-of-personhood
token (e.g., either a government-backed national ID system or a
lighter mechanism, such as social media account verification). To
prevent Sybil attacks (structuring of payments), a nullifier mech-

anism, with an extra parameter mixed in representing the cur-

rent month, is used to ensure that each identity can submit a
deposit into the association set exactly once per month. This de-

sign attempts to implement the spirit of many common anti-money
laundering (AML) rules today, where low-value payments below a
certain threshold are allowed a much higher level of privacy than
high-value payments. Note that this can be implemented entirely
as a smart contract, requiring no manual oversight to maintain the
ongoing operation.

• $N per month per trusted community member: The same as
$N per month per person but more restrictive: a user must prove
membership in a high-trust community. The high-trust community
agrees that its members provide privacy for each other.

• Real-time AI-based scoring: AI ASP systems could provide a risk
score for each deposit in real-time, and the system would output an
association set containing those deposits whose risk score is below
a certain threshold. Potentially, the ASP could output multiple sets
corresponding to multiple risk score threshold levels.

4. Further technical details

In this section, we analyze how the proposal could support arbitrary
denominations and discuss special cases like re-proofing, bilateral direct
proofs, and sequential proofs.

4.1. Supporting arbitrary denominations

The aforementioned simplified, privacy-preserving coin systems
only support coin transfers in the same denomination. Zcash supports
5

arbitrary denominations using an unspent transaction output (UTXO)
Blockchain: Research and Applications 5 (2024) 100176

Fig. 6. The ZK-SNARK proves an additional claim that the encrypted denomi-

nations represent numbers such that the sum of the numbers on the output side
does not exceed the sum of the numbers on the input side. Depending on the
construction, it may also require an explicit proof that all of the newly created
coin denominations are non-negative.

model. Each transaction can have multiple inputs (requiring the publi-

cation of a nullifier for each input) and multiple outputs (requiring the
publication of a coin ID for each output). Each coin ID created must
come with an encrypted denomination value. In addition to proving the
validity of the nullifiers, each transaction must also come with an ad-

ditional proof proving that the sum of the denominations of the coins
being created does not exceed the sum of the denominations of the coins
being spent. Fig. 6 illustrates this additional proof.

This design can be extended to support deposits and withdrawals
by simply treating the deposit as an (unencrypted) input and the with-

drawal as an (unencrypted) output. Alternatively, the design can be
restricted to simplify the analysis. For example, one could allow only

partial withdrawals, allowing transactions to have one encrypted input
and two outputs: one unencrypted output representing the withdrawal
and an encrypted “change” output representing the remaining funds,
which can be used in future withdrawals.

A natural question arises about how this design can be extended to
support Privacy Pools. Simply plugging it into Privacy Pools “as-is” is
not ideal because the transaction graph does not align with what we
intuitively expect: if a user makes a deposit of 10 coins and then spends
it in four successive withdrawals of 1+2+3+4 coins, what we want is
to treat all four withdrawals as having the original 10-coin deposit as
a source. But what we get is shown in Fig. 7, the first withdrawal has
the 10-coin deposit as a source, but the second withdrawal has the 9-

coin change output created by the first withdrawal as its source, and so
forth. This leads to problems in practice because the ASP must verify
the intermediate deposits and add them to its association set.

If we want all four withdrawals in this example to be able to claim
the original 10-coin deposit as their source, we need to solve two prob-

lems at the same time: (i) ensure that each partial withdrawal is not
publicly linked to the others and (ii) allow each partial withdrawal to
claim the deposit as a member of its association set.

