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Knowledge of forest management types is key to sustainable forest restoration practices, forest biomass 
assessment, and carbon accounting. However, there are no available global forest-management maps 
because of the spectral similarity of different forest management types. As such, we applied random 
forest and change detection algorithms to generate annual maps of 6 forest management types at a 
spatial resolution of 250 m from 2001 to 2020 including naturally regenerated forest (unmanaged and 
managed), planted forest (rotation of >15 years and ≤15 years), oil palm plantation, and agroforestry. In 
general, validation results on a point scale show that the overall accuracy is 86.82% ± 9.14%, indicating 
that our annual maps accurately represent global spatiotemporal variations in forest management types. 
Furthermore, we estimated the annual biomass carbon stock of different forest management types. The 
net expanded areas of planted forest, oil palm plantation, and agroforestry offset 59.56% of the loss of 
forest area and 77.13% of the loss of biomass carbon stock due to the decrease in the naturally regenerated 
forest. The decrease of managed natural regeneration forests, the expansion of planted forests with a 
rotation period of more than 15 years, and agroforestry resulted from reforestation practices, while the 
expansion of planted forests with a rotation period of less than 15 years and oil palm plantations resulted 
from the removal of part of agroforestry. Moreover, the expansion of planted forests with a rotation of less 
than 15 years (72.73%) dominates the global expansion of planted forests, and China has contributed 
42.20% of this expansion. Our results are beneficial for nature solution-based climate change mitigation.

Introduction

Forest ecosystems are the largest terrestrial ecosystems and 
absorb twice as much carbon as they emit each year [1], and thus 
have a critical role in climate change mitigation. Recently, studies 
of natural climate solutions (NCS) have revealed that forest prac-
tices (e.g., reforestation and natural forest management) have 
substantial potential for climate change mitigation [2–5]. This 
has made the science community, stakeholders, and govern-
ments more confident about ambitious programs such as volun-
tary zero deforestation and the Nature Forest Conservation 
Program in the Asia–Pacific region [6,7]. However, other studies 
have revealed that managed forest, especially planted forest, show 
too little carbon stock capacity to increase terrestrial carbon sink 

and thereby mitigate global climate change because forest man-
agement practices affect the diversity and community composi-
tion of soil fungi [8–10]. Therefore, from a forest management 
perspective, the spatial pattern of global forests is important for 
addressing these issues.

Despite the availability of official statistical data that docu-
ment the composition and trends of forest management types, 
spatiotemporal data are rarely reported. Attempts to generate 
global forest maps from a management perspective are limited 
to those with a small number of broad classes or a single period 
[11–13]. For example, Potapov et al. [12] generated the intact 
landscapes with a minimum area of 500 km2 in 2000, 2013, and 
2016 using a satellite-based mapping method based on a set 
of clear and straightforward criteria. However, this dataset 
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neglects the small intact forest patches. The United Nations 
Environment Programme World Conservation Monitoring 
Centre provided a natural and modified habitat layer (likely 
modified, potential modified, potential natural, and likely 
natural) at a spatial resolution of 1 km by the spatially over-
laying anthropogenic pressure maps [14]; however, the source 
data used have their own uncertainty and definitions. Spatial 
Database of Planted Trees (SDPT V1.0) generated the global 
distribution of planted trees from national and local maps from 
various sources; however, there were inconsistent forest defini-
tions of the collected maps and methods for planted tree map-
ping. Schulze et al. [13] generated 2 levels of forest management 
layers at a spatial resolution of 1 km in 2000 from forest 
planting (primary, secondary, and planted forest) and forest 
uses (production, multiple use, and other forest) perspectives 
based on a global allocation approach, while each level only 
consists of 3 forest categories. The absence of long-term global 
forest management maps is mainly due to the spectral similari-
ties of different forest management types [15–17], which make 
it difficult to distinguish the various types. Specifically, spectral 
features vary globally with geography, tree species, and age 
classes for an individual forest management type. For a similar 
reason, spectral patterns also varied in other individual 
forest management types. This made a similar spectral pat-
tern among different forest management types in certain bands 
or remote-sensing-derived indicators. The forest distribution 
and similarity of growth characteristics on a regional scale pro-
vide an alternative method for identifying different forest man-
agement types. Lesiv et al. [11] generated a map of the prevalent 
forest management layers (FML_v3, a version of the forest 
management layer) at a spatial resolution of 100 m. The layer 
displayed the distribution of different forest management types 
including intact forests, managed forests with natural regenera-
tion, planted forests, plantation forest (rotation of <15 years), 
oil palm plantations, and agroforestry. However, the single 
period of FML_v3 provides insufficient information to inves-
tigate long-term variations in forest management types. The 
publicly available reference samples generated for FML_v3, and 
other available datasets, make it possible to generate long-term 
forest management maps at a spatial resolution of 250 m by 
combining variables indicative of the forest growth character-
istics and regional distribution.

To provide global knowledge about the fine composition 
of forests and facilitate the decision making of sustainable 
forest restoration practices, forest biomass assessment, and 
carbon accounting, as well as provide scientific support to 
nature solution-based climate change mitigation, we carried 
out the global mapping of the fine composition of forests. 
Specifically, we generated the annual maps of the fine com-
position of forest from a forest management perspective at 
a spatial resolution of 250 m based on machine learning and 
change detection methods for the nominal years of 2001 to 
2020 (Fig. S1). The forest management types were defined 
as naturally regenerating forests without signs of manage-
ment (NRF-NM), naturally regenerating forests with signs 
of management (NRF-WM), planted forests with a rotation 
of >15 years (PFr>15), plantation forests with a rotation of ≤15 
years (PFr≤15), oil palm plantations, and agroforestry [11]. 
Furthermore, we estimated the biomass carbon stocks in the 
different forest management types and investigated their 
temporal changes to understand the role of forest manage-
ment types in climate mitigation.

