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Abstract: The rate of soybean canopy establishment largely determines photoperiodic sensitivity, 
subsequently influencing yield potential. However, assessing the rate of soybean canopy development 
in large-scale field breeding trials is both laborious and time-consuming. High-throughput phenotyping 
methods based on unmanned aerial vehicle systems (UAVs) can be used to monitor and quantitatively 
describe the development of soybean canopies for different genotypes. In this study, high-resolution 
and time-series raw data from field soybean populations were collected using UAVs. The RGB and 
infrared images are used as inputs to construct the multimodal image segmentation model—the RGB 
& Infrared Feature Fusion Segmentation Network (RIFSeg-Net). Subsequently, the Segment Anything 
Model (SAM) was employed to extract complete individual leaves from the segmentation results 
obtained from RIFSeg-Net. These leaf aspect ratios facilitated the accurate categorization of soybean 
populations into two distinct varieties: oval leaf type variety (OLT) and lanceolate leaf type variety 
(LLT). Finally, dynamic modelling was conducted to identify five phenotypic traits associated with 
the canopy development rate that differed significantly among the classified soybean varieties. The 
results showed that the developed multimodal image segmentation model RIFSeg-Net for extracting 
soybean canopy cover from UAV images outperformed traditional deep learning image segmentation 
networks (precision = 0.94, recall = 0.93, F1-score = 0.93). The proposed method has high practical 
value in the field of germplasm resource identification. This approach could lead to the use of a 
practical tool for further genotypic differentiation analysis and the selection of target genes.
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1 Introduction

Soybeans have a rich history of cultivation and are considered traditional crops [1]. They serve as 
both oilseeds and grains and play a significant role as industrial raw materials and economic crops. 
However, as typical land-intensive products, maize and rice yield in many countries and regions is far 
lower than that of major crops such as maize and rice [2]. To bridge the supply-demand gap, the 
development of new varieties with yield as the target trait is of paramount importance [3, 4]. The yield 
potential of dicotyledonous broadleaf crops, which are important dicotyledonous broadleaf crops, is 
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largely determined by their canopy structure. Currently, it is unclear whether the establishment speed 
of the soybean canopy is physiologically linked to yield [5]. Soybean pods are primarily filled after 
canopy closure. This has led to the prevalent use of early-maturing soybean varieties that provide rapid 
canopy closure. Therefore, monitoring the early vigour and canopy development of different soybean 
genotypes is crucial for understanding the relationship between soybean yield and protein content [6]. 
Both early vigour and canopy development are related to growth patterns, and agronomically 
meaningful characteristics are urgently needed to link growth-related phenotypes to genotypes [7-10].

Traditional growth monitoring methods require breeders to conduct extensive field surveys, which 
are time-consuming and labour-intensive [11]. High-throughput phenotyping is a crucial means to 
address this labour-intensive challenge [12]. Although high-throughput phenotyping is a relatively new 
approach in agriculture, remote sensing technology based on unmanned aerial vehicle (UAV) 
platforms is a mature research field [13, 14]. The cost-effectiveness of remote sensing technology has 
promoted various related studies in precision agriculture, enabling breeders to monitor crop 
characteristics and temporal and spatial variations using UAV platforms [15]. Image processing 
methods based on UAV platforms have proven effective for monitoring crop canopy cover and early 
vigour [16, 17]. For example, previous studies used drones equipped with various sensors to study 
parameters such as the leaf area index [18], aboveground biomass [19], maturity [20], wilting stage, 
and yield prediction [21, 22]. UAVs are advantageous for collecting large amounts of raw field data 
in high-throughput cases, making them valuable tools for data acquisition.

The analysis of these data requires advanced image processing methods [23]. Researchers have 
attempted to extract crop canopy cover using threshold segmentation methods [24, 25]. However, 
threshold segmentation methods are sensitive to light intensity, and images collected at different times 
often require manual intervention to achieve good segmentation results. With the widespread 
application of machine learning, especially deep learning methods, many of the drawbacks of threshold 
segmentation methods have been effectively overcome [26]. Notably, well-trained deep learning 
models can automatically remove weeds from images. Nevertheless, constructing datasets for training 
deep learning models requires substantial resources, and the existing image segmentation networks 
have reached a bottleneck in segmentation accuracy. Improving the accuracy of deep learning 
algorithms is a major research direction. Multisource data fusion is a promising solution [27]. By 
inputting multimodal data into deep learning models, complementary information from different 
dimensions can further enhance image segmentation accuracy.

