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A B S T R A C T   

We propose a novel machine learning approach to improve the formation evaluation from logs by integrating 
petrophysical information with neural networks using a loss function. The petrophysical information can either 
be specific logging response equations or abstract relationships between logging data and reservoir parameters. 
We compare our method’s performances using two datasets and evaluate the influences of multi-task learning, 
model structure, transfer learning, and petrophysics informed machine learning (PIML). Our experiments 
demonstrate that PIML significantly enhances the performance of formation evaluation, and the structure of 
residual neural network is optimal for incorporating petrophysical constraints. Moreover, PIML is less sensitive to 
noise. These findings indicate that it is crucial to integrate data-driven machine learning with petrophysical 
mechanism for the application of artificial intelligence in oil and gas exploration.   

1. Introduction 

Geophysical logging is a crucial tool for understanding subsurface 
resources. However, the traditional interpretation of logs based on 
petrophysical mechanism can be subjective and inefficient, often 
simplifying the petrophysical model in practice, which fails to accu-
rately characterize complex reservoirs. Recent advancements in ma-
chine learning, big data, and high-performance computation provide 
new opportunities for data-driven logging interpretation. Bergen et al. 
(2019) are optimistic about the application of artificial intelligence in 
solid earth geoscience and its potential for analyzing large datasets, 
inverse theory, and computationally intensive simulations. Geophysical 
logs possess the characteristics of large data quantity and fast data 
updating, making them an ideal environment for data-driven machine 
learning method in logging interpretation. 

In general, machine learning methods are commonly use for logs’ 
interpretations in two domains: classification of lithology and the 
evaluation of reservoir parameters (Wang and Zhang, 2021). In the li-
thology classification, Adoghe et al. (2011) used principal component 
analysis (PCA) and self-organizing mapping (SOM) to predict elec-
trofacies. Their experiments showed that SOM can effectively improve 
prediction accuracy. Jaikla et al. (2019) proposed a FaciesNet model, 

which combined convolutional autoencoders with bi-directional recur-
sive neural networks to analyze lithofacies and the geological correla-
tion of stacking patterns, while extracting geological information. They 
applied this model to predict geologically significant lithofacies from 
logs. Liu et al. (2020) suggested a lithofacies classification method based 
on the local deep multi-kernel learning support vector machine 
(LDMKL-SVM), which can simultaneously consider low-dimensional 
global features and high-dimensional local features. LDMKL-SVM 
could automatically learn the parameters of kernel function and SVM 
and establish the relationship between lithofacies and seismic elastic 
information. 

In the evaluation of reservoir parameters, machine learning has 
demonstrated immense potential. Lee and Dattagupta (1999) proposed a 
two-step approach for permeability prediction that involved 
non-parametric regression and multivariate statistical analysis. Firstly, 
electrofacies are predicted from logs, and permeability models are 
constructed by alternating conditional expectations (ACE), generalized 
additive model (GAM), and neural networks (NNET) based on the 
electrofacie types. Lacentre and Carrica (2003) partitioned each reser-
voir region according to petrophysical information, and used neural 
networks and reservoir region restrictions to construct permeability 
models. Abdulraheem et al. (2007) presented fuzzy logic modeling to 
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predict permeability using logs, and the results are in good agreement 
with the core analysis. Male et al. (2020) used both machine learning 
and physics-based methods for permeability modeling of core data from 
12 wells in the Garn Sandstone from the North Sea. The results showed 
that the machine learning method was superior to the physics-based 
method. Multi-task reservoir parameters modeling has also been pro-
posed to simplify the process and make full use of the correlation be-
tween reservoir parameters. For example, Shao et al. (2022) proposed a 
multi-task neural network model to predicate reservoir parameters from 
logs that outperformed single-task models. They also analyzed the in-
fluence of multi-task learning models with various structures on the 
prediction effect of reservoir parameters and found that the prediction 
performance of different structure multi-task model was much better 
than other structures. As researchers continue to explore machine 
learning for logs’ interpretation, they are gradually moving away from 
simple testing of existing machine learning models to constructing 
models that better fit the characteristics of logs, and to fusing multiple 
models to enhance performance. 

In the application of data-driven machine learning in geophysics, 
various challenges limit further development, including interpretability 
(Chen and Wang, 2022), mechanism consistency, data complexity and 
uncertainty, small sample sizes, and few labels. Traditional formation 
evaluation models use mathematical and physical knowledge to explore 
input-output relationships, making it difficult to extract knowledge 
directly from data. Data-driven models extract knowledge from large 
datasets, but their quality depends on data quality, and their accuracy 
cannot surpass that of the data labels. 

Since both mechanism and data-driven models have limitations in 
geophysical applications, the integration of data-driven machine 
learning and mechanism models has become a promising research di-
rection in the field of geophysics. However, there are still many chal-
lenges to overcome. One of the major challenges is the selection of 
appropriate physical models that can effectively guide the data-driven 
models. Another challenge is how to combine the physical models 
with the data-driven models in a way that can balance the accuracy and 
interpretability of the results. Despite these challenges, many re-
searchers have made significant progress in developing novel methods 
for fusing mechanism models and machine learning in geoscience. For 
example, Karpatne et al. (2017a) proposed theory-guided data science 

(TGDS), which leverages scientific knowledge to improve the effec-
tiveness of data science models. Based on this, Karpatne et al. (2017b) 
developed a theory-guided neural network model (TGNN) to predicate 
lake temperature, which incorporates physical constraints into the loss 
function. Raissi and Karniadakis (2018) proposed a physical informed 
neural network (PINN) to solve partial differential equations (PDEs), 
which incorporates physical laws about general nonlinear PDEs into the 
loss function and trained the neural network model (Raissi et al., 2019). 
Kharazmi et al. (2019, 2021) extended the PINN to the Variational PINN 
(VPINN) by integrating the weak-form loss function into a fully con-
nected neural network, which has high accuracy in solving high-order 
derivative problems and can compute integrals in sub-domains. In the 
oil/gas industry, many researchers explored the fusion of mechanism 
model and machine learning. For instance, Zhu and Zabaras (2018) 
proposed a Bayesian convolutional encoder-decoder deep network for 
uncertainty quantification tasks to solve the groundwater flow problem. 
(Wang et al. 2020a, 2020b, Wang and Zhang, 2021) applied the TGNN to 
solve groundwater flow problems and achieved higher accuracy than the 
DNN model, especially for processing complex and noisy data. Xu et al. 
(2021) proposed the weak form theory-guided neural network 
(TGNN-wf) for single-phase and two-phase underground flow, which 
archived higher accuracy, faster training, and more robust to noise than 
the TGNN model. Chen and Zhang (2020) proposed a 
physics-constrained indirect supervised learning method for generating 
logs. They (Chen and Zhang, 2021) further proposed a 
theoretical-guided deep learning for electrical load forecasting (TgDLF), 
which archived higher accuracy and better robustness and noise resis-
tance than the LSTM model. Chen et al. (2021) proposed the 
theoretical-guided hard constraint projection (HCP) method. The model 
transforms physical constraints into a form that is easy to be discretized 
and then realizes hard constraint optimization through patch projection. 
Experiments showed that the hard constraint model was more robust 
than the soft constraint model, and theory had a stronger influence on 
the model. Wang et al. (2023) employ the SHAP method to assess the 
interpretability of four ensemble learning techniques in wave slowness 
prediction. Based on the experimental results, they observe that the 
mapping relationships identified by the machine learning models align 
with the physical principles of borehole acoustics. Recently, Xiao (2022) 
reviewed the research development on oil and gas artificial intelligence 

Fig. 1. Structure of multi-task residual neural network for reservoir parameters prediction.  
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and proposed that data-driven and mechanism model fusion modeling is 
an important breach to solve the application problems of industrial oil 
and gas artificial intelligence. 