Materials and Methods

Machine-learning-based forest management maps 
for 2001 to 2020
In this study, we generated the annual forest management maps 
for the nominal years of 2001 to 2020 at a spatial resolution of 
250 m, based on random forest and change detection algo-
rithms using multi-source datasets including MOD13Q1 imagery 
[18], human activity information extracted from the global 
terrestrial Human Footprint dataset [19], and terrain informa-
tion extracted from the Global Multi-Resolution Terrain 
Elevation Data 2010 (GMTED2010, [20]). In this study, the 
16-day observations of band reflectance values (B, R, NIR, and 
SWIR2) and vegetation indices at a spatial resolution of 250 m 
during 2001 to 2020 provided by MOD13Q1 imagery were 
aggregated into monthly scale using the maximum value com-
position method. The global terrestrial Human Footprint data-
set provides an annual record of human activity at 1 km spatial 
resolution for 2000 to 2018, and the GMTED2010 provides the 
elevation information at a spatial resolution of 231.92 m. All 
datasets were applied to a unified Eckert 4 equal area projection 
at a resolution of 250 m.

To create the annual forest management maps, we first defined 
the study region by delineating the land cover categories of inter-
est from 300 m ESA CCI land cover maps for 2001 to 2020 
[21] and tree plantation extends from 3 other maps [11,13,22] 
(Supplementary Text 1 and Table S18). According to the forest 
categories described in Global Forest Resources Assessment [23], 
forests are composed of primary forests and planted forests. 
The primary forest includes naturally regenerated forests with no 
clearly visible indicators of human activities and with clearly visible 
indicators of human activities. In this study, based on the impact 
of human activities on natural regeneration forests, we classified 
the primary forests into naturally regenerating forests without 
management (NRF-NM) and naturally regenerating forests with 
management (NRF-WM). According to the forest management 
rotation cycles, planted forests can be reclassified as planted forests 
of short rotation and long rotation. The short rotation planted for-
ests are characterized by dense rows of often one fast-growing 
species for timber production, such as eucalyptus, acacia, poplar, 
or willow, and are clear-cut after a maximum rotation period of 
15 years due to the legal limitation to retain the high productivity 
of a young plantation [24]. In addition, 15 years is also a common 
choice as the maximum rotation period for short rotation planted 
forests in the previously published literature [25–27]. Therefore, 
in this study, based on a rotation cycle of 15 years, the planted forest 
was divided into the planted forest with a rotation of >15 years 
(PFr>15), and the planted forest with a rotation of ≤15 years (PFr≤15). 
In addition, we also considered other land use classes of trees such 
as oil palm plantation and agroforestry. Therefore, in this study, 
the forest was classified as naturally regenerating forest without 
management (NRF-NM), naturally regenerating forest with man-
agement (NRF-WM), planted forest with a rotation of >15 years 
(PFr>15), planted forest with a rotation of ≤15 years (PFr≤15), oil 
palm plantation, and agroforestry (Table S19). Given the similarity 
of the regional forest management composition due to the similar 
meteorological and soil conditions at the regional scale, such as 
tree species, and the increasing sensitivity of the random forest 
model to the training samples, the mapping was conducted sepa-
rately for each continent.

To depict the differences between the forest management 
types, we calculated a total of 124 variables related to growth 
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characteristics and local textural information extracted from 
MOD13Q1 imagery, human activity information extracted from 
the global terrestrial Human Footprint dataset, and terrain infor-
mation extracted from GMTED2010 (Table S20). In particular, 
variables related to growth characteristics were calculated at a 
monthly scale by considering the temporal changes using 5-year 
MOD13Q1 imagery before the nominal year. However, MOD13Q1 
imagery used for the calculation of these variables is only available 
after 2000, and there was insufficient 5-year imagery to document 
the temporal changes for the nominal years prior to 2003. As such, 
we calculated these variables for 2001 to 2003 by considering the 
temporal changes using 5-year imagery after the nominal year. To 
increase the robustness and reduce the information redundancy 
among the calculated variables, we developed a 2-step variable 
selection procedure. Specifically, considering the separability of a 
single variable for the different forest management types and the 
cooperative effect of the variables with high separability values, 
the Fisher’s discriminant ratio (FDR, [28]) and recursive feature 
elimination (RFE, [29]) methods were further applied for variable 
selection. Finally, we selected 20 of the 124 variables to train the 
random forest models.

Given that the variables related to growth characteristics 
were calculated using different algorithms for 2001 to 2003 
and 2004 to 2020, we trained 2 random forest models for each 
continent to generate the annual forest management maps 
(Materials and Methods and Supplementary Text 3).

For period 1 (2004 to 2020), a set of global reference samples 
in 2015 was collected, including samples of NRF-NM (27,397), 
NRF-WM (60,871), PFr>15 (7,360), PFr≤15 (17,566), oil palm 
plantation (8,750), and agroforestry (24,334) provided by Lesiv 
et al. [11], and non-forest (3,417) provided by Liu et al. [30] 
(Table S19). Then, 80% of the labeled global reference samples 
and 20 selected variables for 2015 were used as training data 
for the random forest model to identify the forest management 
types from the time-series observations. Given that the sensor 
used to obtain the imagery has not changed and provided 
consistent data, the trained random forest model was applied 
to observations from other years to generate the annual forest 
management maps for 2004 to 2020.

For period 2 (2001 to 2003), we first determined the 
unchanged pixels combining the forest management maps for 
2004 to 2020 and change detection results from continuous 
change detection and classification (CCDC, [31]) and struc-
tural change break point (SCBP) algorithms for 2001 to 2004. 
We then randomly selected 500 unchanged pixels for each for-
est management type on each continent and each nominal year 
for 2001 to 2003, which yielded a total of 63,000 unchanged 
pixels worldwide. Finally, we constructed a temporal random 
forest model for each continent that was re-trained using 80% 
of the selected unchanged pixels with 20 re-selected variables, 
to predict the changed pixels and construct the forest manage-
ment maps for 2001 to 2003. Post-processing using a temporal 
filter and logical reasoning was further undertaken to increase 
the spatiotemporal consistency of the annual forest manage-
ment maps (Supplementary Text 3 and Table S20).