However, a good image segmentation method combined with time-series images collected by UAVs 
can be used to accurately assess canopy development. However, the selection of germplasm resources 
typically requires comprehensive consideration, and low-level canopy cover features can lead to errors 
[28]. Dynamic modelling can be used to infer intermediate features from lower-level features [5, 20]. 
Researchers use prior physiological knowledge in the form of parameters or semiparametric growth 
models to extract intermediate traits, such as traits related to critical growth periods, specific time 
points, and specific temperatures. Some researchers use nonlinear function dynamic modelling and 
extract traits that are linked to yield and maturity. This time-series dynamic phenotyping method based 
on high-throughput phenotyping of phenotypes can help breeders derive a plethora of "hidden" 
parameters as useful phenotypic traits in breeding environments [9, 29].
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In this study, we collected 200 typical soybean varieties from the northeast region of China and 
utilized UAVs to gather multisource phenotypic data. To overcome the challenges encountered in 
high-throughput phenotyping, we devised a multimodal deep learning model specifically tailored for 
soybean canopy segmentation in the field. Leveraging infrared information significantly enhances the 
segmentation accuracy of soybean canopies in RGB images captured by UAVs. The segmentation 
results were processed using a large-scale artificial intelligence model, facilitating the extraction of 
individual leaves and the subsequent calculation of leaf aspect ratios. The soybean genotypes collected 
were then categorized based on these aspect ratios, resulting in the subdivision of 200 soybean varieties 
into four distinct subgroups. Employing dynamic modelling, we extracted and constructed five 
phenotypic parameters (including canopy cover at 500°C cumulative temperature (CC500TT), canopy 
cover at 1000°C cumulative temperature (CC1000TT), canopy cover at 1500°C cumulative temperature 
(CC1500TT), the cumulative temperature required for 30% canopy cover (TT30%CC), and the cumulative 
temperature required for 50% canopy cover (TT50%CC)) related to canopy development dynamics using 
time-series UAV image data. Finally, we conducted a detailed analysis of the canopy development of 
soybean plants across different subgroups. This comprehensive approach represents a typical UAV 
phenotyping process, showcasing the integration of advanced technologies and methodologies to 
derive meaningful insights into soybean growth patterns and dynamics. High-throughput phenotyping 
is typically applied to field germplasm resource identification and provides powerful tools for the 
breeding of high-yield soybean varieties.

2 Materials and Methods

2.1 Experimental Design

In the present study, we used a diverse collection of 200 soybean cultivars collected from Northeast 
China, and these samples spanned five temperature accumulation zones. The soybean germplasms 
were evaluated at the Changchun experimental field located in the northeast region of China in 2023. 
Changchun (44.06°N, 118.13°E) has a continental climate with four distinct seasons and is located in 
the temperate climate zone. The average rainfall, average humidity and average temperature in 
Changchun were 522-615 mm, 67.83% and 14~25°C, respectively. Two hundred soybean germplasms 
were planted in three replicates; each soybean germplasm was planted in four rows with a row length 
of 200 cm, and the spacing between rows was 60 cm. Standard agronomic practices were followed to 
grow the soybean plants. Phenotypic flowering time data were collected by counting the number of 
flowering soybean plants in each plot at the flowering stage, and the average flowering time was used 
for the final analysis.

D
ow

nloaded from
 https://spj.science.org at N

anjing A
gricultural U

niversity on M
arch 18, 2024



Figure 1. Overview of the performed field experiments: The UAV and sensors used for data 
collection (a) and the trial with group locations (the yellow boxes) (b).

2.2 High-Throughput UAV Measurements

High-throughput measurements were obtained utilizing an unmanned aerial platform. We employed 
a fivefold zoom interchangeable lens camera (H20T) featuring a full-frame sensor with dimensions of 
5184 × 3888 pixels as the primary sensor. The platforms employed included a Warp M300 UAV 
(Shenzhen DJI Innovation Technology Co., Ltd., Shenzhen, China) and a Ronin-MX gimbal 
(Shenzhen DJI Innovation Technology Co., Ltd., Shenzhen, China). During each flight, the UAV 
meticulously followed a predetermined flight path, capturing both visible and infrared data with an 80% 
horizontal overlap and 80% vertical overlap at consistent intervals. Along the flight path, a speed of 
3.0 m/s was maintained, resulting in a ground sampling distance (GSD) of 0.38 cm/pixel. The data 
collection cycle was set at 1-2 flights per week.