In summary, the fusion of data-driven machine learning and mech-
anism models has great potential in solvingcomplex problems in 
geophysics. Although there are still challenges to overcome, researchers 
have made significant progress in developing novel methods for inte-
grating physical models and machine learning, and there is still much 
room for further exploration and development in this field. 

In this study, we propose to fuse the petrophysical knowledge into 
the data-driven model by a loss function to constrain the training of the 
data-driven model with the mechanism model. 

2. Principle of the method 

The neural network model is one of the most representative data- 
driven machine learning, which has shown great potential in process-
ing geophysical logs. In this study, we propose a novel method that le-
verages the neural network model as the basic model, and fuse the loss 
function and mathematically transformed petrophysical information to 
affect the training of the neural network. This section provides details in 
the explanation of the petrophysical informed machine learning 
method, including the construction of loss function, the classification of 
petrophysical information, and the structure of residual neural network 
model. 

2.1. The residual neural network 

The residual neural network, proposed by He et al. (2016) for the 
image classification, won the champion in the 2015 ILSVRC (Imagenet 
Large Scale Visual Recognition Challenge). It has been widely used in 
the field of machine vision due to its ability to solve the problem of 
gradient disappearance in deep learning. In logging parameters’ pre-
diction, logs contain a large amount of information, but their redun-
dancy is much lower than that of image data, making information loss 
more likely to occur during the forward propagation of the neural 
network. The introduction of the residual neural network can fully 
retain the information of the previous layer and prevent the loss of 
effective information. 

Fig. 1 shows the multi-task residual neural network for reservoir 
parameter prediction. The model is divided into sharing representation 
and private representation for reservoir parameters. The sharing rep-
resentation extracts information related to reservoir parameter predic-
tion from logging data, while the private representation is specific to 
each reservoir parameter prediction task. Each reservoir parameter 
prediction task needs to pass through the sharing representation in the 
forward propagation and participate in model parameters update in the 
back propagation. During forward propagating, the private representa-
tion only participates in the calculation of the corresponding reservoir 
parameter, while during back propagating, the private representation 
parameters are updated only under the influence of the reservoir 
parameter. 

The residual structure exists in the sharing representation, connect-
ing the output of the preceding layer with the input of the subsequent 
layer through a shortcut layer, which can adjust the size of the preceding 
layer output. 

The operation process of residual units is expressed as follows: before 
logging data passing through the residual units to reach the private 
layers of reservoir parameters, the extracted information is recorded as 
Xp, and the operation process of residual units can be expressed as fol-
lows: 

Xq+1 = h
(
Xp
)
+ F

(
Xq,Wq, bq

)
(1)  

X′= fReLU
(
Xq+1

)
=max

(
0,Xq+1

)
(2)  

X′ = fReLU
(
h
(
Xp
)
+F
(
Xq,Wq, bq

))
(3)  

Where Xq and Xq+1 are the input (when q = 1, X1 = X) and output of the 
q-th hidden layer, respectively; Xp and Xq+1 are the input and output of 
the last residual unit, respectively; Wq is the weight of the q-th hidden 
layer; bq is the bias of the q-th hidden layer; F is an operation function of 
hidden layers, including the linear operation between hidden layers (i.e. 
Wi⋅XT

i + bi =
∑m

j=1wj
ix

j
i + bi) and nonlinear operation (i.e., activation 

function) (Michael, 2015; Goodfellow et al., 2016); the linear operation 
of the input data of the residual unit in the shortcut layer (i.e. the input 
and output information of the residual unit are in the same dimension). 

2.2. Petrophysical constraint 

The inclusion of petrophysical information is crucial in the loss 
function as it significantly impacts the update of model parameters. To 
improve the accuracy of reservoir parameter prediction, we integrate 
petrophysical information into the loss function. This has a significant 
impact on the training of the model and the replacement of its param-
eters, ultimately leading to the development of a hybrid reservoir 
parameter prediction neural network that combines data-driven and 
mechanism-based models. The specific forms of the petrophysical con-
straints vary depending on the type of petrophysical information and 
data-driven loss function used. Different forms of petrophysical con-
straints exist for varying petrophysical information and data-driven loss 
functions. 

2.2.1. Petrophysical constraint in equation form 
If we express the petrophysical information in mathematics, it can be 

broadly categorized into two groups: equality and inequality formula-
tions., Equality formations are generally more precise in describing the 
petrophysical relationships between the data. In reservoir parameter 
prediction, the logging response functions are the typical example of 
equality formations for petrophysical information. 

The logging response function can be used to obtain the mechanism 
model-based reservoir parameter expression. This function depends on 
logs, reservoir parameters, and regional interpretation parameters, and 
is denoted as FPI(). For example, the commonly used density logging 
response equation of oil and gas-bearing shaly sand (Eq. (4)) can be 
transformed into the apparent porosity function (Eq. (5)). This is further 
denoted as FPI(x,Y, Z) (Eq. (6)), where x is the logs, Y is the reservoir 
parameters, and Z is the regional interpretation parameters. 

ρb =(1 − Vsh − φ)ρma +Vshρsh +φShrρhr + φ(1 − Shr)ρmf (4)  

φ=
ρma − ρb + Vsh(ρsh − ρma)

ρma − ρmf + Shr
(
ρmf − ρhr

) (5)  

FPI(x, Y,Z)=
Zρma − xρb + YVsh (Zρsh − Zρma )

Zρma − Zρmf + YShr (Zρmf − Zρhr )
(6)  

Where ρb is the density, Vsh is shale volumetric concentration, φ is 
porosity, Shr is the residual hydrocarbon saturation of the flushing zone, 
ρma is matrix density, ρmf is mud filtrate density, ρsh is shale density, and 
ρhr is the residual hydrocarbon density in the flushing zone. 

The equation form of the petrophysical information is FPI. The data- 
driven loss function and the petrophysical constraints need to be 
calculated in the same metric space to ensure consistency. Thus, the 
petrophysical constraints correspond to the data-driven loss function. 
Take reservoir parameters prediction as the example, which is a typical 
regression problem, and the common data-driven loss functions for this 
problem are root mean squared error (RMSE), mean squared error 
(MSE), mean absolute error (MAE), and mean absolute percentage error 
(MAPE). If FPI is the calculated reservoir parameter by the logging 
response equation, we can construct the corresponding petrophysical 

R. Shao et al.                                                                                                                                                                                                                                    



Artificial Intelligence in Geosciences 5 (2024) 100070

4

constraints based on the calculation method of data-driven loss function. 
Using the RMSE as a reference, the distance between model output and 
theoretical reservoir parameters is calculated in the Euclidean domain, 
and the petrophysical constraints matching the RMSE data-driven loss 
function are given in Eq. (7). The petrophysical constraint form for MSE 
is Eq. (8), while the form of petrophysical constraint for MAE is Eq. (9). 
Referring to MAPE, the petrophysical constraint form is Eq. (10). 

LPI(x, f (x),Y,Z, ε)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑N

i=1
fReLU

( (
f (x)i − FPI(xi, Yi, Zi)

)2
− ε
)

√
√
√
√ (7)  

LPI(x, f (x),Y,Z, ε)= 1
n
∑N

i=1
fReLU

( (
f (x)i − FPI(xi,Yi,Zi)

)2
− ε
)

(8)  

LPI(x, f (x),Y,Z, ε)= 1
n
∑N

i=1
fReLU

( ⃒
⃒f (x)i − FPI(xi, Yi, Zi)

⃒
⃒ − ε

)
(9)  

LPI(x, f (x),Y,Z, ε)= 1
n

∑N

i=1
fReLU

(⃒
⃒
⃒
⃒1 −

f (x)i

FPI(xi,Yi, Zi)

⃒
⃒
⃒
⃒ − ε

)

(10)  

Where f(x) is the model output, also named as the predicted value; N is 
the number of samples; ε pis the allowable error range of petrophysical 
constraints. Since the regional interpretation parameters Z are fixed, the 
calculated reservoir parameter using the logging response equation may 
not be accurate. Therefore, we set an allowable error range for the 
petrophysical constraints to reduce the deviation of the loss function 
caused by the inaccurate calculation. If the error between the calculated 
reservoir parameter and the model outputs falls within the allowable 
range, LPI() is 0. 