Variable selection for the random forest model
Based on previous studies, we extracted 124 variables for clas-
sification of the forest management types. All variables were 
applied to a unified Eckert 4 equal area projection at a resolu-
tion of 250 m. We now use the variable extraction procedure 
for 2015 as an example (Table S20) to describe the extracted 

variables in detail. Based on the similar composition of forest 
management types on a regional scale, we extracted geographic 
location factors as variables for the identification of different 
forest management types [32]. For the growth characteristics, 
we calculated the temporal changes, including intra-annual and 
seasonal variations of vegetation indices for the 5 years (2011 
to 2015) preceding the nominal year (2015) to depict the 
differences between the forest management types. The dis-
tribution characteristics of the different forest management 
types result in the smoothness of the local images being differ-
ent, which can be quantified by texture variables. In addition, 
human accessibility affects forest management activity, espe-
cially for planted forests, oil palm plantations, and agroforestry. 
Therefore, we extracted indicators of human activity from the 
global terrestrial Human Footprint dataset, as well as terrain-
related indicators from GMTED2010, to provide auxiliary 
information on the classification of forest management types 
[32]. The variable extraction procedure for the other years 
during the period 2001 to 2020 was the same as for 2015. 
However, variables of growth characteristics for the nominal 
years of 2001 to 2003 were calculated using the 5-year MOD13Q1 
imagery after the given nominal year.

Although the extracted variables depict the differences 
between the forest management types from a range of perspec-
tives, there is some redundancy of information between these 
variables. If all the variables were input into the random forest 
model, then this would increase the uncertainty of the model 
and computational complexity. Therefore, we undertook a 
2-step procedure to select the variables for the random forest 
model. We first calculated FDR for each variable to consider 
the separability of a single variable for the different forest man-
agement types [28]. We then applied the RFE algorithm [29] 
to assess the cooperative effect of the variables with high FDR 
values, to select the final variables for the forest management 
classification model. Detailed information regarding the selec-
tion of variables is presented in Supplementary Text 2.

Model training and validation
To ensure that the classification parameters were correctly 
tuned to the regional characteristics, and increase the sensitivity 
of the classification model to the training samples, we carried 
out a classification procedure for each continent. For each 
period, the random forest model was trained using 80% of the 
samples and the 20 variables selected for each continent. 
Specifically, for period 1 (2004 to 2020), a total of 149,695 global 
reference samples including samples of NRF-NM (27,397), 
NRF-WM (60,871), PFr>15 (7,360), PFr≤15 (17,566), oil palm 
plantation (8,750), and agroforestry (24,334) provided by Lesiv 
et al. [11], and non-forest (3,417) provided by Liu et al. [30] 
(Table S19) were applied to train the random forest model in 
each continent. For period 2 (2001 to 2003), a total of 63,000 
samples derived from the initial annual forest management 
maps during 2004 to 2020 and change detection results during 
2001 to 2001 were applied to train the random forest model in 
each continent. Given that the random forest model is largely 
insensitive to its hyper-parameters [33], this study referred to 
hyper-parameters applied in [34] and set the Ntree and Mtry 
values of the model for each continent to 100 and the default 
value (the square root of the total number of input features), 
respectively. To verify the robustness of the proposed mapping 
procedure, we carried out an accuracy assessment through an 
inter-comparison with available forest maps and validated 
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using 20% of the reference samples and samples compiled from 
previous studies. The accuracy was quantified with the confu-
sion matrix, including the producer’s accuracy, user’s accuracy, 
overall accuracy (OA), and kappa coefficient. Detailed informa-
tion about the validation of the annual forest management 
maps can be found in Supplementary Text 4.

Estimates of annual biomass carbon stocks
We estimated the biomass (above- and belowground) carbon 
stocks in different forest management types by co-locating the 
annual forest management maps and the annual corresponding 
biomass carbon density maps of Xu et al. [35]. The carbon density 
maps provided the annual global terrestrial live biomass carbon 
density from 2000 to 2019 at 10 km spatial resolution. The bio-
mass carbon density maps were derived using a spatiotemporal 
random forest model combined with true measures of aboveg-
round and belowground biomass and environmental factors 
extracted from multi-source data. The true measures of biomass 
were obtained by constructing allometric models between Lorey’s 
height derived from spaceborne Geoscience Laser Altimeter 
System product aboard the Ice, Cloud, and land Elevation Satellite 
and biomass values derived from the global inventory of plot data. 
To estimate the annual biomass carbon stock of different forest 
management types, the biomass carbon density maps were firstly 
harmonized to a unified Eckert 4 equal area projection and resa-
mpled into a common spatial resolution of 250 m using the cubic 
convolution method. Then, the annual biomass carbon density 
maps were converted to the biomass carbon stock at the pixel 
scale by multiplying the area of a single pixel (250 m × 250 m, 
62,500 m2). Finally, for each year, we summed the biomass carbon 
stock of each forest management type pixels to obtain the biomass 
carbon stocks in each forest management type, and the total bio-
mass carbon stored in the forests was obtained by adding up the 
biomass carbon stored in different forest management types.