If we only support partial withdrawals (and not more complicated
multi-in/multi-out transactions), ensuring that each withdrawal has a
single defined corresponding “original deposit”, then there are many
ways in which we could do this directly. One natural, and very ex-

tensible, approach is to propagate some commitments to information
through the transactions. For example, we could require a transaction
to contain a commitment ℎ𝑎𝑠ℎ(𝑐𝑜𝑖𝑛𝐼𝐷+ℎ𝑎𝑠ℎ(𝑟)), adding some random
value 𝑟 for blindness, and require the ZK-SNARK to prove that the com-

mitment in a transaction commits to the same value as its parent, if the
parent itself is a withdrawal or simply commits to the original deposit’s
coin ID, if the parent is a deposit. As a result, each transaction in the
chain would have to contain a commitment to the original deposit coin
ID, and this value would be proven to be included in the transaction’s

provided association set.

Blockchain: Research and Applications 5 (2024) 100176V. Buterin, J. Illum, M. Nadler et al.

Fig. 7. In the UTXO graph, it appears that each withdrawal’s source is the change output of the previous partial withdrawal. But in an economic sense, the “real”
source in each case is the original deposit.
To improve privacy against balance-summing attacks (e.g., if I de-

posit 10 coins, and then withdraw 7.2859 and later 2.7141, those two
withdrawals could be correlated based solely on the amounts), we may
want to also support coin merging: If I have a few coins left, I could
merge them along with my next deposit. To adapt to such a scenario,
we could require the transaction to commit to a set of coin IDs and a
transaction with multiple inputs to commit to the union of its parents.
A withdrawal would contain a proof that all of its committed coin IDs
are in its association set.

4.2. Special cases

4.2.1. Re-proofing

To withdraw a deposit from a Privacy Pools-like protocol, the user
needs the secret deposit information 𝑠. The same secret information is
then used to construct association set membership proofs. Consider a
situation where Alice withdrew her funds, and created and published
an association set membership proof. Later, she would like to spend
her funds at a merchant that requires a proof against a different set.
As long as Alice holds on to her secret information, she will be able to
generate a new proof against the merchant’s association set. Similarly,
Alice could generate a new proof against an updated version of the
initial association set. Keeping the secret information around gives Alice
more flexibility but may introduce an additional risk of compromising
Alice’s privacy if the secret is leaked at any point.

Another scenario arises in the context of investigations of a spe-

cific event. Suppose that some bad action involving on-chain coins takes
place, and an initial investigation reveals a set of possible inputs that
those coins could have come from. This could be because the coins in
question came from a withdrawal whose association set was a small
community or because of a combination of on-chain evidence and other
evidence that revealed partial information about who was behind the
event. In this case, the other members may want to prove their exclu-

sion from that event to prove their innocence, and the perpetrator’s
identity would be revealed. Alternatively, if an event is controversial
but many people support it even if they are not responsible themselves,
they could refuse to provide such a proof.

4.2.2. Bilateral direct proofs

In some scenarios, a user may need to disclose the precise origin of
their withdrawal to another party. For example, if Alice wants to deposit
her withdrawn funds with a bank, the bank might ask for full informa-

tion about the funds’ origin. In response, Alice can create an association
set that contains her deposit only and construct a proof against this set.
We expect these proofs to be the exception, and they only contribute to-

wards partial privacy if they are shared bilaterally. Moreover, sharing
this proof presumes a strong trust assumption that the recipient will not
distribute it further.

Another more advanced option is that Alice zero-knowledge-proves
that one of the following statements is true: (i) “this withdrawal is in
this association set”, (ii) “I am the bank”, or (iii) “according to this
specific timestamping service (can be a server or a blockchain), more
than 10 seconds have passed since the creation of this proof”. Only
the bank, which receives the proof in real-time (iii) and knows that
they did not create the proof themselves (ii), would be able to trust the
6

proof: If the proof lands in someone else’s hands, it would be difficult to
convince the recipient that the proof is not forged. This eliminates most
of the counter-party risk regarding the leakage of privacy.

4.2.3. Sequential proofs

Let us imagine a long-term future scenario in which Privacy Pools-

like systems are not merely used occasionally but rather are used in the
vast majority of transactions. This is the world that is desired by privacy-

first systems like Zcash. It introduces some new complexities that do
not appear in the world where Privacy Pools is used occasionally.