2.2.2. Petrophysical constraint in inequation form 
Petrophysical information in inequality is more abstract than the 

information expressed in equality. It usually represents the relationship 
between reservoir parameters and logging response values or the range 
of various data values. We usually transform this information into a 
function that is always less than zero under normal circumstances, 
which is denoted as GPI. For example, to transfer petrophysical infor-

mation “porosity range always between 0 and 30 %" to the petrophy-
sicial constraint, we can use Eq. (11). This information is limited to the 
range of reservoir parameters and is only relevant to the model output. 
When the porosity prediction f(x)φ is between 0 and 30, GPI(f(x)) is less 
than zero. When the f(x)φ is greater than 30 or less than 0, GPI(f(x)) is 
greater than 0, and the more out of range, the larger GPI(f(x)) is, 

GPI(f (x))= − f (x)φ
(30 − f (x)φ

) (11) 

If the information suggestes that “the trend of density logging and 
acoustic travel time logging is roughly the same”, it can be expressed as 
Eq. (12). This information only pertains to the logs. Both acoustic travel 
time log and density log are associated with porosity. Acoustic travel 
time log exhibits a negatively correlation with porosity, while density 
log shows a positive correlation with porosity. Therefore, acoustic travel 
time log and density log are typically negatively correlated with each 
other. Eq. (12) normalizes each log separately and then multiplies them. 
The normalized data is scaled into an interval with a mean of 0 and a 
variance of 1. If the acoustic travel time log and density log meet an 
overall negative correlation trend, then GPI(x) will be negative. How-
ever, if two log curves meet an overall positive correlative trend, GPI(x)
will be positive. 

GPI(x)=
(

xρb − xρb

xρb
σ

)(
xΔt − xΔt

xΔt
σ

)

(12)  

Where xρb is density logs; xρb is the mean of density logs; xρb
σ is the 

variance of density logs; xΔt is acoustic travel time logs; xΔt is the mean 
of acoustic travel time logs; xΔt

σ is the variance of acoustic travel time 
logs. 

Similar to the petrophysical constraints in the equation form, the 
petrophysical constraints in the inequation form also need to be con-
structed based on the data-driven loss function. Eq. (13) and (14) are the 
forms of inequality petrophysical constraint corresponding to RMSE and 
MSE, respectively. Eq. (15) and (16) represent the forms of petrophysical 
constraint corresponding to MAE and MAPE, respectively. 

Fig. 2. Petrophysical informed residual neural network for multi-task reservoir parameter prediction with the data-mechanism-driven loss function.  
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Fig. 3. Data distribution and cross-plot of the oilfield measured logging dataset. (a) The oilfield logging data distribution and cross-plot, including acoustic travel 
time (AC), caliper (CAL), compensated neutron (CNL), bulk density log (DEN), gamma ray (GR), deep resistivity (RT), and spontaneous potential (SP). (b) Distri-
bution and cross-plot of reservoir parameters. 
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LPI(x, f (x),Y,Z, ε)=

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
n

∑N

i=1
fReLU(GPI(xi,Yi, Zi) − ε)2

√
√
√
√ (13)  

LPI(x, f (x),Y,Z, ε)= 1
n
∑N

i=1
fReLU(GPI(xi,Yi,Zi) − ε)2 (14)  

LPI(x, f (x),Y,Z, ε)= 1
n
∑N

i=1
fReLU(GPI(xi,Yi,Zi) − ε) (15)  

LPI(x, f (x),Y,Z, ε)= 1
n

∑N

i=1
fReLU

( ⃒
⃒f (x)i

⃒
⃒

GPI(xi,Yi, Zi)
− ε
)

(16)  

2.3. The data-mechanism-driven loss function 

Fig. 2 shows the structure of petrophysical informed residual neural 
network for multi-task reservoir parameter prediction. This model 
achieves data-mechanism-driven behavior through the fusion of data- 
driven loss function and petrophysical constraint. For the logging 
reservoir parameter prediction, considering, petrophysical constraints 
can be categorized into three types based on the data types involved in 
the petrophysical information:  

(1). Constraints related only to the input data that check the logs’ 
compliance, and often in the form of inequality petrophysical 
constraint;  

(2). Constraints related only to the output data that restrict the 
reservoir parameters to a reasonable range, also in the form of the 
inequality petrophysical constraint; 

Table 1 
Construction method and parameters of neural network model for reservoir parameter prediction using oilfield data. For the transfer learning, the part in bold of the 
source model and target model is the transferred parameters.  

dataset Method Name Model structure parameters optimizer 

Oilfield measured data Multi-DNN DNN_a 7-32-16-32-4*(8–1) 2420 Adam 
PI-DNN PI_DNN_a 7-32-16-32-4*(8–1) 2420 
Multi-ResNN ResNN_a ↗32↘ 

7-32-16-32-4*(8–1) 
2676 

PI-ResNN PI_ResNN_a ↗32↘ 
7-32-16-32-4*(8–1) 

2676 

Transfer-DNN DNN_source_a 7–32–16–32-8-1 1601 Adam 
DNN_target_ft_a 7–32–16–32-3*(8–1) 2147 Adam + fine-tune 
DNN_target_fz_a 7–32–16–32-3*(8–1) 2147 Adam + freezing 

Transfer-ResNN ResNN_source_a ↗32↘ 
7–32–16–32-8-1 

1857 Adam 

ResNN_target_ft_a ↗32↘ 
7–32–16–32-3*(8–1) 

2403 Adam + fine-tune 

ResNN_target_fz_a ↗32↘ 
7–32–16–32-3*(8–1) 

2403 Adam + freezing  

Fig. 4. Cross-plot between gamma ray and shale volumetric concentration from 
the oilfield dataset. 

Table 2 
Evaluation Metrics of various models on the test set of field data. The total MAE 
is the sum of MAE values for the four reservoir parameters. The total MAPE and 
total R2 score are the mean values of the four reservoir parameter evaluation 
indicators. The MSE ± std is not averaged or summed, but instead shows the 
mean square error (MSE) with its corresponding standard deviation (std).  

Model MAE MSE ± std MAPE R2 

DNN_a SH 2.679 15.39 ± 3.82 17.37 0.663 
POR 0.505 0.527 ± 0.685 5.524 0.927 
PERM 0.063 0.0337 ± 0.18 20.31 0.542 
SW 6.077 72.33 ± 8.425 9.122 0.743 
Total 9.324 – 13.08 0.719 

PI_DNN_a SH 2.276 12.178 ± 3.45 14.85 0.733 
POR 0.437 0.4368 ± 0.60 4.916 0.950 
PERM 0.051 0.0337 ± 0.19 16.49 0.509 
SW 5.551 63.952 ± 7.87 8.263 0.775 
Total 8.315 – 11.13 0.742 

ResNN_a SH 2.599 14.60 ± 3.8 16.78 0.680 
POR 0.552 0.5741 ± 0.74 6.141 0.921 
PERM 0.059 0.024 ± 0.15 25.77 0.671 
SW 5.974 70.44 ± 8.22 8.888 0.752 
Total 9.184 – 14.3 0.756 