Results
Distribution of global forest management types
In general, the spatial distribution of different forest manage-
ment types exhibits uneven patterns in the 6 continents (Africa, 
Asia, Europe, North America, Oceania, and South America) 
(Fig. 1A and Fig. S2). The spatial distribution of NRF is basically 
the same as that of forest, because NRF represents >80% of the 
global forest area. The NRF is mainly distributed in the tropical 
regions of South America, Central Africa, and Southeast Asia; 
the northern regions of Russia and Canada; and the Pacific and 
Atlantic coasts. In terms of the fine composition of NRF, 
NRF-NM is mainly distributed in tropical rainforest and high-
latitude regions of the Northern Hemisphere, and NRF-WM 
is mainly patchily distributed around other forest management 
types globally, especially in the middle- and high-latitude 
regions of the Northern Hemisphere (Fig. 1A). The planted 
forest is mainly distributed in the middle- to high-latitude 
regions of the Northern Hemisphere and middle- to low-latitude 
regions of the Southern Hemisphere. PFr>15 is mainly distributed 
in countries in southeastern North America, Europe, and Asia, 
and PFr≤15 is mainly distributed in mid-latitude regions of the 
Southern Hemisphere, and in East and Equatorial Asia. Oil 
palm plantations are mainly distributed in Southeast Asia, 
especially Indonesia, Malaysia, Philippines, and Thailand. 
Agroforestry is mainly distributed in middle- and low-latitude 
regions (Fig. 1A).

To verify the performance of the generated annual maps, we 
further validated our maps at point and spatial scale using data-
set described earlier. Specifically, we first evaluated the perfor-
mance of the random forest model and the accuracy of the 
annual forest management maps using 20% of the global refer-
ence samples and samples collected in previous studies, respec-
tively. The estimated OA was 82.25% for the model constructed 
for 2001 to 2003 (Table S1) and 74.45% for the model con-
structed for 2004 to 2020 (Table S2). For the annual forest man-
agement maps, we verified the forest identification, particularly 
the distinction between tree plantations and natural forests, 
because the samples collected provide information about natural 
forests and tree plantations, but lack information regarding the 
fine composition of forest management types (Supplementary 
Text 4). Here, the tree plantation includes PFr>15 and PFr≤15, oil 
palm and agroforestry, and the natural forest includes NRF-NM 
and NRF-WM, and forest denotes all types of forest manage-
ment. To evaluate the accuracy of forest identification, our forest 
maps were validated using samples presented in previous studies 
[36–39]. The estimated OA values are >93.28% (Table S3). For 
the tree plantation–natural forest maps, the estimated OA values 
are >75.55% at the global and regional scales (Tables S4 to S9). 
In addition, our forest management map in 2015 exhibited a 
more robust performance than FML_v3 when validated using 
samples in 2015 interpreted using high spatial resolution (<1 m) 
Google Earth satellite images, around the global scale and in 
China [40] and Tanzania [41] (Tables S4, S5, and S8–S10).

Second, we compared our forest management maps with offi-
cial statistical data of the UN Food and Agriculture Organization 
(FAO) and other available data products. For different spatial 
land cover maps, we determine the area belonging to forest cat-
egories. The specific second-level classes belonging to forests in 
different land cover products are shown in Table S11. As shown 
in Figs. S3 to S5, our maps exhibit similar spatial patterns of forest, 
NRF, and planted forest as other data products [11,13,21,34,42,43]. 
In addition, the estimated annual NRF and planted forest areas 
in this study are consistent with those reported by the FAO (Fig. 
S6). However, the annual forest areas obtained from the different 
data products are inconsistent, which may be due to the source 
data and methodologies used to identify the forest [34]. The esti-
mated annual forest areas in this study are broadly consistent with 
GLC_FCS30 from Zhang et al. [34], which has a more accurate 
representation of the spatial distribution of forests globally than 
other forest maps [34]. Furthermore, the annual and expanded 
area of planted forest from 2001 to 2020 is comparable with those 
reported by FAO [23]. Detailed information about the validation 
results on a point scale can be found in Supplementary Text 4 
(Figs. S3 to S10 and Tables S1 to S10).

The validation results on a point-scale and inter-comparison 
with other data products show that the forest management maps 
generated in this study accurately represented the global spa-
tiotemporal variations of forest management types. Therefore, 
the spatiotemporal analysis of the fine composition of forest and 
biomass carbon estimation based on the generated annual forest 
management maps is reasonable.

Spatiotemporal changes in global forest 
management types from 2001 to 2020
The global forest area has decreased by 212.73 × 104 km2 since 
2001, which is equivalent to 4.59% of the global forest area 
in 2001 (Fig. S11). This decrease was entirely due to NRF 
(NRF-NM and NRF-WM), especially in Asia (44%) and North 
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America (29%) (Fig. S11). Furthermore, NRF was the main 
component of forests, except in Europe, where the forests con-
sist mainly of NRF-WM and PFr≤15 (Fig. S12). The proportion 
of NRF in forests decreased on each continent (Fig. S12A to F).

In terms of the fine composition of the forest, the global 
NRF decreased by 526.08 × 104 km2, totally contributed by 
NRF-WM (58.32%) and NRF-NM (41.68%). The decrease in 
NRF-NM occurred mainly in Asia (55.62%) and North America 
(28.42%), whereas that of NRF-WM occurred mainly in South 
America (41.23%), Africa (24.04%), and Asia (17.55%). Moreover, 
the interconversions between naturally regenerated forests that 
are unmanaged and managed accounted for 48.95% and 40.70% 
of each other’s area losses, respectively. In addition, about 
32.37% and 12.17% of the decrease in NRF-NM and NRF-WM 
was due to conversion to non-forest, respectively (Fig. 2A and 
B). On a country scale, the decrease in NRF-NM was greatest 

in Russia, followed by Canada and the United States, while 
Brazil underwent the largest decrease in NRF-WM (Fig. 3 and 
Fig. S13A and B).