To adapt to such a world, the following protocol modification would
be required: Along with the deposit and withdrawal transaction types,
the protocol would need to support an internal send operation, which
consumes an existing coin ID and generates a new coin ID owned by
someone else. From a protocol analysis perspective, this is equivalent to
the sender withdrawing into the recipient’s address and then the recip-

ient immediately re-depositing, but it increases efficiency by reducing
the number of steps and on-chain proofs from two to one.

Suppose that Alice sends a coin to Bob; that is, she makes an inter-

nal send that (perhaps partially) consumes a coin ID owned by Alice
and creates a new coin ID with parameters provided by Bob. Bob then
wants to immediately spend the coin, sending it to Carl, and he would
prefer his spending transaction to be private as well. Here, we have our
challenge: inclusion delays. In many of the configurations we proposed
above, ASPs would not be willing to immediately add Bob’s new coin to
their association set because they need to watch for the possibility that
the source of funds is not Alice, but instead someone who just stole the
funds from Alice’s wallet. The inclusion delay is there to give Alice time
to report the incident or third parties time to detect it.

In another similar use case, “Alice” is a DeFi protocol, and Bob wants
to withdraw funds from the DeFi protocol and immediately use those
funds to privately pay Carl. This scenario has one fewer human being
but is otherwise structurally very similar.

In a rapidly transacting economy, the same funds could move around
multiple times per week or even more frequently, and inclusion delays
would pose a serious challenge. One possible solution for this problem
may simply be as follows: In the case where no coins in a user’s wallet
are “mature” enough (not yet included in a relevant association set), the
user could just send them through a non-privacy-preserving transaction.
However, we propose a different alternative that leaks less information.

When Bob pays Carl, Bob also directly gives Carl the Merkle branch
and secret that were used to generate the payment. This allows Carl to
see what Bob sees: that the payment from Alice was in the history of
the coin. If, later on, it turns out that a large number of coins associated
with some bad actors were deposited and quickly re-circulated, Carl
would be able to prove that his coins came from an ultimate source that
was disconnected from the bad actor.

If Carl then sends the coins to David, he would pass along the Merkle
branch and secret from Bob, and would also add his own. Now, suppose
that David next sends his coins to Emma, but by the time he does this,
the deposit that Alice made has been added to the association set. Then,
David no longer needs to provide the Merkle branch or secret from
Alice; instead, he can simply generate an association set membership
proof on Alice’s behalf. Once Bob’s payment is added to the association
set, Bob’s Merkle branch and secret similarly become obsolete. The con-

cept revolves around ensuring that each user acquires only the essential
and minimal information required to have confidence in the funds they

receive. Fig. 8 illustrates this example.

Blockchain: Research and Applications 5 (2024) 100176V. Buterin, J. Illum, M. Nadler et al.

Fig. 8. When David sends his transaction to Emma, he needs to provide the Merkle branch and secret from himself, Carl, and Bob, but not Alice, because Alice’s
payment to Bob is now in the association set.
In practice, a coin may have multiple “sources”. Perhaps Bob is a
coffee vendor and received 5 coins from Alice, 4 coins from Ashley, and
7 coins from Anne, and at the end of the day he needed to send 15 coins
to Carl to pay for dinner. David, in turn, perhaps received 15 coins from
Carl and another 25 coins from Chris, and wanted to deposit 30 coins to
Emma, who is an exchange. In these more complicated cases, we follow
the same principle: History that is old enough that it has been added to
association sets can be ignored, and history that is more recent needs to
be passed forward.

5. Discussion

Privacy Pools-like systems allow users to achieve more privacy
around their financial transaction data while retaining the ability to
prove their disassociation with known illicit activity. We expect that
honest users will be incentivized to participate in such a scheme by a
combination of two factors: (i) the desire for privacy and (ii) the desire
to avoid suspicion.