PI_ResNN_a SH 2.257 12.60 ± 3.54 14.93 0.724 
POR 0.453 0.42 ± 0.684 4.988 0.942 
PERM 0.055 0.03 ± 0.171 16.31 0.572 
SW 5.073 50.48 ± 7.09 7.596 0.822 
Total 7.837 – 10.96 0.765 

DNN_source_a SH 2.311 14.29 ± 3.70 14.58 0.687 
DNN_target_ft_a POR 0.459 0.431 ± 0.654 5.267 0.941 

PERM 0.050 0.028 ± 0.163 16.95 0.624 
SW 4.973 52.99 ± 7.19 7.320 0.813 
Total 5.482 – 9.846 0.793 

DNN_target_ fz_a POR 0.458 0.431 ± 0.656 5.276 0.941 
PERM 0.049 0.022 ± 0.147 16.59 0.698 
SW 5.505 72.549 ± 8.4 8.736 0.745 
Total 6.012 – 10.20 0.794 

ResNN_source_a SH 2.253 13.486 ± 3.63 14.74 0.704 
ResNN_target_ft_a POR 0.463 0.448 ± 0.669 5.348 0.938 

PERM 0.047 0.0184 ± 0.1 17.46 0.750 
SW 5.629 72.236 ± 8.30 9.098 0.746 
Total 6.139 – 10.64 0.811 

ResNN_target_fz_a POR 0.461 0.445 ± 0.667 5.246 0.939 
PERM 0.051 0.023 ± 0.15 19.01 0.684 
SW 5.725 68.74 ± 8.24 8.889 0.758 
Total 6.237 – 11.05 0.794  
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Fig. 5. The application effect of different reservoir parameter prediction neural networks constructed or trained by various methods. The lithologic logs (SP, GR, 
CAL), resistivity log (RT), and porosity logs (CNL, DEN, AC) are used as features, while SH, POR, PERM, and SW are the labeled reservoir parameters. The suffixes of 
reservoir parameters represent the different models. For the transfer learning model, the suffixes are ‘tf’, where ‘tf’ is the source model used for SH prediction. ‘tf1’ 
and ‘tf2’are fine-tuning training and freezing training models used for other reservoir parameters prediction, respectively. The figure illustrates the actual application 
effect of the different models trained by oilfield data on one well in the test set. 

R. Shao et al.                                                                                                                                                                                                                                    



Artificial Intelligence in Geosciences 5 (2024) 100070

8

Fig. 6. Data distribution and cross-plot of the 2021 SPWLA PAAD competition dataset from the Society of Petrophysics and Well Log Analysts (SPWLA). (a)Dis-
tribution and cross-plot of logs, including caliper (CALI), bulk density log (DEN), gamma ray (GR), neutron porosity (NEU), medium resistivity (RMED), and deep 
resistivity (RDEP). (b) Distribution and cross-plot of reservoir parameters including porosity (PHIF), shale volumetric concentration (VSH), and water satura-
tion (SW). 
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(3). Constraints related to both input and output data that enforce the 
relationship between logs and reservoir parameters to fit existing 
cognition, expressed as both equation and inequation forms. 
These three types of rock physical constraints are uniformly 
represented as LPI(). Eq. (17) shows the total loss function with 
data-driven loss function and petrophysical constraints, 

L(x, f (x), Y, Z, ε ) =
∑

j∈{Vsh ,φ,K,Sw}

λj
dataLj

data

(
Yj, f (x)j

)
+

∑k

i=1
λi

PIL
i
PI(x, f (x),Y,Z, ε )

(17)  

Where x is input logging data, Y is the labeled reservoir parameters, f(x)
is the model output, Z is the physical parameters used in the petro-
physical constraint, and ε is the allowable error ranges of the petro-
physical constraint. Vsh, K, and Sw are shale volumetric concentration, 
porosity, permeability, and water saturation, respectively. λj

data is the 
weight of the data-driven loss function, and Lj

data is the data-driven loss 
function of different reservoir parameters. The total number of petro-
physical constraints is k and λi

PI is the i-th weight of petrophysical 
constraint. Li

PI() is the i-th petrophysical constraint. 

3. Case study 

In this section, we aim to demonstrate how incorporating logging 
domain knowledge can improve the performance of the reservoir eval-
uation model. We use different types of logging data from two separate 

areas. The first dataset is obtained from an oil field in China and we want 
to predict porosity, permeability, shale volumetric concentration, and 
water saturation. The second dataset is provided by the Petrophysical 
Data Driven Analytics (PDDA) machine learning competition 2021, 
organized by the Society of Petrophysicists and Well Log Analysts 
(SPWLA). We aim to predict porosity, water saturation, and shale 
volumetric concentration (SPWLA, 2021). We compare the performance 
of the multi-task neural network and multi-task residual neural network 
with and without petrophysical petrophysical constraints on the two 
logging datasets. In addition, we analyze the impact of different com-
binations of petrophysical mechanism models on the overall perfor-
mance of the model. 

Table 3 
Construction method and parameters of neural network model for reservoir parameter prediction using SPWLA PDDA machine learning competition data. For the 
transfer learning, the part in bold of the source model and target model is the transferred parameters.  

dataset Method Name Model structure parameters optimizer 

SPWLA PDDA Multi-DNN DNN_b 6-32-16-32-3*(8-4-1) 2211 Adam 
PI-DNN PI_DNN_b 6-32-16-32-3*(8-4-1) 2211 
Multi-ResNN ResNN_b ↗32↘ 

6-32-16-32-3*(8-4-1) 
2435 

PI-ResNN PI_ResNN_b ↗32↘ 
6-32-16-32-3*(8-4-1) 

2435 

Transfer-DNN DNN_source_b 6–32–16–32-8-4-1 1601 Adam 
DNN_target_ft_b 6–32–16–32-2*(8-4-1) 1906 Adam + fine-tune 
DNN_target_fz_b 6–32–16–32-2*(8-4-1) 1906 Adam + freezing 

Transfer-ResNN ResNN_source_b ↗32↘ 
6–32–16–32-8-4-1 

1825 Adam 

ResNN_target_ft_b ↗32↘ 
6–32–16–32-2*(8-4-1) 

2130 Adam + fine-tune 

ResNN_target_fz_b ↗32↘ 
6–32–16–32-2*(8-4-1) 

2130 Adam + freezing  

Fig. 7. Cross-plot for gamma ray and shale volumetric concentration in the 
2021 SPWLA PDDA competition dataset. 

Table 4 
Evaluation Metrics for various models on the test set in the 2021 SPWLA PADD 
competition data.  

Model MAE MSE ± std MAPE R2 

DNN_b PHIF 0.006 9.8e-5±0.01 9.208 0.980 
VSH 0.053 0.0041 ± 0.07 24.79 0.918 
SW 0.015 0.0014 ± 0.04 3.373 0.987 
Total 0.074 – 12.457 0.962 

PI_DNN_b PHIF 0.005 6.5e-5±0.01 8.321 0.987 
VSH 0.048 0.0048 ± 0.07 19.472 0.912 
SW 0.011 0.0008 ± 0.03 2.467 0.992 
Total 0.063 – 10.087 0.964 

ResNN_b PHIF 0.009 1.9e-4±0.01 11.380 0.960 
VSH 0.05 0.0046 ± 0.07 22.364 0.914 
SW 0.018 0.0020 ± 0.04 4.479 0.982 
Total 0.081 – 12.741 0.952 

PI_ResNN_b PHIF 0.004 6.2e-5±0.01 6.706 0.978 
VSH 0.046 0.0046 ± 0.07 18.935 0.914 
SW 0.012 0.0008 ± 0.03 2.915 0.992 
Total 0.062 – 9.519 0.961 

DNN_source_b SH 0.049 0.0045 ± 0.07 18.761 0.917 
DNN_target_ft_b PHIF 0.005 8.0e-5±0.01 8.300 0.983 