Substantial expansion occurred in PF (PFr>15 and PFr≤15; an 
increase of 88.74 × 104 km2), oil palm plantations (20.50 × 104 km2), 
and agroforestry (204.13 × 104 km2), which offset 59.56% of the 
forest loss caused by the decrease in NRF. During 2001 to 2020,the 
global area of PFr≤15 increased by a factor of 2.4 (Fig. 1B), and 
the expanded area has contributed 72.65% of the global PF expan-
sion, which occurred mainly in Asia (61.19%) and South America 
(30.22%) (Fig. S12). This expansion occurred mainly in Brazil, 
Chile, China, Indonesia, Vietnam, Thailand, and Australia (Fig. 
S14A). These 7 countries together contributed >74% of the cor-
responding annual global PFr≤15 areas and >86% of the corre-
sponding expanded PFr≤15 areas (Fig. 3). In contrast, the global 
expansion of PFr>15 occurred mainly in Europe (76.45%), while 

Fig. 1. Spatial distribution, variations, and transitions of different forest management types from 2001 to 2020. (A) Spatial distribution of different forest management types 
in 2015. (B) Annual areas of forest management types from 2001 to 2020. (C) Transitions in forest management types from 2001 to 2020. For a better display, the values in 
the chord diagram in (C) were normalized as the area proportion contributed by other forest management types in the increased area of a certain type of forest management. 
Detailed area values are listed in Table S12. Taking the increase of NRF-NM as an example, the values were calculated as the area proportion of NRF-WM, PFr>15, PFr≤15, oil palm 
plantations, and agroforestry converted to NRF-NM to that of the total increasing in NRF-WM, respectively.
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the largest expansion occurred in the United States (5.42 × 
104 km2; 22.30%) (Fig. S11 and Fig. 3).

The global increase in the area of oil palm plantations is equiv-
alent to the global oil palm plantations area in 2001, due to 
an increase in Asia (91.52%) (Figs. 1B and 2). This expansion 
occurred mainly in countries in Equatorial Asia, such as Indonesia 
(62.93%), Malaysia (20.0%), Philippines (6.34%), and Thailand 
(1.95%) (Fig. S14B). These 4 countries contributed >90% of the 
annual global oil palm plantation area (Fig. 3). The expanded area 
of agroforestry was equivalent to 60.07% of the agroforestry area 
in 2001 (339.82 × 104 km2), and was mainly in South America 
(42.43%) and Africa (34.66%). In particular, Brazil had the most 
substantial agroforestry expansion of 30.81 × 104 km2, accounting 
for 15.09% of the annual global agroforestry area (Fig. S14C).

The expansion of different forest management types was 
uneven in nature. In detail, the increase in PFr>15 and agro-
forestry was mainly in the regions where NRF-WM and non-
forest were replaced, while the increase in PFr≤15 and oil palm 
plantations was mainly in regions where NRF-WM and agro-
forestry were replaced (Table S12).

Changes in biomass carbon due to changes in forest 
management types
We estimated the biomass (above- and belowground) carbon 
stock in different forest management types by co-locating the 
annual maps and the corresponding biomass carbon density 

maps of Xu et al. [35]. In general, the biomass carbon stocks in 
forest decreased from 282.78 Pg C in 2001 to 279.02 Pg C in 
2020 (Fig. 4A). The biomass carbon stock in NRF decreased by 
16.44 Pg C, with the loss in NRF-WM dominating this decrease 
(65.68%; 10.80 Pg C), followed by NRF-NM (34.32%; 5.64 Pg 
C) (Fig. 4B). The loss of biomass carbon stock in NRF-NM 
was dominated by Asia (87.59%), while that of NRF-WM 
was mainly due to South America (51.94%) and Africa 
(19.54%). In contrast, the biomass carbon stocks in PF (PFr>15 
and PFr≤15; 4.52 Pg C), oil palm plantations (0.89 Pg C), and 
agroforestry (7.28 Pg C) increased by 12.68 Pg C, which offset 
77.13% of the biomass carbon loss in NRF (Fig. 4B). The 
increase in biomass carbon stock of PFr≤15 contributed 66.26% 
of the corresponding increase in PF (Fig. 4B). The increase of 
biomass carbon stock in PFr>15 was mostly and equally con-
tributed by Europe and North America, while that of PFr≤15 
was mainly contributed by Asia (64.21%), South America 
(20.07%), and Oceania (13.04%). Like the oil palm plantation 
expansion, the gain of this biomass carbon stock was also 
almost solely in Asia. The gain of biomass carbon stock in agro-
forestry was mainly in Africa and South America, which had 
similar percentage increases.

We investigated the temporal variations of biomass carbon 
stock in planted forest and its contribution to the overall forest. 
In general, the uneven pattern of average biomass carbon stock 
in planted forests globally resembles that of its contribution to 
forest biomass carbon stock, and exhibits an opposite trend to 

Fig. 2. Changes in the spatial pattern of forest management types from 2001 to 2020. (A) NRF-NM; (B) NRF-WM; (C) PFr>15; (D) PFr≤15; (E) oil palm plantations; (F) agroforestry. 
The gains and losses denote conversions between the forest management types. Taking NRF-NM as an example, a loss represents a conversion from NRF-NM to non-NRF-NM, 
while a gain denotes a conversion from non-NRF-NM to NRF-NM
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Fig. 3. Ranking of the top 10 countries with the largest forest area in 2001 and the top 10 countries with substantial area changes in each forest management type. (A) NRF-
NM; (B) NRF-WM; (C) PFr>15; (D) PFr≤15; (E) oil palm plantations; (F) agroforestry. For each plot, the bottom-x and left axis denote the area in 2001 for each forest management 
type, while the top-x and right axis denote the net change area from 2001 to 2020 for each forest management type. Notes: DRC = Democratic Republic of the Congo; 
CAR = Central Africa Republic; CR = Czech Republic; US = the United States; PNG = Papua New Guinea; SS = South Sudan.
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Fig. 4. Biomass carbon stock changes from 2001 to 2020. (A) Global biomass carbon stock change for each forest management type during 2001 to 2020. (B) Biomass 
carbon stock change for each forest management type from 2001 to 2020 on a continent scale. (C) Average biomass carbon stock in PF from 2001 to 2020. (D) The average 
proportion of biomass carbon stock in PF relative to forest. For the x-axis in (B), AF, AS, EU, NA, OC, and SA denote Africa, Asia, Europe, North America, Oceania, and South 
America, respectively.
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the temporal variations (Fig. 4C and D and Fig. S16). Strong 
temporal variations (cv > 1) were most pronounced in coun-
tries in northern Africa (Fig. S16A), which have a low biomass 
carbon stock in planted forests (Fig. 4C) and small contribu-
tions to forest biomass carbon stock (Fig. 4E). Weak temporal 
variations (cv < 0.1) mainly characterize in Asian countries, 
particularly in China, Russia, and Japan, and North American 
countries such as the United States (Fig. S16). These countries 
have a high average biomass carbon stock (>0.7 Pg C) and 
moderate (2%–20%) or high (>20%) contributions to the forest 
biomass carbon stock. Moderate temporal variations (cv = 0.1 
to 1) were common in most countries, and these countries have 
low to moderate biomass carbon stocks in PF and contributions 
to the forest biomass carbon stock (Fig. 4C and D and Fig. S16).

