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The power generation of bifacial photovoltaic modules is greatly related to the diffuse solar radiation 
component received by the rear side, but radiation component data are scarce in China, where bifacial 
solar market is large. Radiation components can be estimated from satellite data, but sufficient ground 
truth data are needed for calibrating empirical methods or training machine learning methods. In this 
work, a data-augmented machine learning method was proposed to estimate radiation components. 
Instead of using observed ground truth, far more abundant radiation component data derived from 
sunshine duration measured at 2,453 routine weather stations in China were used to augment samples 
for training a machine-learning-based model. The inputs of the model include solar radiation (either from 
ground observation or satellite remote sensing) and surface meteorological data. Independent validation 
of the model at Chinese stations and globally distributed stations demonstrates its effectiveness and 
generality. Using a state-of-the-art satellite product of solar radiation as input, the model is applied to 
construct a satellite-based radiation component dataset over China. The new dataset not only outperforms 
mainstream radiation component datasets, but also has significantly higher accuracy than satellite-based 
datasets derived from other machine learning methods trained with limited observations, indicating the 
superiority of our data-augmented method. In principle, this model can be applied on the global scale 
without additional training with local data.

Introduction

Solar energy is a clean and environmentally friendly energy 
source [1], and it is expected to account for the largest share of 
global renewable energy by 2040 [2]. Detailed knowledge of both 
solar radiation and radiation components is crucial for selecting, 
siting, and optimizing different types of solar energy systems [3,4]. 
For example, flat plate photovoltaic panels need solar radiation 
(Rs), while concentrating solar power (CSP) systems may focus 
on direct radiation (Rdir) [5,6]. Bifacial photovoltaic panel, a 
recently developed and fast-growing solar module [7], can take 
advantage of both sides to increase irradiance collection areas [8], 
and diffuse radiation (Rdif) is the one of source of the irradiance 
on the rear side. Therefore, not only Rs data but also Rdif and 
Rdir data are needed for the solar power industry. This demand 
is particularly evident in China where the solar energy industry 
is a prominent industry and growing rapidly [9].

In situ observations of radiation component are sparse and 
unevenly distributed at the global scale, which is rather typical 

in China. For instance, there are only 17 first-class radiation 
stations for Rdir and Rdif maintained by the China Meteorological 
Administration (CMA) [10]. Since weather stations are far more 
than radiation stations (approximately 2,400 CMA stations are 
available), many previous studies aimed to extend solar radiation 
component estimates to routine weather stations, using sunshine 
duration (SunDu) [5,11], clearness index [12–14], and cloud 
cover [15] at these stations. Due to easy access and good main-
tenance, SunDu is widely used for estimating Rdir [5,16] and 
Rdif [17,18]. Tang et al. [5] developed a SunDu-based physical 
parameterization method to estimate all-sky Rdir and con-
structed a dataset of daily Rdir and Rs at 2,472 CMA routine 
weather stations. He and Wang [19] demonstrated the homo-
geneity and reliability of SunDu-derived Rdir and Rdif and 
revealed the variability and trend of Rdir and Rdif in China using 
the derived data. In the case of scarce ground truth of radiation 
components, weather-station-based Rdir and Rdif estimations 
serve as ideal reference and complement observed radiation 
components.
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However, routine weather stations are spatially unevenly 
distributed, particularly sparse in western China with huge solar 
potential [20], making constructing homogeneous gridded 
radiation component datasets challenging. Qin et al. [21] used 
a physical model (REST2_V9.1) to estimate direct normal irra-
diance from SunDu measured at 2,474 CMA stations, and a 
gridded dataset was constructed through interpolation of the 
station-based estimates. This may introduce large spatial uncer-
tainties in western China with sparse weather stations. Homo-
geneous spatial-continuous Rdir and Rdif data instead of sparse 
station data are required for application in solar energy.

Satellite retrieval is reliable to obtain spatial-continuous solar 
radiation data [22], but most existing satellite-to-irradiance 
studies only retrieve Rs [23,24], whereas Rdir and Rdif need to 
be separated using additional methods. Satellite-based radiation 
component datasets are really scarce [10,25]. Technically, almost 
all such separation models are empirical in nature [26], includ-
ing more than 150 regression models [14] and some machine 
learning methods [10,27]. No matter conventional empirical 
models or machine learning, adequate ground measurements 
of radiation component are generally required to adjust param-
eters or train the model [28]. Previous studies [12,14] have fitted 
and validated numerous advanced models using research-grade 
1-min observations from stations distributed globally, except 
for China. The topography and climate of China are complex, 
and aerosols in particular are significantly higher than in other 
regions of the world [29], which has a significant and unique 
impact on solar radiation and radiation components. Chinese 
observations need to be included in the training or fitting data-
set to ensure the performance of the model in China. However, 
the insufficient data volume of Chinese radiation observation 
may not support such a model. Some radiation component 
datasets over China, such as JiEA [10], a 12-year and 5-km 
hourly satellite-based Rdif dataset, were based on models 
trained and validated with observation data at several CMA 
stations, and it is difficult to perform sufficient independent 
validation of the robustness and generality of the estimation 
models.

Data augmentation can be used for machine learning to 
improve model performance and generality in the case of insuf-
ficient training data. It increases the amount of training data by 
adding continuous or discrete noises to existing data or creating 
new data with the same distribution as existing data [30]. To date, 
few studies have applied data augmentation to radiation compo-
nent estimation. Ma et al. [25] trained a deep learning model for 
estimating solar radiation and radiation component with aug-
mented training samples generated by a radiative transfer model. 
The trained model performs well in estimating Rs and photo-
synthetically active radiation with Himawari-8 satellite data as 
input. However, the accuracy of radiation component data was 
not evaluated in their study. Furthermore, the radiative transfer 
model may still have uncertainties in radiation component that 
are more sensitive to atmospheric properties such as clouds and 
aerosol [31]. It seems promising to find reliable alternatives or 
expansion for observed radiation components to augment train-
ing samples. SunDu-derived radiation component data [5] have 
been comprehensively validated in a previous study. These data 
may have systematic errors originating from algorithms or source 
data but are constrained by physical mechanism. These data are 
far more abundant and temporally homogeneous than observed 
Rdir and Rdif, well meeting the requirements of data augmenta-
tion. The SunDu-based dataset with stable quality may provide 

a data augmentation opportunity for improving the estimation 
accuracy of radiation components.

Thus, this study aims to build a robust Rdir and Rdif esti-
mation model using augmented radiation component data 
derived from SunDu through a machine learning model, and 
ultimately constructing a high-quality satellite-based gridded 
Rdir and Rdif dataset serving for the solar energy industry in 
China. The paper is organized as follows. In the “Data” sec-
tion, data used in this study are given. The machine learning 
method for estimating daily Rdir and Rdif is introduced in 
the “Method” section. Results on model evaluation and the 
new dataset are shown in the “Results” section, along with 
discussions on possible factors that may bring uncertainties 
and potential solutions. The “Implication of This Study for 
Solar Energy Systems” section presents implications of the 
model and dataset developed in this study for solar energy 
industry. Finally, a summary of this study is presented in the 
“Conclusion” section.