SW 0.012 0.0009 ± 0.03 2.680 0.991 
Total 0.016 – 5.49 0.987 

DNN_target_fz_b PHIF 0.005 7.6e-5±0.01 8.792 0.984 
SW 0.012 0.0009 ± 0.03 2.716 0.992 
Total 0.017 – 5.754 0.988 

ResNN_source_b SH 0.048 0.0039 ± 0.06 20.371 0.928 
ResNN_target_ft_b PHIF 0.005 5.9e-5±0.01 7.533 0.988 

SW 0.013 0.0009 ± 0.03 2.956 0.992 
Total 0.018 – 5.245 0.990 

ResNN_target_fz_b PHIF 0.005 7.6e-5±0.01 8.846 0.984 
SW 0.013 0.0010 ± 0.03 2.986 0.990 
Total 0.019 – 5.916 0.987  
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Fig. 8. The application effect of various reservoir parameter prediction neural networks constructed or trained using different methods. The lithologic logs (GR, 
CALI) resistivity logs (RMED, RDEP), and porosity logs (DEN, NEU) are used as features, while PHIF, VSH, and SW are the labeled reservoir parameters. The suffixes 
of reservoir parameters represent the different models. For the transfer learning model, the suffixs are ‘tf’, where ‘tf’ is the source model used for VSH prediction, ‘tf1’ 
and ‘tf2’ are fine-tuning training and freezing training models used for other reservoir parameters prediction, respectively. The figure illustrates the actual application 
effect of the different models trained by SPWLA PDDA machine learning competition data on one well in the test set. 
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3.1. Oilfield measured data 

3.1.1. Data description 
The first dataset consists of conventional logs obtained from a tight 

sandstone shale oil and gas reservoir with low porosity, low perme-
ability, and low contrast. Logs include acoustic travel time (AC), 
compensated neutron (CNL), bulk density log (DEN), caliper (CAL), 
gamma ray (GR), spontaneous potential (SP), and deep resistivity (RT). 
The reservoir parameters we want to predicate are shale volumetric 
concentration (SH), porosity (POR), permeability (PERM), and water 
saturation (SW). The distribution ranges of SH, POR, PERM, and SW are 
16.61 ± 6.60 (%),9.71 ± 2.70 (%), 0.233 ± 0.255 (mD), and 66.60 ±
16.74 (%). Since the experiment involves the fusion of petrophysics 
knowledge and data-driven model through loss function, data normali-
zation, standardization and other scaling processing are not suitable. 
After removing the missing value and outliers, more than 5000 labels are 
used for the model training and testing. Fig. 3a shows the distribution 
and cross-plot of logs, Fig. 3b shows the distribution and cross-plot of 
reservoir parameters. 

3.1.2. Model construction and training 
In this case study, two basic models are used: multi-task deep neural 

network (Multi_DNN) and multi-task residual neural network (Multi_-
ResNN). One of the key advantages of the multi-task model in the 
context of data-mechanism driven reservoir parameter prediction is that 
different predication tasks are interconnected. Petrophysical constraints 
can impact one reservoir parameter task, but they can also affect the 
predictions of other reservoir parameters. In the task of predicting 
reservoir parameters, logging response functions demonstrate that the 
parameters such as porosity and shale volumetric concentration have 
the approximately linear relationship with multiple logging curves. 
Therefore, the residual structure in the neural network is expected to 
improve the model’s ability to fit this linear relationship. 

Transfer learning also can incorporate petrophysical information 
into the neural network by leveraging the known relationship between 
reservoir parameters to improve the performance of the model in the 
target domain. In logs’ interpretation, the shale volumetric concentra-
tion is calculated from gamma ray or spontaneous potential, and the 
porosity is calculated using the shale-corrected porosity logs (acoustic 
travel time, compensated neutron and density). Finally, the porosity, 
shale volumetric concentration, and resistivity logs are used to calculate 
the water saturation and other relevant information. We set the shale 
volumetric concentration prediction model as the source model, and 
other reservoir parameters prediction model as the target model, using 
the knowledge gained from the source model to improve the perfor-
mance of the target model. There are two methods for training the 
transferred parameters in transfer learning: parameter freezing and fine- 
tuning. In parameter freezing, the transferred parameters are fixed, and 

only other parameters are iterated during the target model training. In 
the parameter fine-tuning, some or all the transferred parameters 
participate in the parameter iteration of the target model training. 

We use Adam optimizer (Kingma and Ba, 2014) in the training 
process. By setting the hyper-parameter and using the Adam algorithm, 
the updating step size can be automatically calculated. The step size 
decreases when the noise is high and the step size increases when the 
noise is low, allowing the model to approach the optimal point quickly 
and stably. 

Table 1 lists a statistical summary of the model used in this section. 
Reservoir parameters are typically handled in multi-task reservoir 

parameter prediction using a normalization method that unifies the data 
scale such that there is no order of magnitude difference in the loss 
function between tasks. In addition, adjusting the λdata also could bal-
ance the differences between the loss functions between different 
reservoir parameters. In the experiments, since the logging response 
functions we added will use model outputs, it is not appropriate to 
normalise the reservoir parameters.The MAPE loss function calculates 
the percentage difference between the outputs and the tagged values, 
which means that the loss function does not vary by several orders of 
magnitude on the reservoir parameter even though it is not normalized 
for the reservoir parameter. And the weights of the data-driven loss 
function can all be set to 1. In the petrophysical informed model, we use 
the gamma ray logging response function to calculate the shale volu-
metric concentration. The total loss function is given by Eq. (18), 

L(x, f (x),Y, Z, ε ) = 1
n
∑N

i=1

[
∑

j∈{Vsh ,φ,K,Sw}

(⃒⃒f (x)j
i − Yj

i

⃒
⃒

Yj
i

)

+

λPIfReLU

(⃒
⃒
⃒
⃒
⃒
1 −

FVsh
PI (xi, Yi, Zi)

f (x)Vsh
i

⃒
⃒
⃒
⃒
⃒
− ε

)] (18)  

Where f(x)Vsh
i and FVsh

PI (xi,Yi, Zi) are the model output shale volumetric 
concentration and theoretical shale volumetric concentration of i-th 
sample, respectively; Yj

i and f(x)j
i are the label and model output 

reservoir parameters of i-th sample, respectively. λPI is the weight of the 
regularization term and fReLU is the activation function. 

Gamma ray reflects the absorption of formation for gamma, which 
depends mainly on the formation density. The gamma ray logging 
response function can be expressed as Eq. (19), 

GRρb =GRmaρma + Vsh(GRshρsh − GRmaρma) (19)  

Where GR is the gamma ray log, ρb is density log, Vsh is the shale 
volumetric concentration, GRma and GRsh are the gamma ray of matrix 
and shale respectively, and ρma and ρsh are density log of matrix and 
shale, respectively. 

Using Eq. (19), we can calculate FVsh
PI (xi,Yi,Zi) by Eq. (20), 

FVsh
PI (x, Y, Z)=

xGR xρb − ZGRma Zρma

ZGRsh Zρsh − ZGRma Zρma
× 100% (20)  

Where GRma = 5.0, ρma = 2.65, GRsh = 115.0, ρsh = 2.96. 

3.1.3. Model construction and training 
In the experiment, the training set and test set are split in a ratio of 

4:1. The used optimizer is Adam with default hyperparameters. All data- 
driven models use MAPE as loss functions. The number of epochs is 
10000 and the batch size is 100. The two models with the petrophysical 
constraint, PI_DNN_a and PI_ResNN_a, use the same total loss function 
which is represented in Eq. (22). The two parameters λPI and ε control 
the addition of petrophysical information. A higher λPI results in a 
greater influence of the petrophysical information, while a higher ε al-
lows for a greater allowable error range of the mechanism model. Based 
on the cross-plot of gamma ray - shale volumetric concentration in 
Fig. 4, gamma ray and shale volumetric concentration are positively 
correlated but with an inconspicuous linear relationship. And λPI and ε 

Table 5 
Performance of reservoir parameters prediction of the residual neural network 
model with petrophysical constraints with different λPI .  