5.1. Societal consensus and association sets

If there is a perfect consensus on which funds are “good” and which
are “bad”, the system will lead to a simple separating equilibrium. All
users with “good” assets have strong incentives and the ability to prove
their membership in a “good”-only association set. Bad actors, on the
other hand, will not be able to provide that proof. They could still de-

posit “bad” funds into the pool, but would not provide them with any
benefits. Everyone could easily identify that the funds have been with-

drawn from a privacy-enhancing protocol and see that the withdrawal
references an association set that includes deposits from questionable
sources. More importantly, the “bad” funds would not taint the “good”
funds. When funds from legitimate deposits are withdrawn, their owner
can simply exclude all known “bad” deposits from their association set.

In cases where there is no global consensus and the conclusion on
whether funds are perceived as “good” or “bad” depends on the societal
perspective or the jurisdiction, association sets could differ significantly.
Let us assume that there are two jurisdictions with distinct rule sets.
Subject to jurisdictions, 𝐴 and 𝐵 could both use the same privacy-

enhancing protocol and choose to issue a proof that satisfies their re-

spective jurisdiction’s requirements. Both could easily achieve privacy
within their own association set and exclude withdrawals that are not
compliant under the respective jurisdiction. If necessary, one could is-
sue a membership proof against the intersection of both association
sets and thereby credibly demonstrate that the deposit corresponding
to their withdrawal is in line with the requirements of both jurisdic-

tions.

As such, the proposal is very flexible and should be regarded as neu-

tral infrastructure. On the one hand, it is censorship-resistant. It allows
7

anyone to affiliate with the association set of their choosing and remain
private within their own community. On the other hand, outsiders can
ask for proofs against specific association sets that are in compliance
with their regulatory requirements. Therefore, even if there was a com-

munity of bad actors within the privacy-enhancing protocol, they could
not obfuscate the questionable source of a deposit as long as the in-

formation is reflected accurately in the construction of the association
set.

5.2. Association set properties

Association sets require certain properties for them to be effective.
The sets need to be accurate so that users can trust that they can safely
spend their funds after withdrawing them. In addition, the properties
of each set should be stable, meaning they are unlikely to change over
time. This limits the need for re-proofing withdrawals against new sets.
Finally, to achieve meaningful privacy, it is important to ensure that
the association set is sufficiently large and includes a wide variety of
deposits. These characteristics are, however, in conflict with each other.
Generally, large and diverse sets may have better privacy properties but
are likely to be less accurate and stable, while smaller sets are easier to
maintain but provide less privacy.

5.3. Practical considerations and competition

Regulated entities that accept crypto assets must ensure that the
laws and regulations they are subject to permit the acceptance of such
funds. Today, many of these entities rely on so-called transaction screen-

ing tools: software or services that analyze the blockchain to identify
potentially suspicious activities, connections to illicit addresses, or other
non-compliant transactions. Screening tools typically express the risk
associated with each transaction through a risk score. This score is based
on the destination of the transmitted funds and their transaction history.
Privacy-enhancing protocols can be a challenge in that regard. They re-

move the visible link between deposits and withdrawals. Hence, in the
presence of a privacy-enhancing protocol, a risk score would have to
consider the proofs and assign a score based on the association set.

The tools and services for transaction screening are mainly provided
by specialized companies with expertise in both blockchain analysis and
relevant legal fields. Ideally, these companies (and everyone else) have
access to all membership proofs and their corresponding association
sets to provide accurate risk scores across all transactions. We therefore
suggest that all proofs be stored on the blockchain or in another publicly
accessible proof repository. The only exception is membership proofs
of size one that are shared with a specific counterparty. For obvious
reasons, these proofs should not be publicly available.

Having the proofs readily available on-chain introduces additional
transaction costs but reduces the coordination effort, levels the playing
field, and mitigates the risk that screening tool providers could have a

quasi-monopoly due to their knowledge of non-public proofs.