2.3 Overview of the Methodology Flow

The main flow of the proposed methodology is shown in Figure 2 and mainly consists of three parts: 
1) A set of multimodal deep learning models is developed. Taking RGB and infrared images as inputs, 
infrared features are used to improve the accuracy of soybean canopy segmentation from RGB images. 
2) The canopy in the RGB image was removed using the segmentation results from the previous step. 
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Individual leaves with intact soybean canopies were extracted using the SAM model, and the aspect 
ratios were calculated for different genotypes. 3) Classification of soybean populations collected for 
the study based on leaf morphology. The rate of establishment of soybean canopies in different 
subpopulations was analysed in conjunction with time-series data.

Figure 2. Methodology flow chart. The canopies of soybean plants were segmented and masked 
from field UAV images using RIFSeg-Net. Individual leaves in the canopy were extracted using 
the SAM model to classify soybeans of different genotypes in terms of the aspect ratio. Finally, 
the rate of establishment of soybean canopies in different subgroups was evaluated.

2.4 Segmentation Network

2.4.1 Model Structure

We propose a novel deep learning network called the RGB & Infrared Feature Fusion Segmentation 
Network (RIFSeg-Net). Using the encoder-decoder design concept, two encoders are constructed for 
feature extraction using ResNet as the backbone (the backbone is replaceable and contains five 
structures: ResNet-18, ResNet-34, ResNet-50, ResNet-101 and ResNet-152) [30]. A new decoder is 
developed to obtain the feature map resolution for final application in field soybean image 
segmentation. The backbone network of RIFSeg-Net is adapted from well-established fusion networks 
[31]. In the framework's design, we strategically decreased the number of hidden layers specifically 
for the binary classification problem, aiming to enhance the overall efficiency. Furthermore, the 
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incorporation of functions such as leaky ReLU and sigmoid in both the encoder and decoder 
components renders RIFSeg-Net particularly suitable for binary classification tasks. These 
modifications contribute to the model's effectiveness and efficiency in addressing the specific 
challenges posed by binary classification problems.

Figure 3. RIFSeg-Net consists of three modules: a feature extraction module, a feature fusion 
module and a feature resolution module. The feature extraction module consists of two encoders, 
which are used to extract features from RGB and infrared images; the feature fusion module 
consists of two Upception blocks, which are used to ensure that the number of channels for 
extracting features from RGB and infrared images is the same to facilitate fusion; and the feature 
resolution module consists of a decoder, which is used to recover the resolution of the feature 
map. The encoder and decoder regions are symmetrically designed. At the end of RIFSeg-Net, a 
sigmoid function is used to obtain a probability map of the segmentation result.

Encoders: We designed two encoders to extract features from RGB and IR images. The structures 
of the two encoders are identical, except for the number of input channels in the first layer. We use 
ResNet as the feature extractor. To avoid too much loss of spatial information in the feature map, the 
average pooling layer and the fully connected layer of ResNet are removed. This also helps reduce the 
model size. ResNet starts with an initial block that consists of a convolution layer, a BN (batch 
normalization) layer and a leaky ReLU activation function. Since ResNet is designed for 3-channel 
RGB images, we modify the number of input channels in the convolution layer in the initial block of 
the IR encoder to 1. After the initial block, the maximum pooling layer and four residual layers are 
used in turn to gradually reduce the resolution and increase the number of channels in the elemental 
map.

Decoder: The decoder is mainly used to obtain segmentation results. With the decoder, the 
resolution of the feature map is gradually restored to the resolution of the input image. In addition, we 
construct a network module called Upception before decoding. It consists of two subblocks: A and B. 
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Block A keeps the resolution and the number of feature mapping channels unchanged. Block B 
increases the resolution and decreases the number of feature mapping channels. Upception can fuse 
RGB and IR feature maps through pixel-by-pixel summation, and the shape of the feature maps is not 
changed after fusion. In block B, the first convolutional layer keeps the resolution constant and reduces 
the number of feature channels by a factor of two. The second convolutional layer keeps the resolution 
and the number of feature channels constant. Transposed convolutional layer 1 keeps the number of 
channels constant and increases the resolution by a factor of 2. Therefore, transposed convolutional 
layer 2 is needed to increase the input resolution and reduce the number of feature channels before 
summation. The detailed framework of the two sets of Upception blocks is shown in Figure 4. The 
specific feature extraction details are given in Table 1.