Changes in the area and corresponding biomass 
carbon stocks of different forest management types 
in specific countries
To better understand the regional changes in the forest manage-
ment area and the corresponding biomass carbon stock from 
2001 to 2020, we selected 4 countries with larger area variations 
(China, Russia, the United States, and Brazil) to further explore 
the spatiotemporal variations in the different forest manage-
ment types, and transitions between these types.

Since 2001, a substantial decrease in NRF has occurred in 
Russia and Brazil, mainly from NRF-NM and NRF-WM, respec-
tively. The decrease in NRF-NM in Russia is estimated to be the 
largest (101.56 × 104 km2), and accounts for 46.31% of the global 
loss of NRF-NM (Fig. 3). This loss resulted in a decrease of cor-
responding biomass carbon stock that accounts for 60.29% of 
the global decrease (Table S13). The interconversions between 

NRF-WM and NRF-NM reduced the decrease in NRF-NM by 
about 20 × 104 km2, and the conversion of NRF-NM into non-
forest accounted for most of the decrease in NRF-NM (Fig. 5, 
Table S14). In addition, the area changes resemble those reported 
by the FAO (Fig. S14b). The forest area of the Brazilian Amazon, 
as estimated in the present study, varied from 369.38 to 368.98 × 
104 km2 during 2007 to 2010, which is similar to the range of 377 
to 375 × 104 km2 reported by Qin et al. [44].

Brazil contributed the largest decrease to NRF-WM and 
accounted for 20.87% of the global loss in NRF-WM, leading 
to a decrease of biomass carbon stock (3.31 Pg C), which is 
33.69% of the global total (Fig. 3 and Table S13). The area loss 
of NRF-WM in Brazil, China, and the United States was broadly 
similar (Tables S15 to S17). However, the fate of the lost 
NRF-WM areas was different in these 3 countries. The lost 
NRF-WM was mainly converted to oil palm plantations (34.05 × 
104 km2), NRF-NM (18.74 × 104 km2), non-forest (12.20 × 
104 km2), and PFr≤15 (9.27 × 104 km2) in Brazil; PF (PFr>15 and 
PFr≤15; 23.64 × 104 km2), NRF-NM (19.30 × 104 km2), and oil 
palm plantations (11.75 × 104 km2) in China; and non-forest 
and PFr>15 in the United States (Tables S15 to S17).

In the past 2 decades, China and Brazil have experienced the 
most substantial increase in planted forest, reaching 22.80 × 104 
and 14.96 × 104 km2, accounting for 25.69% and 16.86% of the 
increase in global planted forest, respectively. These increases 
have led to a 1.22 and 0.45 Pg C increase in biomass carbon 
stock in China and Brazil, respectively. The expanded PFr≤15 
contributed most to the increase in planted forest, with that in 
China and Brazil accounting for 42.20% and 23.43% of the 
increase in global PFr≤15, respectively (Fig. 3). The expansion 
of PFr≤15 led to an increase in biomass carbon stocks in China 
and Brazil that account for 46.62% and 15.12% of the global 

Fig. 5. Changes in area and corresponding biomass carbon stock, and the transitions between forest management types in specific countries from 2001 to 2020. (A, D, G, J): 
Area changes of different forest management types in Russia, the United States, China, and Brazil, respectively. (B, E, H, K): Biomass carbon stock changes of different forest 
management types in Russia, the United States, China, and Brazil, respectively. (C, F, I, L): Interconversion among different forest management types in Russia, the United 
States, China, and Brazil, respectively. For a better display, the values in the chord diagram in (C), (F), (I), and (L) were normalized as the area proportion contributed by other 
forest management types in the increased area of a certain type of forest management. Detailed area values are listed in Tables S14, S16, S17, and S15. Taking the increase of 
NRF-NM as an example, the values were calculated as the area proportion of NRF-WM, PFr>15, PFr≤15, oil palm plantations, and agroforestry converted to NRF-NM to that of 
the total increasing in NRF-WM, respectively.
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increase of biomass carbon stock in PFr≤15, respectively (Table 
S13). In addition, the expansion of PFr≤15 in both China and 
Brazil was mainly due to the decrease of NRF-WM and agro-
forestry (Tables S15 and S7). In China, the expanded area of 
planted forest during 2001 to 2020 was 18.62% lower than that 
reported by FAO [23]. In addition, the expanded area and bio-
mass carbon stock increase during 2001 to 2013 was 7.45% and 
32.21% higher than that reported by Zhang et al. [45] during 
1999 to 2013 using forest inventory data, respectively. In Brazil, 
the expansion of planted forests is slightly greater than that 
reported by FAO (7.20 × 104 km2) (Fig. S17C). This discrepancy 
is due to different source data and methodologies.