Materials and Methods
Data
Multiple types of data were used in this study. Station-based 
data were used for model training and evaluation. Two gridded 
datasets were used for constructing gridded Rdir and Rdif 
dataset and 3 existing radiation component datasets were used 
for comparison. Some basic information of the data used in this 
study can be seen in Table 1. The details about the selection 
and processing of the data are illustrated in the “Station-based 
data for model training” section up to the “Gridded data for 
construction of the Rdif and Rdir dataset” section.

Station-based data for model training
For building the model, 2 types of station data are used: one is 
meteorological observations, including near-surface air tem-
perature (Temp), relatively humidity (RH), and near-surface 
pressure (P) at 2,453 CMA weather stations (blue circles in Fig. 
1) during 1961 to 2018; the other is Rdir and Rs derived from 
SunDu at the same stations for the same period, and the Rdif 
is yielded from the difference between SunDu-derived Rs and 
Rdir. All the SunDu-derived data are provided by Tang et al. 
[5]. Spatial distribution of CMA weather stations can be seen 
in Fig. 1. With Rdif and Rdir derived from SunDu as the target 
variables, SunDu-derived Rs, Temp, RH, and P are fed into the 
model for training. Details about training are illustrated in the 
“Methods” section. The selection of input variables is based on 
the principle that the input variables do have impacts on or 
correlate with Rdif and Rdir and there are high-quality gridded 
datasets of the input variables so that we can generate gridded 
Rdif and Rdir datasets using the trained model. Furthermore, 
the calendar date is also used as an auxiliary input variable to 
represent seasonal variations of the solar radiation. The above 
data were included in the augmented dataset, and only used 
for training the model.

Station-based data for evaluation
For evaluating the model performance and the final datasets, 
directly observed Rdif and Rdir at 17 independent CMA radia-
tion stations (red rhombuses in Fig. 1) were used in this study. 
Observed data since 1994 were used, mainly because sensitivity 
drift caused by aging instruments before 1990 and the discon-
tinuity caused by instruments replacement between 1990 to 
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1993 introduce huge inhomogeneities in observed radiation 
[32–35]. A quality control scheme developed by Tang et al. [36] 
and used in previous studies [10,37] was adopted to exclude 
the erroneous values in the observed radiation data. All data 
at these stations were only used for independent validation and 
are excluded in training.

Yang [14] indicated that the performance of the model at 
independent locations is what really matters. Thus, observed 
data from the Baseline Surface Radiation Network (BSRN) 
[38] and Global Surface Summary of the Day (GSOD) during 
2001 to 2015, which were not included in the training data and 
are not collocated with CMA stations, are used for an additional 
evaluation of the generality and robustness of the model. Details 
about the test are also illustrated in the “Methods” section. 
Radiation observations from BSRN are regarded as the most 
reliable observation data, benefiting from widely recognized 
accuracy and well-maintenance instruments (https://bsrn.awi.
de/). Since only radiation observations are available at the BSRN 
stations, the meteorological variables at these stations are from 
GSOD. The GSOD dataset is produced and archived at the 
National Oceanic and Atmospheric Administration Climatic 
Data Center. It can be obtained from the website: https://www.
ncei.noaa.gov/access/search/data-search/global-summary-of-
the-day, including daily measurements for meteorological vari-
ables used in this study [39]. Because the stations of BSRN and 
GSOD are not exactly in the same location, the selected GSOD 
station must be within a 1-km radius centered on a BSRN sta-
tion and has valid observations covering the same periods with 
the corresponding BSRN station. Sixteen pairs of GSOD (red 
crosses in Fig. 2) and BSRN stations (blue circles in Fig. 2) were 
selected, as shown in Fig. 2.

Gridded data for construction of the Rdif  
and Rdir dataset
In this study, an up-to-date long-term satellite-based Rs dataset 
(ISCCP-ITP-CNN) and a widely used meteorological dataset 
in China (China Meteorological Forcing Dataset [CMFD]) 
were fed into the trained model to construct a gridded Rdir 
and Rdif dataset.

Table 1. The information of the data used in this study

Groups Data Usage

Model training SunDu-derived Rdif and Rdir at 2,453  
CMA stations

Label data for training

SunDu-derived Rs and meteorological 
observations at 2,453 CMA stations

Input data for training

Model evaluation Rs observations and meteorological obser-
vations at 17 CMA stations

Input data for estimation

Rdif and Rdir observations at 17  
CMA stations

Ground truth for evaluation

Rs observations and meteorological obser-
vations at 16 GSOD stations

Input data for estimation

Rdif and Rdir observations at 16 BSRN 
stations

Ground truth for evaluation

Dataset construction and evaluation in 
China

ISCCP-ITP-CNN Rs dataset and CMFD 
meteorological dataset

Input data for dataset construction

Rdif and Rdir observations at 17  
CMA stations

Ground truth for evaluation

Data intercomparison CERES-SYN Comparison with the dataset developed in 
this studyERA5 reanalysis

JiEA

BSRN, Baseline Surface Radiation Network; GSOD, Global Surface Summary of the Day.

Fig. 1. Spatial distribution of CMA stations. A total of 2,453 blue circles represent 
routine weather stations, which have SunDu measurements. Seventeen red rhombuses 
represent radiation stations that have Rdir and Rdif observations.
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ISCCP-ITP-CNN is a 36-year (1983 to 2018), 10-km global 
Rs dataset developed by Shao et al. [40] following Tang et al. 
[24]. It is a satellite-based Rs dataset that has eliminated inho-
mogeneities in the ISCCP-ITP dataset [24] caused by different 
sources of satellite data. A comparison with existing global solar 
radiation datasets indicates that ISCCP-ITP-CNN shows the 
best agreement with observation, no matter in accuracy and 
variation in Rs [40]. In this study, ISCCP-ITP-CNN was used 
as the Rs input of the trained model.

CMFD is a high spatial–temporal resolution near-surface 
meteorological dataset, and it has been proved with high accu-
racy in China [41]. The spatial resolution of CMFD is 0.1° and 
its temporal resolution is 3 h. The dataset comes from the fusion 
of the in situ observation, the Princeton reanalysis, the Global 
Land Data Assimilation System data, and the Tropical Rainfall 
Measuring Mission precipitation data. The dataset is one of 
most widely used meteorological datasets in China. In this 
study, air temperature, specific humidity, and near-surface pres-
sure from CMFD were used as the meteorological input of the 
trained model.

Gridded data for intercomparison
ECMWF Reanalysis v5 (ERA5) is the latest generation of global 
atmospheric reanalysis datasets produced by the European 
Centre for Medium-Range Weather Forecasts, providing a his-
torical dataset of surface solar radiation from 1950 to the pres-
ent [42]. In this study, its Rs and Rdir were used to derive Rdif, 
and the Rdir and Rdif components were evaluated.

