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Abstract
A boundary mode localized on one side of a finite-size lattice can tunnel to the opposite side which results in
unwanted couplings. Conventional wisdom tells that the tunneling probability decays exponentially with the size of
the system which thus requires many lattice sites before eventually becoming negligibly small. Here we show that the
tunneling probability for some boundary modes can apparently vanish at specific wavevectors. Thus, similar to bound
states in the continuum, a boundary mode can be completely trapped within very few lattice sites where the bulk
bandgap is not even well-defined. More intriguingly, the number of trapped states equals the number of lattice sites
along the normal direction of the boundary. We provide two configurations and validate the existence of this peculiar
finite barrier-bound state experimentally in a dielectric photonic crystal at microwave frequencies. Our work offers
extreme flexibility in tuning the coupling between localized states and channels as well as a new mechanism that
facilitates unprecedented manipulation of light.

Introduction
The spectrum of a system typically consists of con-

tinuous spectra and discrete spectra (left panel of Fig. 1).
Conventional wisdom says that the eigenvalue spectrum
of bound states is discrete, while the eigenvalue spectrum
of unbound states forms a continuum. For electronic
systems, if the particle’s energy is lower than the potential
energy at infinity, the state is bound and the corre-
sponding energy spectrum is discrete. While the particle
whose energy is higher than the potential energy is scat-
tered and the corresponding energy spectrum is con-
tinuous. For light and sound waves, discrete states form
due to the boundary condition imposed by a barrier,
which is a material that forbids wave propagation (e.g.,
having a “bandgap”1,2). The discrete state can be perfectly
confined by the barrier if the width of the barrier is infi-
nite (Fig. 1-II). When the width of this barrier is finite,
there is some probability that the state can tunnel through

the barrier and become a resonance state (Fig. 1-III). If a
state’s energy lies inside the continuous spectrum, it will
unavoidably couple with states in the continuum and
become a resonance state. As an exception to this rule,
bound states in the continuum (BICs) can be spatially
bound with energy inside the continuous spectrum (Fig.
1-I)3–9. Here, we show a counterintuitive concept in
parallel with BICs: a state can get completely trapped
(infinite Q factor if no intrinsic loss) by a bandgap
material with a finite and very small thickness. The solid
black line in Fig. 1-IV sketches one such state when the
number of lattice sites along the normal direction of
boundary is Ny ¼ 4 where the bulk gap is not well-
defined. Later we will show that the total number of states
trapped equals Ny, which is 4 for this case.
A state being completely trapped indicates that there is

no probability for the state to tunnel through the bandgap
material. Considering a symmetric double-well config-
uration as shown in Fig. 1-V, then a state localized on the
left-hand-side well (blue line) cannot tunnel into the state
on the right-hand-side well (red line). Or equivalently,
there is no coupling (no hopping) between the two states
in Fig. 1-V. The above discussion about trapped states can
also be generalized to waveguide modes with one addi-
tional dimension. We note that the probability of tun-
neling is a crucial factor for quantum information
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processing such as controlling the lifetime of the trapped
states10,11, manipulation of entangled states12–14, and
non-abelian braiding of photons15,16. On the other hand,
unwanted coupling between states introduces harmful
crosstalk which limits the integration of multiple com-
ponents into a compact device17. There is recent intense
attention on topological artificial structures18–21, where
topological boundary modes, hinge modes, corner modes,
and modes trapped by topological defects such as dis-
locations or disclinations are robust against disorder and
fabrication imperfections22–34. However, even these
boundary and hinge modes suffer from the tunneling
effect for systems with a small thickness35–39.
In this study, we experimentally demonstrate the exis-

tence of the bound states trapped by a finite barrier as
sketched in Fig. 1-IV, V. We start with the coupling
between two boundary modes localized on the opposite
edges of a strip geometry of a two-dimensional (2D)
photonic crystal (PC). We show that the coupling can
vanish (i.e., no tunneling) at specific wavevectors for a
narrow strip with very few lattice sites, which is sig-
nificantly different from the prevailing understanding that
the coupling vanishes only when the width of the strip is
large enough. For convenience, we call these special
wavevectors nodal wavevectors. We show that the num-
ber and the specific values of the nodal wavevectors can
be controlled at will. When one side of the strip is opened
to free space as shown in Fig. 1-IV, only one of the
boundary modes remains. We find that the remaining
boundary mode exhibits an infinite Q factor at the nodal
wavevectors. Since the boundary mode at these nodal
wavevectors has their frequencies lying in the continuum
spectrum of the free space and is completely trapped by a
barrier with a finite thickness, we name these states FBICs
(finite barrier-enabled bound states in the continuum). A
FBIC exhibits decaying oscillation inside the PC (potential

barrier) which is similar to the original BIC concept
proposed in the 1929 paper40. In addition, different from
BICs on photonic crystal slabs3 where the fields are
concentrated in the dielectric, the decaying feature of
FBICs here ensures that the wavefunctions lay largely
inside the air. Such a unique property can further boost
light-matter interaction in air based on BICs such as
enhancing exciton-photon coupling with 2D layered
materials41.