Figure 4. The architecture of the Upception block. In block A, there are 3 convolutional layers 
that maintain the resolution and number of feature channels. The input and convolutional layers 
output feature maps through elementwise summation.

Table 1. The specific structure of the two Upception blocks. A total of 5 decoding layers are 
included, and C, H, and W represent the number of channels, height and width of the feature map, 
respectively.

Name Stride Padding Input Size Output Size Kernel Size

Conv 1 1 0 c×h×w c×h×w 1×1

Conv 2 1 1 c×h×w c×h×w 3×3Upception Block A

Conv 3 1 1 c×h×w c×h×w 3×3

Conv 1 1 0 c×h×w c/2×h×w 1×1

Conv 2 1 1 c/2×h×w c/2×h×w 3×3Upception Block B

TransConv 1 2 1 c/2×h×w c/2×2 h×2w 2×2
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TransConv 2 3 0 c×h×w c/2×2 h×2w 2×2

2.4.2 Main Functions

The loss function of RIFSeg-Net can be divided into two main parts: LSSIM and LTV [31]. Among 
them, LSSIM is used to measure the structural similarity of an image by combining the three aspects of 
brightness, contrast, and structure to measure the quality of the input image. RIFSeg-Net involves two 
forms of images as inputs, and the LSSIM function is needed to measure which of the synthesized 
images are most similar to the RGB and IR images. For example, the SSIM (IA, IF |W) and SSIM (IB, IF 
|W) indices are computed separately using the LSSIM function, where W denotes a sliding window of 
size m*n, SSIM (IA, IF |W) denotes the similarity between the RGB image and the fused image, and 
SSIM (IB, IF |W) denotes the similarity between the IR image and the fused image. If SSIM (IA, IF |W) 
is greater than SSIM (IB, IF |W), IA and IF are more similar in a sliding window of size W, and the fused 
image will retain more RGB information in the window of W. The main formulas involved in the loss 
function of the LSSIM part are as follows:

E(𝐼│𝑊) =
1
𝑚

𝑚 × 𝑛

∑
𝑖 = 1

𝑃𝑖 (1)

𝐿𝑆𝑆𝐼𝑀 = 1 ―
1
𝑁

𝑁

∑
𝑊 = 1

𝑆𝑐𝑜𝑟𝑒(𝐼𝐴,𝐼𝐵,𝐼𝐹|𝑊) (2)

In this case, the first formula is used to calculate the average value within the sliding window, and 
the result with the highest similarity to the fused image is output to calculate the corresponding score; 
the second formula is the overall calculation of the LSSIM function, where N denotes the total number 
of sliding windows, and the average value is obtained and then subtracted from 1 to be used as the loss 
function.

For the second loss function, the total variation (LTV) is a measure of image noise. The LTV utilizes 
the square of the difference between the horizontal and vertical pixels and then sums each pixel to 
calculate the total variation. If there is noise, the variation between pixels will be large, and the total 
variation may be very large. The specific formula is as follows:

R(𝑖,𝑗) = 𝐼𝐴(𝑖,𝑗) ― 𝐼𝐹(𝑖,𝑗) (3)

𝐿𝑇𝑉 = ∑
𝑖,𝑗

(‖𝑅(𝑖,𝑗 + 1) ― 𝑅(𝑖,𝑗)‖2 + ‖𝑅(𝑖 + 1,𝑗) ― 𝑅(𝑖,𝑗)‖2) (4)

In this case, the corresponding pixels in IA and IF are first subtracted to obtain R (i, j), and the total 
variation is subsequently obtained. The LSIMM and LTV are combined as the loss function of RIFSeg-
Net. However, since the LSIMM and LTV are not of uniform order of magnitude, it is easy to lead to an 
overall weight shift in the network. It is necessary to introduce a balancing parameter φ for LSIMM so 
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that the two loss functions are at the same level. Therefore, the overall loss function of RIFSeg-Net is 
as follows:

𝐿𝑂𝑆𝑆 = 𝜑𝐿𝑆𝑆𝐼𝑀 + 𝐿𝑇𝑉

= 𝜑(1 ―
1
𝑁

𝑁

∑
𝑊 = 1

𝑆𝑐𝑜𝑟𝑒(𝐼𝐴,𝐼𝐵,𝐼𝐹|𝑊)) + ∑
𝑖,𝑗

(‖𝑅(𝑖,𝑗 + 1) ― 𝑅(𝑖,𝑗)‖2 + ‖𝑅(𝑖 + 1,𝑗) ― 𝑅(𝑖,𝑗)‖2)

(5)

2.5 Individual Leaf Segmentation and Phenotype Extraction

Before proceeding with further phenotyping, we sought to precisely classify the collected soybean 
genotypes based on leaf morphology. The segment anything model (SAM) was used to extract 
individual, intact leaves from the canopy segmentation results. Initially, we utilized the segmentation 
outcomes of RIFSeg-Net to mask the canopies of soybean plants in the original RGB images. 
Subsequently, the pretrained weights of the SAM were invoked to extract each individual leaf, 
ensuring that all canopy leaves were successfully isolated. For each genotype, 5 to 10 complete leaves 
were selected for subsequent analysis. The aspect ratio of the smallest outer rectangle enclosing each 
leaf was calculated using Python. Subsequently, the aspect ratio served as a foundational criterion for 
clustering. Initially, the collected soybean genotypes were broadly clustered into two categories: the 
oval leaf type variety (OLT) and the lanceolate leaf type variety (LLT), recognized as the two 
predominant soybean types. The OLT variety has leaves that closely resemble an oval shape, whereas 
the LLT variety is characterized by more elongated leaves.

Following this, efforts were made to further refine the classification of the OLT and LLT subgroups. 
The soybeans belonging to distinct subgroups were then phenotyped in conjunction with the results of 
phenotype extraction. This meticulous classification based on leaf morphology provides a more 
nuanced understanding of soybean genotypic variations, facilitating detailed phenotypic analysis and 
contributing to a comprehensive assessment of soybean diversity.

2.6 Dynamic Modelling

Canopy cover data collected at 14 different time points were utilized to create growth curves for 200 
distinct soybean varieties [5]. These growth curves were generated by employing Python's LinearGAM 
library. The GAM, which is a generalized additive model, is a smoothed semiparametric model. It 
provides a linking function for the relationship between predictor variables and the expected values of 
dependent variables. This feature enables the automatic modelling of nonlinear relationships, 
eliminating the need for manual experimentation with various transformations for each variable. The 
modelled weights can subsequently be employed to predict canopy cover at any given time point or to 
estimate the effective accumulation temperature.

2.7 Assessment Indicators

RIFSeg-Net was used to segment soybean canopy images in the field, which is considered a 
binary classification problem. In the process of segmentation accuracy assessment, a pixel-level 
comparison was made between the predicted output and the classification results based on ground truth 
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data. Usually, pixels belonging to the soybean canopy that are correctly predicted are defined as true 
positives (TP); pixels belonging to the soybean canopy that are incorrectly predicted are defined as 
false true positives (FP); pixels belonging to the background that are correctly predicted are defined as 
true negatives (TN); and pixels belonging to the background that are incorrectly predicted are defined 
as false negatives (FN). Based on these rules, the following three evaluation metrics were used in this 
study [32].

Precision. The proportion of true-positive samples among those predicted to be positive is defined as 
follows:

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
(6)

Recall. This index reflects how many positive samples in the total sample are correctly predicted and 
is defined as follows:

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
(7)

F1-score. After the accuracy and recall are calculated, the F1 score can be calculated, which represents 
the weighted harmonic average of the accuracy and recall. It is used for standardized measurement and 
is defined as follows:

𝐹1 ― 𝑆𝑐𝑜𝑟𝑒 =
2𝑃𝑅

𝑃 + 𝑅
(8)