CERES_SYN1deg_Ed4A (CERES-SYN) is a level 3 satellite 
product, designed to provide global diurnally complete surface 
fluxes since 2001 [43]. CERES surface fluxes are computed 
using 16 geostationary orbit (GEO) and Moderate-Resolution 
Imaging Spectroradiometer (MODIS) satellite-derived cloud 
properties. Its Rdir and Rdif were used in this study.

JIEA is a 12-year (2007 to 2018) hourly dataset over China 
derived from the Multi-functional Transport Satellite observa-
tions through a deep learning technique [10]. It provides Rs 
and Rdif with a spatial resolution of 5 km, and their difference 
yields Rdir. Its high accuracy at CMA stations and fine spatial 
pattern have been proved, and it is a good reference for com-
parison with our new product.

The 3 datasets are compared with the dataset constructed 
by the model.

Methods
The flowcharts of the method developed in this study are shown 
in Fig. 3, including training and validation (Fig. 3A), station-
based independent test (Fig. 3B), and dataset construction (Fig. 
3C). As Fig. 3A shows, 2 regression models based on the Light 
Gradient Boosting Machine (LightGBM) model estimate Rdir 
and Rdif, respectively; they share the same input variables but 
are trained separately. The augmented train set, i.e., the SunDu-
derived Rs and meteorological observations at 2,453 training 
stations (blue circles in Fig. 1), were fed into the model and 
SunDu-derived Rdir (or Rdif) at these stations were set to be 
label data while training. The Rdir and Rdif outputted from the 
2 models need to be adjusted to ensure that their sum equals 
to the input Rs. The validation set, namely, the observed Rs and 
meteorological variables at the independent 17 radiation sta-
tions (red rhombuses in Fig. 1), were fed into the trained model 
to estimate Rdir and Rdif, which are then evaluated with the 
observed Rdif and Rdir at these 17 stations. The validation aims 
to evaluating the overall performance of the models and the 
results are shown in the “Evaluation of the model with CMA 
and BSRN data” section.

Then, BSRN and GSOD observations were used to test the 
generality and robustness of the trained model (Fig. 3B). 
Observed Rs at BSRN stations and meteorological variables at 
GSOD stations were fed into the trained model to estimate Rdif 
and Rdir and the results were evaluated against BSRN Rdir and 
Rdif observations. The evaluation results are also shown in the 
“Evaluation of the model with CMA and BSRN data” section.

Finally, the trained model was applied to construct a 36-year 
(1983 to 2018), 10-km daily Rdif and Rdir dataset over China, 
with the satellite-based ISCCP-ITP-CNN and CMFD as input 
(Fig. 3C). Before ISCCP-ITP-CNN was fed into the trained 
model, Rs in each pixel is spatially averaged over adjacent 
3×3 pixels (approximately in a 30 km × 30 km area), because 
Tang et al. [24] found that the accuracy of the satellite-based 
Rs dataset used in this study shows a significant improvement 
when it is upscaled to more than 30 km. The gridded Rdif and 
Rdir datasets were finally evaluated using observed Rdir and Rdif 
from 17 CMA stations (red rhombuses in Fig. 1) and the evalu-
ation results were compared with other methods based on several 
gridded datasets to show the superiority of our model. The evalu-
ation and comparison results are shown in the “Evaluation for 
the dataset constructed by the model” and “Comparison with 
other gridded Rdif and Rdir datasets” section, respectively.

Data augmentation method
To gain good performance, modern machine learning methods 
usually need large amounts of high-quality annotated data, which 
are usually obtained through observations, but it is often not fea-
sible to obtain sufficient training data in many real-world applica-
tions [44]. Data augmentation, i.e., increasing the amount of data, 
is the most effective way of alleviating this problem. One of data 
augmentation is data synthesis [45], which creates new data sam-
ples independent from existing data [45]. Data scarcity of observed 
radiation component is rather typical in the world and it makes 
barriers for developing an effective radiation component estima-
tion model. Augmenting the train set may be helpful to increase 
the model performance and robustness. Given that observed 
radiation components are too scarce and are needed for evaluating 

Fig. 2. Spatial distribution of the selected BSRN and GSOD stations. Blue circles 
represent BSRN stations and red crosses represent GSOD stations.
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a constructed radiation dataset, data synthesis was used in this 
study. Abundant radiation component data synthesized by the 
SunDu-based physical parameterization scheme [24] are used to 
augment the training set, as mentioned above. The data augmenta-
tion is conducted prior to the entire flowchart, known as offline 
augmentation. The augmented dataset has in total 16,928,343 data 
points, about 147 times observed ground truth.

LightGBM model
The method developed in this study was based on LightGBM 
[46], a fast and efficient implementation of the gradient boost-
ing decision tree (GBDT) model. GBDT adds up the results 
from multiple decision trees [47], which can be written as Eq. 1:

where x represents the input sample, βi and θi represent the 
weight and distributed parameter of the ith decision tree, and 
h(x; θi) represents the ith decision tree, respectively. The final 
model is a weighted sum of M trees. To optimize the model, 
the trained model f tends to minimize the loss function L:

where y and f(x) represent the observed value and output from 
the model, respectively. L is the loss function and ( 

{(
xj, yj

)}N

J=1
 

is the training sample. 
∑M−1

i=1 � ih
�
x; �i

�
 is assumed to be known 

during the whole training process. The gradient descent algo-
rithm is used to let βMh(x; θM), yj fit the negative gradient gj, 
which can be written as:

The fitting of new samples can be represented by Eq. 4:

The final step size that minimizes the loss function can be 
determined and used to determine the final model:

Based on the parameters determined, the final model can 
be written as Eq. 6:

As one of the GBDT models, the schematic diagram of the 
LightGBM is shown in Fig. 4. The decision tree in the LightGBM 
model only splits along the optimal direction. LightGBM shows 
a significant decrease in computational cost and works better 
in massive data processing compared to traditional GBDT 
models.
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Fig. 3. Flowchart of the method developed in this study. (A) Model training and evaluation using CMA data. (B) Independent test for the model using BSRN and GSOD data. 
(C) Gridded Rdif and Rdir dataset construction and comparison with other gridded datasets. Rs, Rdif, and Rdir refer to global, diffuse, and direct solar radiation, respectively. 
Obs refers to observed data. LGB refers to LightGBM.
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In this study, the model was constructed using Python sklearn 
[48] and the LightGBM package (https://github.com/microsoft/
LightGBM). The number of leaves, trees, and rounds was set to 
be 200, 500, and 20, respectively. RMSE loss is adopted as loss 
function.