λPI Out-put MAPE_AVG MAPE MAE MSE ± std R2 

0 SH 13.72 16.70 2.59 15.35 ± 3.83 0.663 
POR 10.74 0.913 1.429 ± 1.195 0.803 

0.01 SH 11.70 15.28 2.51 15.09 ± 3.84 0.683 
POR 8.12 0.621 0.986 ± 0.993 0.864 

0.02 SH 11.49 15.35 2.42 14.40 ± 3.68 0.684 
POR 7.64 0.678 1.012 ± 1.005 0.860 

0.05 SH 10.61 15.36 2.33 13.48 ± 3.65 0.704 
POR 5.86 0.529 0.577 ± 0.756 0.920 

0.1 SH 11.03 15.29 2.40 14.17 ± 3.64 0.689 
POR 6.76 0.609 0.777 ± 0.879 0.893 

0.2 SH 12.20 16.09 2.52 15.14 ± 3.81 0.668 
POR 8.31 0.715 0.914 ± 0.953 0.874 

0.5 SH 13.21 16.48 2.63 15.85 ± 3.83 0.652 
POR 9.946 0.865 1.320 ± 1.146 0.818  
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are set as 0.1. 
To evaluate the effectiveness of a model, it is common to use multiple 

evaluation indexes since a single index may have some shortcomings. In 
this experiment, we use several evaluation indexes, including MAE, MSE 

± std, MAPE, and R2 score (Eq. (21)), to comprehensively evaluate the 
performance of each prediction model for reservoir parameters on the 
test set. The indexes can not only be used as loss functions, but also for 
model evaluation. In general, smaller values of MAE, MSE, and MAPE 
indicate better model performance. The R2 score, which ranges from 0 to 

1, reflects the relative contribution of the regression, i.e., the percentage 
of the total variation in the dependent variable f(x) that can be 
explained by the regression. The larger the R2 score, the better the model 
performance. 

R2 =

∑
i(f (xi) − Y)2

∑
i(Yi − Y)2 (21) 

Table 2shows the performance of various models on the test set. 
The petrophysical informed model generally outperforms pure data- 

Fig. 9. Comparison of application performance of petrophysical informed model with different λPI. POR/SH_1e-2, POR/SH_2e-2, POR/SH_5e-2, POR/SH_1e-1, POR/ 
SH_2e-1, and POR/SH_5e-1 represent taking λPI as 0.01, 0.02, 0.05, 0.1, 0.2,0.5 respectively. 
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driven model, whether based on the deep neural network (DNN) or re-
sidual neural network (ResNN) when we predict the four reservoir pa-
rameters together. Overall, the MAPE_AVG of the PI_DNN_a model is 
about 2 % which is lower than that of the DNN_a model, and the 
MAPE_AVG of the PI_ResNN_a model is about 4 % which is lower than 
that of the ResNN_a model. Specifically, for DNN based model, the 
permeability (PERM) prediction performance is most improved, with a 
decrease in MAPE of about 4 %, while the MAPE of shale volumetric 
concentration (SH), the main focus of the mechanism model, is 
decreased by about 2.5 %. For ResNN based model, the PERM prediction 
performance is also most improved, with a decrease in MAPE of nearly 
10 %, and the MAPE of SH is decreased by about 2 %. These experiments 
suggest that the petrophysical constraint has a more pronounced effect 
on the ResNN than the DNN. The petrophysical informed model can 
improve the prediction performance of multiple reservoir parameters in 
a multi-task model. 

Transfer learning divides the reservoir parameters prediction into 
two models. First, the shale volumetric concentration prediction model 
is trained, and then the other three reservoir parameters prediction 
model based is trained based on the transferred parameters from the 
shale volumetric concentration prediction model. Compared with the 
multi-task model, the prediction performance of the three reservoir 
parameters is improved after transfer learning. 

The DNN improves more obviously than the ReNN in terms of the 
improvement effect of reservoir parameters prediction. There is little 
difference between the performance of the model trained by the fine- 
tune method and the freezing method, and the fine-tune method is 
slightly better. Compared with the training method, the model structure 
and the selection of source and target domains have more influence on 
the model performance. The prediction performance of the single-task 
shale volumetric concentration prediction model is obviously better 
than that of the multi-task model because the assistance of the shale 
volumetric concentration prediction task from other reservoir parameter 
prediction tasks in the multi-task model is less than the interference of 
other tasks with the shale volumetric concentration prediction task. 
With the help of petrophysical knowledge in the petrophysical 
constraint, the prediction performance of shale volumetric concentra-
tion is similar to that of the single-task model, indicating that the pet-
rophysical constraint can reduce mutual interference in the multi-task 
model and improve performance. 

Although there is little difference between the performances of 
transfer learning and the petrophysical informed model from the eval-
uation indicators, transfer learning needs to train two models and decide 
on the source and target domains. The reservoir parameters prediction 
process of transfer learning is more complex, and it consumes more 
computing resources compared with the petrophysical informed model. 
For the application mechanism of petrophysics knowledge, the petro-
physical informed model can select the appropriate mechanism model 
and control the mechanism model fusion through λPI and ε. On the other 
hand, the application of transfer learning to petrophysics knowledge is 

relatively simple, and it cannot accurately fuse petrophysics knowledge 
with the model. Fig. 5 shows the application of all models trained by 
field data on one well in the test set. 

3.2. SPWLA PDDA machine learning competition data 

3.2.1. Data description 
The second dataset used in the case study is obtained from the Pet-

rophysical Data Driven Analytics (PDDA) machine learning competition 
2021, organized by the Society of Petrophysics and Well Log Analysts 
(SPWLA). The dataset consists of 12 logs, and we select caliper (CALI), 
bulk density log (DEN), gamma ray (GR), neutron porosity (NEU), deep 
resistivity (RDEP), and medium resistivity (RMED) for reservoir pa-
rameters prediction. After data pre-processing, over 40,000 labels are 
used in the model for training and testing. Fig. 6a shows the distribution 
and cross-plot of logs. Reservoir parameters are all less than 1 where 
PHIF is distributed in the interval of (0, 0.404), VSH in the interval of (0, 
1), and SW in the interval of (0.04, 1). Fig. 6b shows the distribution and 
cross-plot of reservoir parameters. Overall, the first dataset is more 
evenly distributed, while the second dataset is more widely distributed. 

3.2.2. Model construction and training 
The SPWLA PDDA dataset is also used for experiments using a model 

without petrophysical constraints and a transfer learning model. Table 3 
lists the models used in this experiment and their settings. 

The distribution range of the three reservoir parameters in the 2021 
SPWLA PDDA competition dataset is similar and located in the interval 
(0,1). We use MAE as the data-driven loss function and select the cor-
responding petrophysical constraint. Eq. (22) gives the total loss 
function. 

L(x, f (x),Y, Z, ε ) = 1
n
∑N

i=1

[
∑

j∈{Vsh ,φ,Sw}

⃒
⃒f (x)j

i − Yj
i

⃒
⃒+

λPIfReLU
( ⃒
⃒f (x)Vsh

i − FVsh
PI (xi, Yi, Zi)

⃒
⃒ − ε

)] (22)  

Where f(x)Vsh
i and FVsh

PI (xi,Yi, Zi) are the model output shale volumetric 
concentration and theoretical shale volumetric concentration of i-th 
sample, respectively; Yj

i and f(x)j
i are the label and model output 

reservoir parameters of i-th sample, respectively. λPI is the weight of the 
regularization term and fReLU is the activation function. 