2.8 Network Training

First, we preprocessed the UAV images to construct the dataset. For the images of each soybean 
variety, we divided the region of interest for the time series data using the data from the last monitoring 
time point as a benchmark. Slide cropping was performed in strict accordance with uniform dimensions 
to ensure that time series images of the same soybean variety were of the same size. All the images 
were colour corrected using a colorimetric card. After preprocessing, we obtained 2000 field soybean 
images for growth analysis. A total of 1200 representative images were selected and manually labelled 
using Labelme Software, and a dataset for RIFSeg-Net training was constructed. Of these, 1000 images 
were used for training and validation of the model (80% of the data were used for training, and 20% 
were used for validation). The remaining 200 images were used for testing the model. We used the test 
set to compare the performances of the RIFSeg-Net models with different backbones. In addition, we 
selected an FCN [33], UNet [34], SegNet [35], FuseNet [36], MFNet [37], and PSPNet [38] for 
comparison; these models were trained with the same training strategy and subsequently compared 
with RIFSeg-Net. Finally, RIFSeg-Net was trained many times. During the training process, each 
epoch included 500 batches with a size of 1. Training losses declined quickly over the first 100 batches 
and then slowed. The model was trained on a workstation with a 2 Intel Xeon (R) Gold 6148 CPU, 
256 GB RAM and an NVIDIA Quadro RTX6000 GPU.
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3 Results

3.1 Modelling Validation Studies

To assess the effectiveness of RIFSeg-Net, we conducted rigorous testing on an independent dataset 
in two distinct phases: 1) Comparative Model Accuracy Evaluation: In this phase, we systematically 
compared the accuracy of RIFSeg-Net against that of several established models. The comparisons 
included an FCN, UNet, SegNet, FuseNet, MFNet, PSPNet and RTFNet. These models represent a 
comprehensive spectrum of image segmentation methods, including those designed for multimodal 
data fusion. 2) Backbone Architecture Analysis: To gauge the impact of different backbone 
architectures on the performance of RIFSeg-Net, we employed a variety of ResNet models, specifically 
ResNet-18, ResNet-34, ResNet-50, ResNet-101, and ResNet-152, to construct diverse versions of 
RIFSeg-Net. We subsequently assessed the model's effectiveness with each of these backbone 
configurations. For specific details, please refer to Table 2 for a comprehensive breakdown.

Table 2. Performance of different models for independent test sets. Nos. 1 to 6 represent the 6 
groups of established models. No. 7 to No. 11 represent five RIFSeg-Nets constructed separately 
using different backbones.

No. Methods P R F1-Score

1 FCN 0.85 0.77 0.81

2 U-net 0.88 0.82 0.85

3 SegNet 0.88 0.85 0.86

4 FuseNet 0.86 0.81 0.83

5 MFNet 0.91 0.87 0.89

6 PSPNet 0.91 0.91 0.91

7 RTFNet 0.92 0.90 0.91

8 RIFSeg-Net - 18 0.90 0.86 0.88

9 RIFSeg-Net - 34 0.89 0.88 0.88

10 RIFSeg-Net - 50 0.94 0.93 0.93

11 RIFSeg-Net - 101 0.92 0.91 0.91

12 RIFSeg-Net - 152 0.93 0.91 0.92

As depicted in Table 2, it becomes evident that the multimodal model exhibits a clear advantage 
over conventional deep learning image segmentation models in terms of accuracy. The incorporation 
of multidimensional information as input proves to be instrumental in enhancing the model's precision. 
When comparing various backbone architectures, it is evident that the most favourable performance is 
achieved with ResNet-50. The RIFSeg-Net configuration utilizing ResNet-50 achieved the highest F1-

D
ow

nloaded from
 https://spj.science.org at N

anjing A
gricultural U

niversity on M
arch 18, 2024



score, reaching an impressive 0.93. Notably, deeper feature extraction, while potentially beneficial in 
certain contexts, can introduce information redundancy, which may, in turn, have an adverse effect on 
model accuracy.

3.2 Variety classification based on leaf morphology

The original image was masked using the RIF model segmentation results as a baseline. Furthermore, 
masked images were used for the extraction of individual, intact leaves from the soybean canopy. The 
extraction of individual leaves was performed using the large model SAM [39]. This is a very GPU-
consuming and time-consuming task. The fine-tuned SAM model effectively extracted the individual 
leaves from the soybean canopy mask image. We then used a Python image processing algorithm to 
extract the minimum outer rectangles of the individual leaves. A visualization of the image processing 
series is shown in Figure 5. In this session, all the leaves from the canopy were extracted. The 
extraction results for only some of the canopy leaves are shown in Figure 5. All leaf analysis results 
were collated and uploaded as separate files, the details of which can be downloaded to view 
Supplementary File 1. The length and width of the minimum outer rectangle were used to calculate 
the aspect ratio of the leaves, which was subsequently used to classify the 200 germplasms sampled. 
In the classification process, two broad categories were first classified: the oval leaf type variety (OLT) 
and the lanceolate leaf type variety (LLT). These two soybean leaf types are widely recognized. 
Furthermore, we subdivided the two subclasses based on the OLT and LLT. Ultimately, the collection 
of 200 soybean varieties was classified into four categories. The number of soybean varieties in each 
category is shown in Table 3.