A total of 5.42 × 104 and 4.72 × 104 km2 of planted forest 
expansion occurred in the United States and Russia, respec-
tively, which is comparable to that reported by the FAO (Fig. 
S17). In addition, the planted forest expansion led to a 0.58 
and 0.17 Pg C increase in biomass carbon stock in the United 
States and Russia, respectively. An increase in PFr>15 was 
almost solely responsible for the planted forest expansion in 
both the United States and Russia, which replaced NRF-WM 
(Table S14 and S16).

Discussion

Advance in the methodology
This study presents several advances in global forest mapping. 
We finely classified the forest toward a management way using 
random forest and change detection algorithms.

First, variable extraction and selection. To depict the differ-
ences among forest management types, we constructed a series 
of variables including variables of growth characteristics, local 
textural information, and human influences based on multi-
source dataset. For the variables related to growth characteristics 
in particular, we calculated the slope of the vegetation indices 
versus the image acquisition date. Generally speaking, different 
forest management types have different growth characteristics. 
For example, planted forests oriented by timber production grow 
fast and get matured in a short period, while natural regenera-
tion forests require a longer time to mature. Also, planted forests 
are distributed over large areas and with single tree species, lead-
ing to uniform and low-contrast visual patterns due to the uni-
fied height and density of tree crown cover, and thereby the 
texture differences with natural regeneration forests. In addition, 
other variables also depict the differences in forest management 
types. To filter the variables favoring forest management type 
classification, the FDR and RFE algorithms were applied for vari-
able selection. The FDR estimates the separability of an inde-
pendent variable with respect to the classification target by 
considering the relationship between intra- and inter-class vari-
ances, while the RFE algorithm searches for an optimal subset 
of variables. The combination of the 2 algorithms can effectively 
reduce the information redundancy and filter the variable that 
is conducive to distinguishing forest management type.

Second, we applied random forest and change detection algo-
rithms to generate the annual fine composition of forests toward 
a management perspective. The random forest is highly effective 
in handling high-dimensional data and preventing overfitting by 
introducing randomness in sampling and variable selection, and 
has been widely applied in forests [30], agriculture [29], etc. The 
non-linear response of vegetation growth to environmental 
variables is precisely where random forests excel. In addition, 
change detection algorithms are also widely applied in dectecting 

disturbances such as deforestation, and reforestation practices. 
However, change detection results have marked spatial variations 
based on different change detection algorithms [46]. In this study, 
we combined the results of 2 change detection algorithms (CCDC 
and SCBP) to increase the robustness of change detection results. 
Combining random forest and change detection algorithms, the 
generated annual maps accurately represented the global spatio-
temporal variations of forest management types.

Potential implications of the forest  
management maps
The net effect of different forest management types on restoring 
ecosystem services and addressing climate change has been 
difficult to assess in the absence of global maps of the fine 
composition of forests. The spatiotemporal patterns of forest 
management types obtained in this study enable us to evaluate 
the influence of different forest management types on ecosystem 
services, and the effectiveness of tree plantation-centered prac-
tices in mitigating climate change. Specifically, the annual forest 
management maps can be further applied to the following 
research aspects:

First, forest management. On a global scale, state-of-the-art 
products include FROM-GLC maps [47], GlobeLand30 maps 
[48], and GLC_FCS maps [34], none of which distinguished the 
fine composition of forests from a forest management perspec-
tive. The annual forest management maps obtained in the pres-
ent study supplement the current land cover and use products. 
In addition, although the expansion of tree plantations (planted 
forests, oil palms, and agroforestry) offsets a large amount of the 
decrease in natural regeneration forests, this expansion has 
resulted in deforestation [49]. Previous studies have shown that 
mega-fires have been associated with the expansion of tree plan-
tations [50,51]. Therefore, improvements in forest management 
practices, such as enhancing the protection of natural forests and 
tree plantations, as well as preventing potential risks associated 
with forest degradation and afforestation, are required.

Second, driven data for land surface process modeling. Forest 
management type altered the tree species and forest composition, 
which, in turn, affected the surface fluxes, such as latent heat flux, 
soil heat flux, net radiation flux, etc. However, the influences of 
the fine composition of forest on physical, biochemical, and eco-
logical processes were insufficiently considered in land surface 
process models, especially the surface flux simulations. This insuf-
ficient consideration was mainly aroused from the limited spa-
tially explicit information about forest management type. In this 
study, we generated long-term patterns of forest management 
types during 2001 to 2020 and provided detailed driven data for 
the surface process models to simulate or re-evaluate the carbon, 
water, and energy cycles, and further explore the biophysics and 
climate effects caused by forest composition variations.

Third, sustainable development goals. Forest is a vital com-
ponent of ecosystems worldwide, and accounts for ~30% of the 
terrestrial land area. To mitigate climate change, reforestation 
and afforestation practices have been developed. However, the 
effectiveness of planted forests in climate change mitigation is 
poorly understood due to the lack of available forest management 
maps and biomass carbon datasets. The estimated increase in 
biomass carbon stock in tree plantations (planted forest, oil palm, 
and agroforestry) obtained in this study indicates that planted 
forests can contribute to climate change mitigation. This provides 
the impetus that could lead to the implementation of ambitious 
policy proposals related to tree plantations, such as the Bonn 
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Challenge, the Trillion Tree Initiative, and the United Nations 
Decade of Ecosystem Restoration [52]. The maps also provide 
supplementary information to support decision-making related 
to sustainable development and climate change mitigation.

Limitations and further improvements
This study documented the spatiotemporal pattern of the fine 
composition of global forests from the perspective of forest 
management, and quantified the annual biomass carbon stock 
in each forest management type. In general, the area of naturally 
regenerating forests is decreasing, whereas the area of planted 
forests, oil palm plantations, and agroforestry is increasing. This 
expansion has mostly offset the decreasing biomass carbon 
stock caused by the decrease in naturally regenerating forests.