Evaluation metrics
Three metrics were used to evaluate the results: correlation coef-
ficient (CC), root mean square error (RMSE), and mean bias 
error (MBE). Relative values of MBE and RMSE (rMBE and 
rRMSE) were also used. They were calculated as follows:

where N is the total number of data used for evaluation; i is the 
ith evaluated data and observation data; y′ means evaluated 
data and y′ means the average of evaluated data; y means obser-
vation data and y means the average of observation data. All 

valid CMA observations since 1994 were used for evaluating 
the model performance and our new dataset. Because JiEA has 
only become available since 2007, CMA observations from 
2007 to 2015 were used when comparing our new dataset in 
this study with other gridded datasets.

Results and Discussion
In the following 3 subsections, we evaluated the trained model, 
and the new Rdir and Rdir dataset developed in this study and 
compared the new dataset with other gridded datasets. Possible 
factors related to uncertainties of the new dataset were also 
analyzed.

Evaluation of the model with CMA and BSRN data
For evaluating the model performance, observed Rs and meteo-
rological variables at 17 CMA radiation stations were fed into the 
trained model and the estimated results were evaluated against 
observed Rdir and Rdif at these stations (i.e., the results of evalu-
ation indicated in Fig. 3A). As a reference, SunDu-derived Rdir 
and Rdif, which were used as label data when training, were also 
evaluated at these stations. Figure 5 presents the evaluation results. 
The correlation coefficients of the estimated Rdif and Rdir (Fig. 
5B and D) are 0.87 and 0.97, respectively, much better than those 
of the SunDu-based data (0.81 and 0.94, Fig. 5A and C). The 
RMSEs of the estimated Rdif and Rdir (Fig. 5B and D) are 
20.0 W/m2 (rRMSE = 26.3%) and 19.8 W/m2 (22.2%), respectively, 
much better than those of the SunDu-based data (23.7 W/m2 
[31.3%] and 27.6 W/m2 [30.9%], Fig. 5A and C), too. Though 
trained by augmented noisy radiation component data, the 
trained model shows a great performance in separating radiation 
components from observed Rs, demonstrating the effectiveness 
of our data augmentation strategy. Nevertheless, an “upper 
boundary” around 140 W/m2 can be found in Fig. 5A and B. It 
may be originated from the error in SunDu-derived Rdif. SunDu 
records the time duration during a day when the direct solar beam 
is greater than 120 W/m2. Under an overcast sky, the Rdir is always 
below 120 W/m2, the SunDu can be equal to 0, and the increase/
decrease of the Rdif due to stronger/weaker atmospheric scatter-
ing effects can no longer be reflected by SunDu values. Therefore, 
there is a threshold value above which Rdif cannot be estimated 
by the SunDu-based method, as demonstrated by the “upper 
boundary” in Fig. 5A and B.

For evaluating the generality of the model, observed Rs at 
BSRN stations and meteorological variables at GSOD stations 
were fed into the model and estimated results were evaluated 
against BSRN-observed Rdir and Rdif. Figure 6 presents the 
evaluation results (i.e., the results of evaluation indicated in 
Fig. 3B). The model performs reasonably well at BSRN stations, 
with an RMSE of 23.0 W/m2 (30.2%, Fig. 6A) for Rdif and 
23.2 W/m2 (27.1%, Fig. 6B) for Rdir, demonstrating the gen-
erality and robustness of the trained model.

Evaluation for the dataset constructed by the model
The satellite-based ISCCP-ITP-CNN Rs and CMFD meteoro-
logical datasets rather than station-based data were fed into the 
trained model to construct a 10-km and 36-year (1983 to 2018) 
daily Rdif and Rdir dataset. Figure 7 presents the evaluation 
for the daily and monthly datasets (new Rdif and Rdir data) 
against observations during 1994 to 2015 at 17 CMA stations 
(i.e., the results of evaluation indicated in Fig. 3C). The correla-
tion coefficient, RMSE, and MBE of the new Rdif (Fig. 7A) are 
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Fig. 4. The schematic diagram of the LightGBM model. Each black dot represents 
a leaf node and all leaf nodes at the last level are weighted sum to the final output.
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Fig. 5. Evaluation for daily Rdif (A) and Rdir (C) from SunDu-derived data and the estimated daily Rdif (B) and Rdir (D) from the trained model during 1994 to 2015 at 17 CMA 
validation stations.

Fig. 6. Evaluation for estimated daily Rdif (A) and Rdir (B) during 2001 to 2015 from BSRN Rs and GSOD meteorological observations at 16 test stations.
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0.86, 21.3 W/m2 (28.0%), and 5.1 W/m2 (6.7%), respectively, 
better than those of SunDu-derived Rdif (Fig. 5A). In contrast, 
with a correlation coefficient of 0.91 and an RMSE of 32.8 W/m2 
(36.8%), the new Rdir (Fig. 7B) is slightly poorer than SunDu-
derived Rdir (Fig. 5C). We develop a better Rdif dataset than 
SunDu-derived data, possibly due to the spatial average of Rs 
that takes the spatial effects of clouds into account, as indicated 
by Jiang et al. [49]. At the monthly scale, the RMSE of new Rdif 
and Rdir are 10.5 W/m2 (14.1%, Fig. 7C) and 18.6 W/m2 (20.7%, 
Fig. 7D), indicating high accuracy at the monthly scale. Even if 
the input is replaced with satellite-retrieval Rs, the model still 
performs stably in separating radiation components.

Table 2 presents the evaluation results for daily new Rdir 
and Rdif datasets at each station during 1994 to 2015. The Rdif 
dataset shows high accuracy at all 17 stations, with rRMSE < 
35%. The Rdir dataset shows acceptable accuracy at 14 stations 
(rRMSE < 40%) but has significant uncertainties at Chengdu, 
Guiyang, and Guangzhou stations (rRMSE > 50%). Stations 
with high rRMSE are mainly located at South China, where 
there are more clouds and lower Rs and Rdir. We consider 2 
possible factors related to the relatively poor performance of 
Rdir: quality of input data and weakness of machine learning 
models in estimating extreme values.

To avoid performance degradation caused by overfitting, we 
usually prevent the model from completely fitting the train set. 

The model tends to give estimations within a narrower range 
of values than the train set. In other words, the model would 
overestimate at low values but underestimate at high values. In 
a rare case, the machine learning model will even map all inputs 
to the same near-average value, which is mathematically valid 
but inconsistent with the real world [50]. The more discrete the 
training data, the greater the errors caused by this problem. It 
can be seen in scatter plots (such as Figs. 5 to 7) that Rdir data 
are more discrete than Rdif; thus, there may be more difficulties 
in Rdir estimation. At cloudy and rainy regions, such as south-
ern and southwestern China, daily Rdir appears to be low more 
often and can be even equal to zero, implying that estimation 
of Rdir has huge uncertainties at these regions. For Rdif, the 
insignificant spatial difference and narrower value range of Rdif 
may contribute to generally high accuracy at all stations. 
Furthermore, uncertainties may also come from the input data. 
Tang et al. [24] revealed the poor performance of ISCCP-ITP 
Rs at 9 CMA stations (RMSE > 35 W/m2) in cloudy southern 
China. Inaccurate Rs input may have a negative impact on the 
estimation. Thus, the Rdir dataset developed in this study may 
have higher uncertainties in these regions.