Table 3. Statistics for the number of soybean varieties classified into different categories.

OLT
P

LLT
Opaline

Number 58 142

Subclass A Subclass B Subclass A Subclass B

Number 35 23 57 85
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Figure 5. Visualization of image processing for typical OLT and LLT soybean varieties. The 
original image (a), the RIFSeg-Net segmentation result (b), the image masked with the RIFSeg-
Net segmentation result (c), and the image processing result of an individual leaf segmented using 
the SAM model (d).

3.3 Dynamic Modelling

Based on the leaf morphology classification results, we conducted an analysis of soybean canopy 
development for the different varieties via dynamic modelling, as illustrated in Figure 6. Figure 6a 
shows a comparison between soybean plants with OLT and LLT leaf shapes. It is evident that, 
compared with those with LLT leaf shapes, soybean plants with OLT leaf shapes exhibit faster canopy 
development and achieve greater final canopy cover. In Figure 6b, we compare two subclasses within 
the LLT foliation, where the LLTA subclass demonstrates slower canopy development but achieves a 
greater final canopy cover in contrast to the LLTB subclass. Figure 6c displays a comparison of the 
results between two subclasses within the OLT leaf shape category, with the OLTA subclass showing 
accelerated canopy development and greater final canopy coverage than the OLTB subclass. The 
distinct variations in dynamic modelling outcomes among the 200 soybean germplasm resources 
became evident after categorization into these four groups.

Figure 6. Dynamic modelling results of canopy development for different varieties of soybean. 
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(a) Comparison between the OLT and LLT groups. (b) Comparison of the two subclasses of LLTs. 
(c) Comparison of the two subclasses of OLTs.

3.4 Canopy development in different populations

We categorized the 200 soybean germplasms into four groups and extracted five phenotypic 
parameters from the dynamic modelling results for the different genotypes. These parameters included 
canopy cover at 500°C cumulative temperature (CC500TT), canopy cover at 1000°C cumulative 
temperature (CC1000TT), canopy cover at 1500°C cumulative temperature (CC1500TT), the cumulative 
temperature required for 30% canopy cover (TT30%CC), and the cumulative temperature required for 
50% canopy cover (TT50%CC). We utilized MATLAB to create box plots to compare the variations in 
phenotypic traits associated with soybean canopy cover among these four groups, as shown in Figure 
7. The results clearly revealed substantial differences among the groups.

Figure 7. Comparison of the phenotypic trait variations associated with soybean canopy cover 
among the different groups. For each box plot, different boxes represent different subclasses.

4 Discussion

4.1 General Assessment of the Proposed Methodology

We harnessed the power of UAV multisource data fusion in tandem with cutting-edge deep learning 
algorithms and dynamic models to comprehensively characterize a collection of 200 soybean cultivars. 
This methodological approach is at the forefront of plant phenotyping research and encompasses fields 
such as image processing, dynamic system modelling, and multisource data fusion. Our UAV, 
equipped with an array of multisource sensors, enabled us to capture high-temporal-precision soybean 
canopy image data throughout the entire reproductive cycle. In contrast to the manual phenotyping 
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procedures traditionally employed in agricultural research, the utilization of UAV technology 
empowers us to conduct high-throughput, large-scale field experiments. The techniques elucidated in 
this paper are well suited for the efficient phenotyping of crop populations harbouring a multitude of 
genotypic variations under field conditions. They provide breeders with invaluable trait-related 
information, enabling the detection and quantification of disparities among groups of genotypes [40, 
41].

In this study, we utilized a UAV to capture soybean canopy image data across 14 flights conducted 
at regular intervals throughout the reproductive cycle. Unlike frameworks employed in some prior 
studies, our high-throughput phenotyping platform stands out for its ability to acquire data at a frequent 
temporal scale, offering a distinct advantage over traditional UAV methods. However, as we delved 
into the data processing and analysis phases, we recognized the importance of adopting specific data 
acquisition strategies. For instance, focusing on intensive data collection during pivotal fertility periods 
proved to be particularly effective. This approach allowed us to closely monitor soybean growth 
dynamics, providing a detailed understanding of the intricate processes involved. Implementing 
targeted data collection programs aligned with the critical phases of crop growth and development 
holds the promise of yielding even more valuable insights. This strategic approach enhances the 
precision of our observations, ensuring that the data acquired during key growth stages contributes 
significantly to our overall comprehension of soybean behaviour and performance.