However, there are limitations to our approach that require 
further research. First, we generated the annual forest manage-
ment maps for 2001 to 2020 at a spatial resolution of 250 m. 
Fine-scale products should be further developed using imagery 
such as the Landsat archive to distinguish the forest manage-
ment types more accurately. In addition, although the biomass 
carbon stock maps used in this study provide the annual spatial 
distribution of living vegetation, their coarse spatial resolution 
may introduce uncertainties to the estimates of biomass carbon 
stocks. However, this is the only product currently available 
that provides a long-term time series of biomass carbon densi-
ties. Future research should focus on forest management types 
and biomass carbon stocks on a finer spatial scale.

Conclusion
This study generated the annual global fine composition of 
forests from a forest management perspective during 2001 to 
2020 based on random forest and change detection algorithms. 
Furthermore, we estimated the biomass carbon stocks in the 
different forest management types and investigated their 
temporal changes. The main conclusions were as follows: 
(a) Combining substantial validation results at the point and 
spatial scales indicated that the resultant annual maps accu-
rately represented the global spatiotemporal variations of dif-
ferent forest management types. (b) The expansion of planted 
forests, oil palm plantations, and agroforestry offset over half 
of the loss of forest area and biomass carbon stock due to the 
degradation of naturally regenerated forests. (c) The expansion 
of planted forests with rotation ≤ 15 years contributed 72.73% 
of that of global planted forests, and China alone dominated 
this expansion. (d) Except for managed natural regeneration 
forests, reforestation also explained the extensive expansion of 
planted forests with rotation >15 years and agroforestry, 
while agroforestry shrinkage contributed to abundant 
expansion of planted forests with rotation ≤ 15 years and oil 
palm. Results from this study are beneficial for re-evaluating 
the influences of forest degradation, afforestation, and refores-
tation practices for climate change mitigation.

Acknowledgments

Funding: This research was supported by the BNU-FGS Global 
Environmental Change Program (grant 2023-GC-ZYTS-01), 
the High-Resolution Earth Observation Major Special Aerial 
Observation System (grant 30-H30C01-9004-19/21), and the 
State Key Laboratory of Earth Surface Processes and Resource 
Ecology (grant 2023-KF-02).

Author contributions: B.H. and L.G. designed the research; H.X. 
performed the analysis and wrote the draft. All authors contributed 
to the interpretation of the results and the writing of the paper.
Competing interests: The authors declare that they have no 
competing interests.

Data Availability
The annual maps of forest management types generated in this 
study can be freely downloaded from https://zenodo.org/
records/10478678 or https://data.tpdc.ac.cn/zh-hans/data/
7f349001-ef38-43ee-9f8f-4722d986a1c1. The source data used 
for generating the FP maps in this study included the imagery 
of NDVI and EVI during 2013 to 2017, backscatter coefficients 
observations of ALOS PALSAR in 2015, and Global Multi-
resolution Terrain Elevation Data 2010 (GMTED2010); the forest 
map provided by Shimada et al. [43], the global land cover 
MCD12Q1, and the forest gain map provided by Hansen et al. [53] 
on the Google Earth Engine are available at https://earthengine.
google.com/. The SDPT VERSION 1.0 provided by Harris et al. 
[22] is available at https://data.globalforestwatch.org/datasets/22
4e00192f6d408fa5147bbfc13b62dd. The Intact Forest Landscapes 
(IFL) dataset provided by Potapov et al. [12] is available at https://
intactforests.org/data.ifl.html. For the spatial maps, the FP map 
provided by Schulze et al. [13] is available at https://www.environ-
mentalgeography.nl/site/data-models/data/forest-classes-and-
uses/. The reference samples provided by Fagan et al. [15] are 
available at https://data.globalforestwatch.org/content/pantropi-
cal-tree-plantation-expansion-2000-2012/about. The GLC_FCS 
data are available at https://doi.org/10.5281/zenodo.3986872. The 
CCI land cover maps are available at http://maps.elie.ucl.ac.be/
CCI/viewer/download.php. The global forest management map 
in 2015 provided by Lesiv et al. [11] is available at https://zenodo.
org/record/4541513#.ZD99FHZByUk. For the reference samples, 
the global land cover validation dataset for 2010 [36] is available 
at http://data.ess.tsinghua.edu.cn/. The global land cover validation 
dataset for 2015 provided by Liu et al. [30] is available at https://
doi.org/10.5281/zenodo.3551995. The land cover validation data-
set of Central Asia provided by Hu et al. [38] is available at https://
drive.google.com/drive/folders/1SLr_L-G72t6CWHHKnHgAt-
F5G1Gn9t_am. The reference samples in China provided by Wu 
et al. [40] are available at https://www.scidb.cn/en/detail?dataSet
Id=a857a0fb2a144168ab755fd3889f51e6. The global land cover 
reference samples provided by Fritz et al. [39] are available at 
https://doi.pangaea.de/10.1594/PANGAEA.869680. The reference 
samples in Chile provided by Adison et al. [54] are available at 
http://www.lepfor.ufro.cl/?page_id=530. The 4 validation samples 
dataset in Tanzania were provided by Koskinen et al. [41], and 
the reference point dataset is available at https://doi.pangaea.
de/10.1594/PANGAEA.894887, the training dataset is available at 
https://doi.pangaea.de/10.1594/PANGAEA.894889, the vali-
dation dataset is available at https://doi.pangaea.de/10.1594/
PANGAEA.894890, and the validation dataset field dataset is 
available at https://doi.pangaea.de/10.1594/PANGAEA.894891. 
The biomass carbon density maps provided by Xu et al. [35] are 
available at https://doi.org/10.5281/zenodo.4161694.
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