To further improve the accuracy of the Rdir dataset in future, 
we need more accurate input data in the model. Alternatively, 
merging SunDu-derived Rdir at stations with the Rdir dataset 
developed in this study might somewhat improve the accuracy.

Fig. 7. Evaluation for daily Rdif (A) and Rdir (B) and monthly Rdif (C) and Rdir (D) from the new dataset developed in this study during 1994 to 2015 against observations at 
17 CMA stations.
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Comparison with other gridded Rdif  
and Rdir datasets
To demonstrate the superiority of our method, we compared 
the new dataset with JiEA, the other dataset based on machine 
learning, and CERES-SYN and ERA5, the representatives for 
global satellite-retrieval and reanalysis, using CMA observa-
tions during 2007 to 2015 (Tables 3 and 4).

As Table 3 shows, with a correlation coefficient of 0.86 and an 
RMSE of 20.6 W/m2 (rRMSE of 26.1%), the new Rdif is more 
accurate than JiEA (24.6 W/m2, 31.2%), CERES-SYN (31.8 W/m2, 
40.3%), and ERA5 (31.9 W/m2, 40.4%). MBE results indicate that 
ERA5 and CERES-SYN obviously misrepresent Rdif. Jiang et al. 
[49] point out that the presence of nonhomogeneous clouds and 
their induced radiation interactions make estimation of Rdif 

scale-dependent. Thus, the other three higher-resolution datasets 
were upscaled to the same spatial resolution of 1° as CERES-SYN 
and re-evaluated, as is shown in Table 4. At a spatial resolution of 
1°, all these 3 Rdif datasets show degradation of the accuracy, but 
new data still outperform the other datasets.

New Rdir outperforms the other 3 datasets (Table 3), too, with 
a correlation coefficient of 0.92 and an RMSE of 31.8 W/m2 
(36.2%), followed by JiEA (36.4 W/m2, 41.5%), CERES-SYN 
(38.9 W/m2, 44.3%), and ERA5 (56.5 W/m2, 64.3%). Similarly, 
ERA5 and CERES-SYN also obviously misrepresent Rdir. JiEA 
shows a poorer performance than the new dataset for both Rdir 
and Rdif, though these 2 datasets are both based on machine 
learning methods. The model for constructing JiEA is trained by 
a very limited hourly CMA observed radiation component. A 

Table 2. Evaluation metrics for daily Rdir and Rdif datasets developed in this study at every CMA radiation station

Station Longitude Latitude

Rdir (W/m2) Rdif (W/m2)

MBE (rMBE) RMSE (rRMSE) R MBE (rMBE) RMSE (rRMSE) R

Mohe 122.3 53.5 6.8 (9.4%) 29.7 (39.0%) 0.92 5.9 (8.7%) 20.8 (31.0%) 0.86

Harbin 126.6 45.8 3.5 (4.2%) 27.1 (31.8%) 0.92 5.6 (7.6%) 16.8 (22.7%) 0.91

Urumchi 87.6 43.8 7.2 (6.4%) 30.0 (26.7%) 0.95 11.8 (16.2%) 23.7 (32.6%) 0.80

Kashgar 75.9 39.5 18.7 (14.7%) 36.0 (28.2%) 0.93 3.3 (4%) 22.9 (28.1%) 0.82

Ejinaqi 101.6 41.2 −8.6 (−6.8%) 33.4 (26.5%) 0.92 3.8 (5.0%) 23.4 (30.9%) 0.83

Geermu 94.6 36.2 −0.6 (−0.4%) 31.2 (21.6%) 0.93 5.4 (6.8%) 23.5 (29.6%) 0.87

Lanzhou 103.9 36.0 −2.2 (−2.2%) 25.4 (25.3%) 0.95 2.4 (2.9%) 17.3 (21.4%) 0.85

Shenyang 123.4 41.8 6.2 (7.3%) 27.2 (31.9%) 0.91 2.5 (3.3%) 17.5 (22.4%) 0.91

Beijing 116.3 39.9 7.1 (7.9%) 26.8 (30.1%) 0.93 4.9 (6.2%) 19.4 (24.3%) 0.90

Lhasa 91.0 29.7 −14.3 (−8.9%) 38.9 (24.3%) 0.88 16.0 (17.6%) 27.2 (30.0%) 0.83

Chengdu 104.1 30.7 15.9 (44.6%) 28.2 (79.1%) 0.84 5.9 (7.5%) 22.8 (29.2%) 0.87

Kunming 102.7 25.0 7.2 (7.1%) 28.2 (28.0%) 0.93 5.2 (6%) 20.9 (24.2%) 0.84

Zhengzhou 113.6 34.8 9.1 (13.4%) 24.5 (36.1%) 0.92 −2.0 (−2.3%) 18.0 (21.0%) 0.92

Wuhan 114.3 30.4 4.8 (8.4%) 24.6 (37.8%) 0.92 2.1 (2.7%) 19.3 (24.4%) 0.90

Guiyang 106.7 26.6 8.8 (19.4%) 26.8 (59.2%) 0.90 −5.8 (−7.9%) 23.0 (31.2%) 0.85

Guangzhou 113.2 23.0 8.9 (16.1%) 27.2 (48.9%) 0.87 6.5 (7.5%) 21.2 (24.3%) 0.80

Sanya 109.5 18.2 −3.6 (−3.7%) 37.5 (39.2%) 0.85 8.6 (8.9%) 23.9 (24.7%) 0.65

Overall – – 4.7 (5.3%) 32.8 (36.8%) 0.91 5.1 (6.7%) 21.3 (28.0%) 0.86

Table 3. Evaluation metrics of new daily radiation component data and other gridded datasets against daily observations during 2007 to 
2015 at 17 CMA stations

Data New data JiEA CERES-SYN ERA5

Rdif (W/m2)

RMSE 20.6 (26.1%) 24.6 (31.2%) 31.8 (40.3%) 31.9 (40.4%)

MBE 2.5 (3.1%) −1.4 (−1.8%) 18.8 (23.8%) −14.3 (−18.0%)

R 0.86 0.84 0.84 0.72

Rdir (W/m2)

RMSE 31.8 (36.2%) 36.4 (41.5%) 38.9 (44.3%) 56.5 (64.3%)

MBE 4.8 (5.5%) 6.4 (7.2%) −12.9 (−14.7%) 32.7 (37.2%)

R 0.92 0.90 0.89 0.82
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model based on limited training data may not be strong enough 
to estimate radiation components. Conversely, with an aug-
mented training dataset included massive SunDu-derived data, 
the model developed in this study has a better and more stable 
performance. As Table 4 shows, new Rdir data derived from our 
model still have the highest accuracy when being upscaled.