Since there is limited geological or core information, it is difficult to 
analyze the source of radioactive material in the reservoir. We select a 
gamma ray logging response function in a more general form, 

Ish =(GR − GRmin) / (GRmax − GRmin) (23)  

FVsh
PI =Vsh =

2gcurIsh − 1
2gcur − 1

(24)  

Where Ish is the relative value between shale volumetric concentration 
and gamma ray log. GRmin and GRmax are gamma ray log of pure sand-
stone and pure shale. We set GRmin = 1, GRmax = 130. gcur is the 
empirical coefficient, which is related to the stratigraphic age. For 
Tertiary strata, gcur = 3.7. 

3.2.3. Experimental result 
Nine wells in the 2021 SPWLA PDDA competition dataset have la-

bels. We select one well as the test set and the remaining eight wells as 
the training set. The used optimizer is Adam with the default hyper- 
parameters, and the data-driven loss function of all models are MAE. 
The number of epochs is 1000 and the batch size is 1000. Two petro-
physical informed models, PI_DNN_b and PI_ResNN_b, use the same 
petrophysical constraint by Eq. (22). Fig. 7 shows the cross-plot of 
gamma ray and shale volumetric concentration. The correlation be-
tween gamma ray and shale volumetric concentration in this data is 
better than that in the field data in the previous section. Combined with 

Table 6 
Performance of reservoir parameters prediction of the residual neural network 
model with petrophysical constraints with different ε.  

ε Out-put MAPE_AVG MAPE MAE MSE ± std R2 

0.01 SH 12.33 15.77 2.41 13.96 ± 3.68 0.693 
POR 8.890 0.773 1.144 ± 1.068 0.842 

0.02 SH 11.19 15.44 2.43 14.60 ± 3.72 0.680 
POR 6.93 0.626 0.854 ± 0.914 0.883 

0.05 SH 10.99 15.23 2.38 14.04 ± 3.64 0.692 
POR 6.75 0.599 0.696 ± 0.834 0.904 

0.1 SH 11.00 15.29 2.40 14.17 ± 3.64 0.689 
POR 6.72 0.607 0.867 ± 0.927 0.880 

0.2 SH 11.38 15.88 2.47 14.31 ± 3.71 0.686 
POR 6.88 0.619 0.801 ± 0.895 0.889 

0.5 SH 11.68 15.99 2.54 14.88 ± 3.75 0.673 
POR 7.37 0.660 0.861 ± 0.922 0.881  
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the gamma ray logging response function used in the petrophysical 
constraint, we set λPI = 0.1 and ε = 0.05. 

The indicators to evaluate model are the same as in section 2.1.3. 
Table 4 lists the performance of various models in the test set. 

The data quality of the 2021 SPWLA PDDA dataset is better than that 
of the field data in section 3.1, and the data-driven machine learning 
models perform better. The petrophysical informed model and transfer 
learning methods both improve the model performance, as observed in 
section 3.1.3. The PI_DNN_b model performs better than the DNN_b 
model, whit a more than 2 % lower MAPE_AVG and an improvement in 

the prediction performance of shale volumetric concentration, where 
the MAPE decreases by about 5.5 %. The PI_ResNN_b model shows a 
decrease in MAPE_AVG of about 3.5 % compared with that of the 
ResNN_b model, with the porosity prediction performance improving 
most notably, with a decrease in MAPE of about 4.5 %. The transfer 
learning model trained by the fine-tuning is better than that trained by 
freezing, while the prediction performance of porosity and water satu-
ration in DNN_target_ft_b is worse than that in PI_DNN_b. The same is 
observed for the ResNN_target_ft_b model, where the prediction per-
formance of porosity and water saturation is inferior to that in 

Fig. 10. Comparison of actual application performance of petrophysical constraint model with different ε. POR/SH_1e-2, POR/SH_2e-2, POR/SH_5e-2, POR/SH_1e-1, 
POR/SH_2e-1, and POR/SH_5e-1 represent taking ε as 0.01, 0.02, 0.05, 0.1, 0.2,0.5 respectively. 
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PI_ResNN_b. 
Compared with field data in section 3.1, the 2021 SPWLA PDDA 

competition data is more sensitive to the petrophysical constraint. The 
experimental results show that the structure of the ResNN is more 
suitable for adding petrophysical constraints. Fig. 8 shows the applica-
tion of a well in the test set of all models trained on the 2021 SPWLA 
PDDA competition data. 

4. Influence of mechanism model on the petrophysical informed 
model 

In this section, we will discuss the effect of the two parameters (λPI 
and ε) on the performance of the petrophysical informed model and test 
its anti-noise performance based on the measured data in an oilfield in 
China. Many petrophysical logging response functions are the empirical 
formula, which is not accurate and cannot apply to all situations. It is 
critical to control the fusion degree of the mechanism model in the 
petrophysical informed model. We hope that the empirical formula can 
optimize model the model quickly and explore a more accurate mapping 
relationship between input and output data. 

We use the multi-task ResNN with two outputs (porosity and shale 
volumetric concentration) as the basic model. All models take the pa-
rameters of the pre-training model (100 epochs of data-driven training) 
as initial parameters to avoid the uncertainty of parameter updates 
caused by random parameter initialization. The selection of the total loss 
function and other model optimization methods are the same as those in 
section 3.1. 

4.1. Weight of petrophysical constraints 

The weight of petrophysical petrophysical constraint λPI can control 
the proportion of the petrophysical constraint in the total loss function. 
The larger the λPI, the more significant the influence of petrophysical 
information on the model. As the logging response function is a 
simplification of the real situation and the downhole formation is un-
certain and heterogeneous, the logging response function may not be 
reliable, and the λPI needs to be tested to find a suitable value. We set λPI 
as 0, 0.01, 0.02, 0.05, 0.1, 0.2, and 0.5, and set ε as 0.1 to test the 
model’s performance on the test set after 10,000 epochs of training 
under different weights of petrophysical constraints (shown in Table 5). 

The experimental results show that λPI affects the petrophysical 
informed model’s performance. If λPI is too large or too small, the 

petrophysical informed model cannot achieve the best performance. 
Specifically, the MAPE_AVG of the model first decreases and then in-
creases with the increase of λPI. When λPI = 0.1, the performance of 
shale volumetric concentration is the best, and when λPI = 0.05, the 
performance of porosity is the best, and the model’s MAPE_AVG is the 
lowest. If the λPI is too small, the mechanism model cannot compete with 
the data-driven model, and the fusion between data-driven and mech-
anism models cannot be achieved. If the λPI is too large, the petro-
physical informed model cannot extract information from the data, and 
the prediction performance may decrease due to the mismatch between 
the mechanism and the data-driven models. 

Currently, there is no suitable method for selecting λPI, and it needs 
constant adjustment according to data quality, mechanism model ac-
curacy, and neural network structure. Overall, if the mechanism model 
is accurate or the data quality is low, we can set λPI to a large value. If the 
reliability of the mechanism model is not good, the λPI should be set to a 
small value. Fig. 9 shows the comparison of prediction performances of 
different λPI on the test set. 

4.2. Allowable error of petrophysical constraints 

The λPI adjusts the proportion of the petrophysical constraint in the 
total loss function, thus affecting response functions in the petrophysical 
informed model. While the allowable error ε sets a “buffer zone” for the 
petrophysical informed model, and adjusts the fusion degree according 
to the accuracy of the mechanism model. 

In the case of Eq. (22) as the total loss function, we set λPI = 0.1 and ε 
as 0.01, 0.02, 0.05, 0.1, 0.2 and 0.5 respectively, representing the 
allowable error of the gamma ray logging response function of 1 %, 2 %, 
5 %, 10 %, 20 % and 50 %. The performance of models with different ε 
on the test set after 10,000 epochs of training is shown in Table 6. 