V. Buterin, J. Illum, M. Nadler et al.

The general setup of Privacy Pools is very flexible. By creating spe-

cific association sets, the protocol can be customized to suit a large
variety of use cases. Here are two examples of such specialized as-

sociation sets. (i) A consortium of commercial banks could create an
association set that only includes their customers’ deposits. This guar-

antees that any withdrawal creating a proof against this set has un-

dergone the know your customer (KYC) and AML procedures at one of
the banks involved but does not reveal which withdrawal belongs to
which customer. (ii) In cases where a financial intermediary must doc-

ument the precise source of funds, they can request the user to provide
proof against an association set that only includes the user’s deposit.
This proof is then exchanged bilaterally with the intermediary, enabling
them to track the funds as though the user never utilized Privacy Pools.
While this requires the user to trust that the intermediary will not dis-

close the proof, ideally, it allows the user to comply with regulations,
without having to disclose the information to the general public.

5.4. Design choices and alternatives

A setup based on association sets, ZK-proofs, and voluntary disclo-

sure is very flexible. While this is great for ensuring that the proposal
can potentially be adapted to various jurisdictions, one should be very
careful with respect to specific design choices. In particular, we oppose
two potential adjustments. We believe that they are problematic in their
trust requirements, and may generate quasi-monopolistic market struc-

tures.

In the following, we briefly describe and discuss these alternative
approaches.

1. Centralized access: Law enforcement agencies, crypto risk scoring
providers, or similar actors could get access to see the links between
a user’s transactions while they remain private from everyone else.

2. System-wide entry allowlisting: A privacy system can impose a re-

striction on what kinds of users can deposit coins into its pool,
either requiring them to provide an additional proof or requiring
deposits to wait for some time period during which a centralized
risk scoring system could reject a deposit.

Both approaches are quite similar, in the sense that they give special
privileges to specific entities. This would lead to complex governance
questions: Who gets access to this information? Who has the power to
manage permissions?

Private firms do not seem to be a good option because any special
privileges would likely generate oligopolistic market structures, where
a few firms have access to data that would allow them to provide these
services, while everyone else would not be able to compete.

Similarly, there would be numerous governance and political ques-

tions if the power is given to public institutions, particularly in an
international context. Even if a backdoor key is given to an institu-

tion that is 100% trustworthy today, does not misuse this power for a
political agenda, and has no dependencies on other entities who might
pressure it towards misusing its power, it would be naïve to believe
that this is a static game. Organizations, their members, nation states,
and the political structures within the organization change over time.
There might be outside pressure, and the existence of these special priv-

ileges may generate additional incentives for bad actors to undermine
and gain influence over the organization’s governance system.

Moreover, an attack from within or outside the organization or a
mistake by a representative of the centralized entity could have far-

reaching consequences. We believe that the creation of such a central
point of failure should be prevented.

That said, we acknowledge that different transaction sizes and situ-

ations may warrant different combinations of proofs. For example, for
large transactions, many users will likely end up providing a basic exclu-

sion proof on-chain and additionally provide more detailed information
8

about the source to their counterparty.
Blockchain: Research and Applications 5 (2024) 100176

5.5. Further research potential

While this study provides an overview of how ZK-SNARK-based
privacy-enhancing protocols could be used in a regulated environment,
there are several areas that warrant further investigation.

First, it is important to be aware that the privacy obtained through
these protocols depends on many different factors. Insufficiently large
association sets, inappropriate root choices, and user mistakes may al-

low a dedicated attacker to link a withdrawal to a specific deposit.
Moreover, the choices of other users can adversely affect your own pri-

vacy. In an extreme case, everyone else in the pool would publish a
membership proof of size one, revealing the direct link between their
deposit and withdrawal. Obviously, this would implicitly reveal the link
between the only deposit and withdrawal transactions that are left. In
a more nuanced example, the constraints from various membership
proofs could be used to extract information and potentially link de-

posits and withdrawals with a high probability. Once the information
from these proofs is combined with transactional metadata, the privacy
properties of the protocol could be undermined. Last but not least, a
malicious ASP could choose to compile the proposed association sets
in a way that allows them to maximize the extractable information or
inflate the perceived anonymity by adding deposits for which the cor-

responding withdrawals are known. All of these issues require further
research to assess the privacy properties provided. In a similar vein, it
would be interesting to further study the properties of the separating
equilibrium, model how good and bad actors would behave under cer-

tain assumptions, and how public proofs of the former would affect the
privacy of the latter.