Implication of This Study for Solar  
Energy Systems
With the help of high-resolution spatial-continuous input satel-
lite data, the fine spatial distribution of radiation components 
is revealed in this study. Figure 8 presents the multi-year aver-
age Rdif and Rdir from the new dataset during 1984 to 2018. 
As shown in Fig. 8A, Rdif ranges from 65.4 to 99.7 W/m2. Low 
latitude and cloudy weather may contribute to higher Rdif. The 
southeastern Tibetan Plateau, eastern China, and the southern 
coastal region receive higher Rdif. The lower value of Rdif 
appears in northern China and the Sichuan Basin. Conversely, 
the average Rdir value is high at low latitudes and high altitudes, 
as shown in Fig. 8B, owing to the high solar radiation intensity 
and weak atmospheric scattering effect. In areas with high fre-
quent cloud cover, solar radiation absorption and scattering 
increase, causing considerably low Rdir. Therefore, Rdir has a 
wide range from 35.4 to 194.7 W/m2. The maximum Rdir is on 
the southwest of the Tibetan Plateau, while the minimum is on 
southwestern China, especially on the Sichuan Basin. Due to 
the high altitude and cloudy weather, the Hengduan Mountains 
(22 to 32°N, 97 to 103°E) at the southeastern Tibetan Plateau 
receive both Rdir (average values over 140 W/m2) and Rdif 
(average values over 90 W/m2) at a relatively high level. In Fig. 
8A, a spatial pattern with discontinuities, although not obvious, 
can be seen in North China around Beijing. This artifact is 
caused by the spatial discontinuities of Rs in the ISCCP-ITP-
CNN dataset and has a minor impact on the accuracy of the 
dataset.

Figure 9 presents the multi-year average Rdir/Rs from the 
new dataset during 1984 to 2018. Rdif is higher than Rdir (Rdir/
Rs < 50%) in eastern and southern China while Rdir is domi-
nant in northern China and the Tibetan Plateau. As we men-
tioned above, the intensity and spatial distribution of radiation 
components are crucial for the deployment of different solar 
energy modules. CSP modules may be suitable in areas where 
Rdir is dominant and high, such as the southwestern Tibetan 
Plateau. Bifacial panels can take advantages of both sides to 

increase their collection area and Rdif is one of the sources of 
the irradiance on the rear side of the module. It is effective to 
deploy bifacial photovoltaic panels in areas with comparably 
high Rdir and Rdif, such as the eastern Tibetan Plateau and 
northwestern China, so that the solar power systems can take 
full advantage of solar energy. In contrast, in areas with low 
Rdif, the additional benefits of deploying bifacial photovoltaic 
panels may be reduced.

Table  4. Evaluation metrics of new daily radiation component data and other gridded datasets at 1° spatial resolution against daily observa-
tions during 2007 to 2015 at 17 CMA stations

Data New data JiEA CERES-SYN ERA5

Rdif (W/m2)

RMSE 22.1 (27.6%) 27.6 (34.5%) 31.8 (40.3%) 33.5 (41.9%)

MBE 1.8 (2.3%) −3.7 (−4.6%) 18.8 (23.8%) −14.7 (−18.4%)

R 0.86 0.76 0.84 0.71

Rdir (W/m2)

RMSE 32.0 (36.5%) 35.6 (40.7%) 38.9 (44.3%) 56.6 (64.6%)

MBE 3.8 (4.3%) 6.5 (7.4%) −12.9 (−14.7%) 32.9 (37.6%)

R 0.92 0.90 0.89 0.82

Fig. 8. Spatial pattern of multi-year average Rdif (A) and Rdir (B) from the new data 
during 1984 to 2018.
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In general, the intensity and spatial distribution of Rdif and 
Rdir can guide researchers on how to fully use solar energy in 
China. Furthermore, the evaluations at globally distributed 
BSRN stations also reveal the potential of the model to work 
on a global scale. With support from proper high-quality global 
meteorological input data, such as ERA5-Land [42] and Global 
Land Data Assimilation System [51], it is possible to apply this 
model to construct high-quality spatial-continuous global Rdif 
and Rdir data vital for global solar energy applications.

Conclusion
Radiation component data can be estimated from satellite data, 
but existing estimation methods usually need observed ground 
truth to fit or train the model, which cannot be met by the 
scarce observations in China. Given that SunDu-derived radia-
tion component data are far more abundant and temporally 
homogeneous than observed data, they are used to train a data-
augmented machine learning model for Rdir and Rdif estima-
tion, without reference to observed ground truth.

The data-augmented model was effective at independent 
CMA radiation stations, with an RMSE of 20.0 W/m2 (26.3%) 
and 19.8 W/m2 (22.2%) for Rdif and Rdir, respectively. As an 
additional test, the trained model was validated at globally 
distributed independent BSRN stations, and the estimation 
shows high agreement with observations, with an RMSE of 
23.0 W/m2 (30.2%) and 23.2 W/m2 (27.1%) for Rdif and Rdir, 
respectively. The additional test not only demonstrates the 
robustness and generality of the model, but also reveals the 
potential of the model to work on a global coverage. It is possible 
to extend the application of this model on a global scale with 
proper input data.

The trained model was applied to construct a 10-km gridded 
Rdif and Rdir dataset during 1984 to 2018 over China, with a 
state-of-the-art satellite-based Rs dataset (ISCCP-ITP-CNN) and 
CMFD meteorological dataset as input, and the dataset is much 
more accurate than other machine-learning-based, reanalysis, 
or satellite retrieved products, with an RMSE of 20.6W/m2 
(26.1%) and 31.8 W/m2 (36.2%) for Rdif and Rdir, respectively, 
demonstrating the superiority of our data-augmented methods. 
The intensity and spatial distribution are important for the selec-
tion and deployment of different solar energy modules. CSP 

modules may be suitable for areas such as the southwestern 
Tibetan Plateau, where Rdir is dominant and high. Bifacial pho-
tovoltaic panels can be deployed in areas with comparably high 
Rdir and Rdif, such as the eastern Tibetan Plateau and north-
western China. This study can provide guidance on how to fully 
use solar energy in China.

Acknowledgments
The authors would like to thank the CMA for providing the 
surface solar radiation and meteorological observations data 
and the BSRN observation teams for their maintenance work.
Funding: This work was supported by the Sustainable Development 
International Cooperation Program of National Science Found-
ation of China (Grant No. 42361144875) and the National Natural 
Science Foundation of China (Grant No. 42171360).
Author contributions: C.S.: Methodology, software, investiga-
tion, and writing original draft. K.Y.: Conceptualization, supervi-
sion, review, and editing. Y.J.: Software, validation, and review. 
Y.H.: Software, data curation, and review. W.T.: Software, resources, 
data curation, and review. H.L.: Supervision and review. Y.L.: 
Supervision and review.
Competing interests: The authors declare that they have no 
competing interests.