As the ε increases, the MAPE_AVG of the model first decreases and 
then increases. The optimal model performance is achieved when ε =
0.05. Compared to the result in section 4.1, the variation of ε has less 
impact on the model performance. While the gamma ray logging 
response function is mainly influenced by shale volumetric concentra-
tion, the prediction performance of shale volumetric concentration has a 
less noticeable differences. However, the variation in the porosity pre-
diction performance is relatively obvious, with the difference of over 2 
% between the lowest MAPE (ε = 0.1) and the highest MAPE (ε = 0.01), 
and a prediction performance improvement of about 24 %. 

The ε can be a double-edged sword for the petrophysical informed 
model. It can reduce the influence of inaccurate mechanism models on 
neural networks and leave a buffer for the fusion of mechanism model 
and data-driven model. However, if the accuracy of the mechanism 
model is high, the error of the mechanism model and output value may 
be always within the error tolerance range, and the petrophysical 
constraint fails to play an auxiliary role in model training. 

In general, the ε is only related to the precision of the mechanism 
model, and the higher the precision, the lower ε. In logging reservoir 
parameter prediction, ε can be evaluated by referring to the measure-
ment error calculation of logging response functions when fusing log-
ging response functions with data-driven model. Fig. 10 shows the 
comparison of prediction performances of different ε on the test set. 

4.3. Noise resistance 

Previous research shows that the data-mechanism-driven model ex-
hibits strong robustness and anti-noise performance. In this section, we 
test the petrophysical informed model and pure data-driven model on 
noisy data to verify the anti-noise performance. We add the noise of 10 
%, 20 %, 30 %, 40 %, and 50 %, respectively, to the original data as the 
labels in training data, with noise following a normal distribution, where 
the mathematical expectation is 0 and variance is (Noise*mean(SH))2 or 
(Noise*mean(POR))2. The test data are noise-free. We set λPI = 0.1, ε =

0.1, and use different proportions of noisy labels to train the pure data- 

Table 7 
Experimental results of noise resistance of the pure data-driven residual neural 
network model (ResNN) and the petrophysical informed residual neural network 
model (PI-ResNN).   

model Out-put MAPE_AVG MAPE MAE MSE ± std 

10 ResNN SH 12.94 16.88 2.74 17.86 ± 4.0 
POR 9.00 0.81 1.12 ± 1.02 

PI-ResNN SH 11.59 16.15 2.53 15.45 ± 3.9 
POR 7.03 0.63 0.78 ± 0.88 

20 ResNN SH 15.51 18.06 2.97 17.62 ± 2.9 
POR 12.95 1.15 2.22 ± 1.45 

PI-ResNN SH 12.96 16.84 2.60 14.80 ± 3.8 
POR 9.08 0.83 1.18 ± 1.02 

30 ResNN SH 17.05 20.76 3.51 23.18 ± 4.2 
POR 13.34 1.21 2.51 ± 1.50 

PI-ResNN SH 15.27 19.49 3.17 19.63 ± 4.0 
POR 11.09 1.06 1.68 ± 1.03 

40 ResNN SH 19.06 21.53 3.72 26.45 ± 4.4 
POR 16.58 1.62 3.87 ± 1.51 

PI-ResNN SH 16.29 18.82 3.22 20.77 ± 4.0 
POR 14.03 1.35 2.79 ± 1.32 

50 ResNN SH 20.10 28.77 5.11 42.15 ± 4.5 
POR 21.42 2.14 6.73 ± 1.84 

PI-ResNN SH 21.47 23.23 4.21 31.37 ± 4.2 
POR 19.71 1.97 5.44 ± 1.50  
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driven model and the petrophysical informed model. Table 7 shows the 
performance of each model on the test set without noise. 

According to the experiments, PI-ResNN exhibits good anti-noise 
performance. The MAPEs of shale volumetric concentration and 
porosity in five groups of noisy data are lower than that in the ResNN 
model. If there is 10 % noise, the MAPE_SUM of the PI-ResNN model 
decreases by 1.4 % compared to that of the ResNN model, and the 
prediction performance increases by 10.43 %. If there is 20 % noise, 

MAPE_SUM decreases by 2.5 %, and the prediction performance in-
creases by 16.41 %. If there is 30 % noise, MAPE_SUM decreases by 1.8 
%, and the prediction performance increases by 10.32 %. If there is 40 % 
noise, MAPE_SUM decreases by 2.6 %, and the prediction performance 
increases by 13.80 %. If there is 50 % noise, MAPE_SUM decreases by 
3.6 %, and the prediction performance increases by 14.45 %. 

As the noise increases, we can adjust λPI appropriately to achieve 
better performance. However, in this control experiment, the model 

Fig. 11. Comparison of the actual application performance of the model with petrophysical constraint on noise resistance. POR and SH are the corresponding labeled 
reservoir parameters without adding noise. The number in the suffix of reservoir parameters is the noise addition ratio, ‘d’ is the pure data-driven model, and ‘r’ is the 
model with the petrophysical constraint. (a) is the comparison of porosity (POR) prediction performance, and (b) is the comparison of shale volumetric concentration 
(SH) prediction performance. 
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parameters are fixed, and λPI are not allowed to adjust. Theoretically, the 
noise resistance performance of PI-ResNN is better than that of the 
experiment if we increase λPI with noise growth. Fig. 11 shows the effect 
comparison of the model with and without petrophysical constraints on 
the test set. 

5. Conclusions 

In this paper, we present a construction method for the data- 
mechanism-driven reservoir evaluation model and introduce a “petro-
physical constraint neural network” for reservoir evaluation. In com-
parison to transfer learning, the petrophysical constraint selectively 
adds the petrophysical mechanism model to the data-driven model. The 
petrophysical constraint fuses the data-driven and mechanism models to 
improve the generalization of the neural network model and the accu-
racy and stability of inversion results. The advantages and application 
performances of the petrophysical constraint are verified by the case 
studies, and two parameters affecting the effect of mechanism model 
addition are tested. The following conclusions can be drawn:  

1) Data quality is the key factor that affects the performance of the 
model. For machine learning, selecting the dataset is more important 
than choosing the model structure. Therefore, the construction of 
high-quality petrophysical logs dataset is an important foundation 
for the development of the intelligent interpretation method.  

2) Both transfer learning and petrophysical constraint can improve the 
prediction performance. However, the application of petrophysical 
constraint to the mechanism model is more clear.  

3) Mechanism-driven participation in model training does not always 
improve model performance. The weight of the petrophysical 
constraint should be adjusted according to the data quality and ac-
curacy of the mechanism model. An appropriate allowable error 
should be set based on the systematic error of the mechanism model.  

4) The addition of petrophysical constraint can improve the noise 
resistance of the model and its adaptability to low-quality data to a 
certain extent.  

5) The residual neural network is more sensitive to the petrophysical 
constraint. The short-cut layer retains more information in the 
original input data, and future research on the petrophysical 
constraint can be carried out based on the residual neural network. 

Although the petrophysical constraint can improve the performance 
of the reservoir evaluation model, the improvement is not as significant 
compared to transfer learning. Furthermore, since the petrophysical 
mechanism model is fixed during model training, it is necessary to select 
the petrophysical mechanism model carefully and corresponding pa-
rameters should be tested to ensure the good performance of petro-
physical constraint. In the future, the selection of parameters in different 
fields and geological characteristics can be studied to improve the 
adaptability of this method. In addition, it should be noted that data 
quality is also an important factor that affects AI models. We are 
currently building a high-quality logging public dataset, which contains 
actualmeasured and synthetic logging data of different regions, different 
strata, different lithologies, and different physical properties. It will 
further facilitate the development of AI algorithms in the field of 
geophysical logging. 
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