Finally, legal scholars could further investigate specific disclosure
requirements. The proposal outlined in this paper is highly adaptable,
and insights from legal experts could aid in tailoring the protocol and
the ecosystem around it to ensure compliance across various legal juris-

dictions.

6. Conclusion

In many cases, privacy and regulatory compliance are perceived as
incompatible. This paper suggests that this does not necessarily have to
be the case if the privacy-enhancing protocol enables its users to prove
certain properties regarding the origin of their funds. For instance, sup-

pose that users can demonstrate that their funds have no ties to deposits
from known illicit sources or prove that the funds are part of a specific
set of deposits without revealing any further information.

Such a setup can generate a separating equilibrium where honest
users are strongly incentivized to prove membership in a given, com-

pliant association set while still enjoying privacy within that set. Con-

versely, for dishonest users, it is impossible to provide such a proof. This
allows honest users to disassociate themselves from third-party deposits
that they do not agree with or might otherwise prevent them from us-

ing their funds in a regulated environment. We argue that the proposal
is quite flexible and can be adapted to potentially satisfy a large variety
of regulatory requirements.

The paper should be seen as a humble contribution towards a po-

tential future in which financial privacy and regulation can co-exist.
We want to foster a discussion and shift the conversation in a more
positive and constructive direction. Cooperation between practition-

ers, academics from various fields, policymakers, and regulators will
be needed to extend and modify this proposal, with the ultimate goal
of creating privacy-enhancing infrastructure that can be used in a regu-

lated environment.

Declaration of competing interest

The authors declare the following financial interests/personal rela-

tionships which may be considered as potential competing interests:
The paper analyzes Privacy Pools-like setups. Ameen Soleimani is a de-
veloper of Privacy Pools.

Blockchain: Research and Applications 5 (2024) 100176V. Buterin, J. Illum, M. Nadler et al.

Acknowledgement

Special thanks to Mitchell Goldberg, Katrin Schuler, and Dario
Thürkauf for their valuable inputs, Emma Littlejohn for proofreading
and Dario Thürkauf for his support with the graphical design.

References

[1] Z. Wang, S. Chaliasos, K. Qin, L. Zhou, L. Gao, P. Berrang, B. Livshits, A. Gervais,
On how zero-knowledge proof blockchain mixers improve, and worsen user privacy,
arXiv preprint, arXiv :2201 .09035, https://doi .org /10 .48550 /arXiv .2201 .09035.

[2] M. Nadler, F. Schär, Tornado cash and blockchain privacy: a primer for economists
and policymakers, Fed. Reserve Bank St. Louis Rev. 105 (2) (2023) 122–136,
https://doi .org /10 .20955 /r .105 .122 -136.

[3] A. Soleimani, Privacy pools, gitHub repository, https://github .com /ameensol /
privacy -pools, 2023.

[4] J. Beal, B. Fisch, Derecho: privacy pools with proof-carrying disclosures, Cryptology
ePrint Archive, https://eprint .iacr .org /2023 /273, 2023.

[5] S. Nakamoto, Bitcoin: a peer-to-peer electronic cash system, https://bitcoin .org /
bitcoin .pdf, 2008.

[6] S. Meiklejohn, M. Pomarole, G. Jordan, K. Levchenko, D. McCoy, G.M. Voelker, S.
Savage, A fistful of bitcoins: characterizing payments among men with no names,
in: Proceedings of the 2013 Conference on Internet Measurement Conference IMC
’13, ACM, 2013, pp. 127–140, https://doi .org /10 .1145 /2504730 .2504747.