Data Availability
The data used in this study are publicly available. The ERA5 
reanalysis data were downloaded from https://cds.climate.
copernicus.eu/ (last access: 2022 June 5). The CERES-SYN data 
were downloaded from https://ceres.larc.nasa.gov/data/ (last 
access: 2022 June 4).

References

 1. Sweerts B, Pfenninger S, Yang S, Folini D, Van Der Zwaan B, 
Wild M. Estimation of losses in solar energy production from 
air pollution in China since 1960 using surface radiation data. 
Nat Energy. 2019;4(8):657–663.

 2. Heusinger J, Broadbent AM, Sailor DJ, Georgescu M. 
Introduction, evaluation and application of an energy 
balance model for photovoltaic modules. Sol Energy. 
2020;195:382–395.

 3. Karakoti I, Pande B, Pandey K. Evaluation of different diffuse 
radiation models for Indian stations and predicting the best fit 
model. Renew Sust Energ Rev. 2011;15(5):2378–2384.

 4. Mellit A, Eleuch H, Benghanem M, Elaoun C, Pavan AM. 
An adaptive model for predicting of global, direct and 
diffuse hourly solar irradiance. Energy Convers Manag. 
2010;51(4):771–782.

 5. Tang W, Yang K, Qin J, Min M, Niu X. First effort for constructing 
a direct solar radiation data set in China for solar energy 
applications. J Geophys Res Atmos. 2018;123(3):1724–1734.

 6. Boland J, Huang J, Ridley B. Decomposing global solar 
radiation into its direct and diffuse components. Renew Sust 
Energ Rev. 2013;28:749–756.

 7. Rodríguez-Gallegos CD, Bieri M, Gandhi O, Singh JP,  
Reindl T, Panda SK. Monofacial vs bifacial Si-based PV 
modules: Which one is more cost-effective? Sol Energy. 
2018;176:412–438.

 8. Pelaez SA, Deline C, Macalpine SM, Marion B, Stein JS,  
Kostuk RK. Comparison of bifacial solar irradiance 

Fig. 9. Spatial pattern of multi-year average Rdir/Rs from the new data during 1984 
to 2018.

D
ow

nloaded from
 https://spj.science.org on M

arch 15, 2024

https://doi.org/10.34133/remotesensing.0111
https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/
https://ceres.larc.nasa.gov/data/


Shao et al. 2024 | https://doi.org/10.34133/remotesensing.0111 12

model predictions with field validation. IEEE J Photovolt. 
2019;9(1):82–88.

 9. Han J, Chang H. Development and opportunities of clean 
energy in China. Appl Sci. 2022;12(9):4783.

 10. Jiang H, Lu N, Qin J, Yao L. Hourly 5-km surface total 
and diffuse solar radiation in China, 2007–2018. Sci Data. 
2020;7(1):311.

 11. Feng L, Lin A, Wang L, Qin W, Gong W. Evaluation of 
sunshine-based models for predicting diffuse solar radiation in 
China. Renew Sust Energ Rev. 2018;94:168–182.

 12. Gueymard CA, Ruiz-Arias JA. Extensive worldwide validation 
and climate sensitivity analysis of direct irradiance predictions 
from 1-min global irradiance. Sol Energy. 2016;128:1–30.

 13. Tapakis R, Michaelides S, Charalambides AG. Computations 
of diffuse fraction of global irradiance: Part 1—Analytical 
modelling. Sol Energy. 2016;139:711–722.

 14. Yang D. Estimating 1-min beam and diffuse irradiance from 
the global irradiance: A review and an extensive worldwide 
comparison of latest separation models at 126 stations. Renew 
Sust Energ Rev. 2022;159:112195.

 15. Furlan C, de Oliveira AP, Soares J, Codato G, Escobedo JF. The 
role of clouds in improving the regression model for hourly 
values of diffuse solar radiation. Appl Energy. 2012;92:240–254.

 16. Gueymard CA. Clear-sky irradiance predictions for solar 
resource mapping and large-scale applications: Improved 
validation methodology and detailed performance analysis of 
18 broadband radiative models. Sol Energy. 2012;86(8): 
2145–2169.

 17. Wang L, Lu Y, Zou L, Feng L, Wei J, Qin W, Niu Z. Prediction 
of diffuse solar radiation based on multiple variables in China. 
Renew Sust Energ Rev. 2019;103:151–216.

 18. Zhu T, Li J, He L, Wu D, Tong X, Mu Q, Yu Q. The 
improvement and comparison of diffuse radiation models in 
different climatic zones of China. Atmos Res. 2021;254:105505.

 19. He Y, Wang K. Variability in direct and diffuse solar 
radiation across China from 1958 to 2017. Geophys Res Lett. 
2020;47(1):e84570.

 20. Qiu T, Wang L, Lu Y, Zhang M, Qin W, Wang S, Wang L. 
Potential assessment of photovoltaic power generation in 
China. Renew Sust Energ Rev. 2022;154:111900.

 21. Qin W, Wang L, Gueymard CA, Bilal M, Lin A, Wei J,  
Zhang M, Yang X. Constructing a gridded direct normal 
irradiance dataset in China during 1981–2014. Renew Sust 
Energ Rev. 2020;131:110004.

 22. Qin J, Tang W, Yang K, Lu N, Niu X, Liang S. An efficient 
physically based parameterization to derive surface solar 
irradiance based on satellite atmospheric products. J Geophys 
Res Atmos. 2015;120(10):4975–4988.

 23. Stengel M, Stapelberg S, Sus O, Finkensieper S, Würzler B,  
Philipp D, Hollmann R, Poulsen C, Christensen M, 
McGarragh G. Cloud_cci advanced very high resolution 
radiometer post meridiem (AVHRR-PM) dataset version 3: 
35-year climatology of global cloud and radiation properties. 
Earth Syst Sci Data. 2020;12(1):41–60.

 24. Tang W, Yang K, Qin J, Li X, Niu X. A 16-year dataset 
(2000–2015) of high-resolution (3 h, 10 km) global surface 
solar radiation. Earth Syst Sci Data. 2019;11(4):1905–1915.

 25. Ma R, Letu H, Yang K, Wang T, Shi C, Xu J, Shi J, Shi C,  
Chen L. Estimation of surface shortwave radiation from 
Himawari-8 satellite data based on a combination of radiative 
transfer and deep neural network. IEEE Trans Geosci Remote 
Sens. 2020;58(8):5304–5316.

 26. Yang D, Wang W, Xia X. A concise overview on solar 
resource assessment and forecasting. Adv Atmos Sci. 
2022;39(8):1239–1251.

 27. Wu J, Fang H, Qin W, Wang L, Song Y, Su X, Zhang Y. 
Constructing high-resolution (10 km) daily diffuse solar 
radiation dataset across China during 1982–2020 through 
ensemble model. Remote Sens. 2022;14(15):3695.