4.2 The Importance of Multimodal Data Fusion

The deep learning model, fuelled by the fusion of multimodal data inputs, enables us to 
automatically capture dynamic canopy cover and monitor soybean growth in the field with high 
precision. In contrast to the threshold segmentation methods commonly used in previous research, the 
deep learning model is not constrained by variations in light intensity during data collection and is 
capable of minimizing the impact of weeds on canopy cover extraction to the greatest extent possible. 
Furthermore, by integrating information from multiple data sources, the model can reduce errors 
associated with single-modal approaches, thereby enhancing the accuracy and performance of 
respective modelling tasks, ultimately achieving more precise results. However, importantly, 
multimodal data fusion models typically require multidimensional inputs, which implies a trade-off 
with inference speed during the data processing phase [42, 43]. For agricultural applications, although 
the efficiency and accuracy of phenotype extraction are of paramount importance, real-time image 
processing tasks are not extensively involved. Therefore, the inference speed of RIFSeg-Net is 
acceptable. Relevant studies have confirmed that multimodal data fusion is a powerful approach for 
tackling complex problems and leveraging diverse data, thus contributing to advancements in 
phenotype analysis research and addressing challenges in practical field applications [27, 44].

4.3 Implications of Dynamic Modelling

Utilizing the ‘S’ (sigmoid) growth function to fit time-series parameters allows us to establish 
biologically meaningful and reliable parameters for characterizing genotype differences during growth 
and development processes [5]. Dynamic system models can mitigate the phenotypic errors that might 
occur at specific time points. However, the choice of the fitting function is crucial, as incorrect 
selection may result in significant errors in phenotype analysis. Therefore, a solid understanding of 
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plant physiological mechanisms and knowledge about the growth and development of plants are 
indispensable [45]. In the utilization of dynamic system models, precise phenotypic parameters during 
critical growth periods are paramount. For instance, phenotype parameters at the initial time point and 
canopy closure time point are directly related to the overall growth pattern of the corresponding 
genotypes. It is recommended that researchers and breeders engage in thorough discussions regarding 
the critical growth periods of the studied soybean variety. This approach is pivotal for describing the 
general growth patterns of different plant genotypes using dynamic system models. Furthermore, 
dynamic system models can be employed to analyse early vigour during crop growth. Previous 
research has indicated a positive correlation between yield and early vigour, but it is also correlated 
with the timing of mid-season vigour. The importance of early vigour for yield is likely related to the 
establishment of the canopy, flowering, and pod formation, thus involving source‒sink dynamics. 
Further studies can employ the methods proposed in this study to conduct more detailed phenotype 
analyses specifically focused on early vigour [46, 47].

4.4 Application of High-Throughput Phenotypes

The proposed multimodal data fusion deep learning model enables high-precision segmentation of 
drone images. Furthermore, in conjunction with the SAM model, the SAM model was used for the 
identification of soybean germplasms and for the analysis of growth-related phenotypic traits. This 
constitutes a high-throughput, nondestructive approach for precise phenotype identification. The 
pipeline presented can be directly applied in breeding environments, as it rapidly identifies growth-
related phenotypic data for each genotype.

In practical field applications, breeders generally prioritize target traits such as yield and quality. 
However, these target traits are often decomposable [48]. For instance, previous research has indicated 
that soybean plant height is negatively correlated with lodging resistance and positively correlated with 
the number of nodes, and the number of nodes is positively correlated with pod quantity. Therefore, 
breeders may consider finding trade-offs while focusing on target traits. For example, utilizing high-
temporal and high-throughput data collection methods to analyse the dynamics of correlated traits can 
be beneficial [49]. Time series data are crucial for accurate and accurate parameter estimation. In 
conclusion, through high-throughput phenotyping, it is possible to quickly identify crop germplasm 
resources with favourable traits, such as high yield, resistance, and quality [50, 51]. This approach can 
aid breeders in developing new varieties that are more productive and resilient, consequently 
enhancing both crop quality and yield.
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