[7] C. Kang, C. Lee, K. Ko, J. Woo, J.W. Hong, De-anonymization of the bitcoin net-

work using address clustering, in: Blockchain and Trustworthy Systems, Springer,
Singapore, 2020, pp. 489–501, https://doi .org /10 .1007 /978 -981 -15 -9213 -3 _38.

[8] Ethereum name service, decentralised naming for wallets, websites, & more, https://

ens .domains/, 2023.

[9] G. Maxwell, Coinjoin: bitcoin privacy for the real world, https://bitcointalk .org /
?topic =279249, 2013.

[10] J.K. Liu, V.K. Wei, D.S. Wong, Linkable spontaneous anonymous group signature for
ad hoc groups, in: Information Security and Privacy, Springer, Berlin, Heidelberg,
2004, pp. 325–335, https://doi .org /10 .1007 /978 -3 -540 -27800 -9 _28.

[11] B. Goodell, S. Noether, A. Blue, Concise linkable ring signatures and forgery against
adversarial keys, https://eprint .iacr .org /2019 /654, 2019.

[12] M. Moser, K. Soska, E. Heilman, et al., An empirical analysis of traceability in the
monero blockchain, https://arxiv .org /pdf /1704 .04299/, 2018.

[13] E. Ben Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, M. Virza, Ze-

rocash: decentralized anonymous payments from bitcoin, in: Proceedings of the
2014 IEEE Symposium on Security and Privacy, IEEE, 2014, pp. 459–474, https://

doi .org /10 .1109 /SP .2014 .36.

[14] Zcash, https://z .cash/, 2023.

[15] V. Buterin, An incomplete guide to rollups, https://vitalik .ca /general /2021 /01 /05 /
rollup .html, 2021.

[16] M. Petkus, Why and how zk-snark works, CoRR, arXiv :1906 .07221, 2019.

[17] A. Berentsen, J. Lenzi, R. Nyffenegger, An introduction to zero-knowledge proofs
in blockchains and economics, Fed. Reserve Bank St. Louis Rev. (2023) 280–294,
https://doi .org /10 .20955 /r .105 .280 -94.
9

https://doi.org/10.48550/arXiv.2201.09035
https://doi.org/10.20955/r.105.122-136
https://github.com/ameensol/privacy-pools
https://github.com/ameensol/privacy-pools
https://eprint.iacr.org/2023/273
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1145/2504730.2504747
https://doi.org/10.1007/978-981-15-9213-3_38
https://ens.domains/
https://ens.domains/
https://bitcointalk.org/?topic=279249
https://bitcointalk.org/?topic=279249
https://doi.org/10.1007/978-3-540-27800-9_28
https://eprint.iacr.org/2019/654
https://arxiv.org/pdf/1704.04299/
https://doi.org/10.1109/SP.2014.36
https://doi.org/10.1109/SP.2014.36
https://z.cash/
https://vitalik.ca/general/2021/01/05/rollup.html
https://vitalik.ca/general/2021/01/05/rollup.html
http://refhub.elsevier.com/S2096-7209(23)00051-9/bib4B450DDE1E33FE659F068635B8987D4Es1
https://doi.org/10.20955/r.105.280-94

	Blockchain privacy and regulatory compliance: Towards a practical equilibrium
	1 Introduction
	2 Technical background
	2.1 Blockchain privacy before ZK-SNARKs
	2.2 ZK-SNARKs
	2.3 Example: ZK-SNARKs in Zcash and Tornado Cash-like systems
	2.4 ZK-SNARKs in Privacy Pools

	3 Practical considerations and use cases
	3.1 Use cases of association sets
	3.2 Association set construction

	4 Further technical details
	4.1 Supporting arbitrary denominations
	4.2 Special cases
	4.2.1 Re-proofing
	4.2.2 Bilateral direct proofs
	4.2.3 Sequential proofs

	5 Discussion
	5.1 Societal consensus and association sets
	5.2 Association set properties
	5.3 Practical considerations and competition
	5.4 Design choices and alternatives
	5.5 Further research potential

	6 Conclusion
	Declaration of competing interest
	Acknowledgement
	References