 28. Laguarda A, Giacosa G, Alonso-Suárez R, Abal G. 
Performance of the site-adapted CAMS database and locally 
adjusted cloud index models for estimating global solar 
horizontal irradiation over the Pampa Húmeda. Sol Energy. 
2020;199:295–307.

 29. Li Z, Li C, Chen H, Tsay SC, Holben B, Huang J, Li B,  
Maring H, Qian Y, Shi G, et al. East Asian studies of 
tropospheric aerosols and their impact on regional climate 
(EAST-AIRC): An overview. J Geophys Res. 2011;116(D7).

 30. Li B, Hou Y, Che W. Data augmentation approaches in natural 
language processing: A survey. AI Open. 2022;3:71–90.

 31. Janjai S, Prathumsit J, Buntoung S, Wattan R,  
Pattarapanitchai S, Masiri I. Modeling the luminous efficacy 
of direct and diffuse solar radiation using information on 
cloud, aerosol and water vapor in the tropics. Renew Energy. 
2014;66:111–117.

 32. Shi G-Y, Hayasaka T, Ohmura A, Chen Z-H, Wang B,  
Zhao J-Q, Che HZ, Xu L. Data quality assessment and the 
long-term trend of ground solar radiation in China. J Appl 
Meteorol Climatol. 2008;47(4):1006–1016.

 33. Tang WJ, Yang K, Qin J, Cheng CCK, He J. Solar radiation 
trend across China in recent decades: A revisit with quality-
controlled data. Atmos Chem Phys. 2011;11(1):393–406.

 34. Wang K. Measurement biases explain discrepancies between 
the observed and simulated decadal variability of surface 
incident solar radiation. Sci Rep. 2014;4:6144.

 35. Wang K, Ma Q, Li Z, Wang J. Decadal variability of 
surface incident solar radiation over China: Observations, 
satellite retrievals, and reanalyses. J Geophys Res Atmos. 
2015;120(13):6500–6514.

 36. Tang W, Yang K, He J, Qin J. Quality control and estimation 
of global solar radiation in China. Sol Energy. 2010;84(3): 
466–475.

 37. Zhang X, Liang S, Zhou G, Wu H, Zhao X. Generating 
global land surface satellite incident shortwave radiation and 
photosynthetically active radiation products from multiple 
satellite data. Remote Sens Environ. 2014;152:318–332.

 38. Driemel A, Augustine J, Behrens K, Colle S, Cox C, Cuevas-Agulló 
E, Denn FM, Duprat T, Fukuda M, Grobe H, et al. Baseline surface 
radiation network (BSRN): Structure and data description (1992–
2017). Earth Syst Sci Data. 2018;10(3): 
1491–1501.

 39. Kilibarda M, Tadić MP, Hengl T, Luković J, Bajat B. Global 
geographic and feature space coverage of temperature data 
in the context of spatio-temporal interpolation. Spat Stat. 
2015;14:22–38.

 40. Shao C, Yang K, Tang W, He Y, Jiang Y, Lu H, Fu H, Zheng J.  
Convolutional neural network-based homogenization for 
constructing a long-term global surface solar radiation dataset. 
Renew Sust Energ Rev. 2022;169:112952.

 41. He J, Yang K, Tang W, Lu H, Qin J, Chen Y, Li X. The first 
high-resolution meteorological forcing dataset for land process 
studies over China. Sci Data. 2020;7(1):25.

 42. Hersbach H, Bell B, Berrisford P, Hirahara S, Horányi A, 
Muñoz-Sabater J, Nicolas J, Peubey C, Radu R, Schepers 

D
ow

nloaded from
 https://spj.science.org on M

arch 15, 2024

https://doi.org/10.34133/remotesensing.0111


Shao et al. 2024 | https://doi.org/10.34133/remotesensing.0111 13

D, et al. The ERA5 global reanalysis. Q J R Meteorol Soc. 
2020;146(730):1999–2049.

 43. Kato S, Rose FG, Rutan DA, Thorsen TJ, Loeb NG,  
Doelling DR, Huang X, Smith WL, Su W, Ham SH. Surface 
irradiances of edition 4.0 clouds and the Earth’s radiant energy 
system (CERES) energy balanced and filled (EBAF) data 
product. J Clim. 2018;31(11):4501–4527.

 44. Maharana K, Mondal S, Nemade B. A review: Data pre-
processing and data augmentation techniques. Glob Transit 
Proc. 2022;3(1):91–99.

 45. Mumuni A, Mumuni F. Data augmentation: A comprehensive 
survey of modern approaches. Array. 2022;16:100258.

 46. Ke G, Meng Q, Finley T, Wang T, Chen W, Ma W, Ye Q,  
Liu T-Y. LightGBM: A highly efficient gradient boosting 
decision tree. In: Proceedings of the 31st International 
Conference on Neural Information Processing Systems.  
Long Beach (CA): Curran Associates Inc.; 2017. p. 3149–3157.

 47. Duan S, Huang S, Bu W, Ge X, Chen H, Liu J, Luo J. LightGBM 
low-temperature prediction model based on LassoCV feature 
selection. Math Probl Eng. 2021;2021:1776805.

 48. Pedregosa F, Gl V, Gramfort A, Michel V, Thirion B, Grisel O,  
Blondel M, Prettenhofer P, Weiss R, Dubourg V, et al. 
Scikit-learn: Machine learning in python. J Mach Learn Res. 
2011;12(85):2825–2830.

 49. Jiang H, Lu N, Huang G, Yao L, Qin J, Liu H. Spatial scale 
effects on retrieval accuracy of surface solar radiation using 
satellite data. Appl Energy. 2020;270:115178.

 50. Pan B, Anderson GJ, Goncalves A, Lucas DD, Bonfils CJW,  
Lee J, Tian Y, Ma HY. Learning to correct climate projection 
biases. J Adv Model Earth Syst. 2021;13(10):e2021MS002509.

 51. Rodell M, Houser PR, Jambor U, Gottschalck J, Mitchell K, 
Meng C-J, Arsenault K, Cosgrove B, Radakovich J,  
Bosilovich M, et al. The global land data assimilation system. 
Bull Am Meteorol Soc. 2004;85(3):381–394.

D
ow

nloaded from
 https://spj.science.org on M

arch 15, 2024

https://doi.org/10.34133/remotesensing.0111

	Data Augmentation-Based Estimation of Solar Radiation Components without Referring to Local Ground Truth in China
	Introduction
	Materials and Methods
	Data
	Station-based data for model training
	Station-based data for evaluation
	Gridded data for construction of the Rdif and Rdir dataset
	Gridded data for intercomparison
	Methods
	Data augmentation method
	LightGBM model
	Evaluation metrics


	Results and Discussion
	Evaluation of the model with CMA and BSRN data
	Evaluation for the dataset constructed by the model
	Comparison with other gridded Rdif and Rdir datasets
	Implication of This Study for Solar Energy Systems

	Conclusion
	Acknowledgments
	Data Availability
	References