Results
Figure 2a sketches our system, where we consider a

mirror-symmetrical strip geometry of a square lattice PC
truncated by perfect electric conductors (PECs) on both
sides. The upper insets show the side and top views. Here
faint yellow represents the dielectric cylinders that are
embedded in air. Our experiments were conducted in
microwave frequency region wherein PECs can be well-
approximated by metal plates such as the aluminum
plates used in our work. For convenience, the height of
the dielectric cylinder is kept small and the PC is sand-
wiched by two PECs on the upper and lower sides. We
consider the TM polarization mode with a uniform
electric field pointing out of the plane. Under such a
condition, the system in Fig. 2a has an equivalent 2D
system42.
To start, we first assume the width of the PC as denoted

by Ny is large enough and Fig. 2b shows the band dis-
persion. Here the gray areas represent the projection of
the bulk bands while the cyan dashed line at around
12 GHz denotes the boundary mode. Since this system
exhibits mirror symmetry, the dispersions of the boundary
mode on both sides of the PC are the same. The presence
of the boundary mode has topological reasoning since the
Zak phase for the lower band at around 10 GHz is π
independent of kx

43. We keep a small air gap (d= 4 mm)
between the side PEC boundaries and the PC such that
the dispersion of the boundary mode is deep inside the
bandgap. (Supplementary Material Sec. I) When the width
of the PC is finite with Ny being a small integer, the two
boundary modes localized on opposite sides of the PC will
interact and split into one odd and one even mode with
respect to the mirror plane. The solid lines in Fig. 2b show
the band dispersion for Ny ¼ 3, where the gray lines
denote the bulk modes, and the red and blue lines
represent boundary modes with even and odd electric
field distributions, respectively. The red and blue lines
twist with each other and are nondegenerate except for
the three nodes as marked by the yellow dots and pointed
by the black arrows. At those three nodes, there is no
energy splitting and hence the coupling strength vanishes.
In other words, the boundary mode localized on one side
of the boundary cannot hop to the other side if its wave
vector matches one of the nodes. We have numerically
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Fig. 1 Illustration of bound state in the continuum (BIC), regular
bound state, resonance state, and finite barrier bound state.
Counterintuitively, as insets IV and V show, a state gets trapped
completely by a bandgap material with a finite and very small
thickness
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confirmed that the number of nodes equals Ny when it is
small. Moreover, the presence of these nodes in our sys-
tem is robust against parameter variation as long as the
mirror symmetry is preserved, see e.g., Fig. S1 where we
change the width of the air gap. In fact, the presence of
these nodes originated from the dominant orbital com-
ponents. (See Supplementary Material Sec. II) We
emphasize that the number of nodes and Ny being the
same is a unique feature of our system. In Supplementary
Material Sec. III, we show that these nodes cannot be
found easily in the other bandgap of our PC, or triangular
lattice even though the mirror symmetry is preserved.
In the experiment, we excite the sample at one side of

the sample, measure the field distributions, and then apply
the Fourier transform to obtain their dispersions. We
need to move the upper PEC boundary so as to measure
the electric field distribution. This experimental setup,
however, unavoidably introduces a sub-millimeter
(~0.5 mm) air gap between the cylinders and the upper
PEC boundary. Such an air gap has limited impacts on the
dispersions of the band of interest. (see Supplementary

Materials Sec. I). Figure 2c, d show the measured band
dispersions (color code) together with the simulated band
dispersion (lines) for Ny = 2 and 3, respectively. (Ny = 4
and 5 are provided in Fig. S3) The measured dispersion
agrees well with the simulations.
We then proceed to demonstrate that the hopping

vanishes for the boundary modes when their wave vector
matches the nodes. Figure 3a shows a photo of the
experiment setup, and the sample will be covered by
another PEC top layer in the experiments and simula-
tions. We fine-tune the source antenna labeled by the red
star to excite predominantly the boundary mode localized
on the lower boundary. We choose Ny = 4 as an example.
There are four nodes on the twisting boundary modes and
we choose the one at 11.80 GHz (kxa=2π ¼ 0:2). Mean-
while, we also perform the experiments at 11.63 GHz
where the coupling strength is finite. The measured and
simulated electric field distributions inside the waveguide
are shown in Fig. 3b, c. In the simulations, the relative
permittivity of the cylinders is set as εr = 9.0+ 0.02i with
an imaginary part to simulate the inevitable loss in the
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Fig. 2 The first configuration, is a strip geometry of a photonic crystal (PC) truncated by PECs on both sides. a Illustration of the experimental
setup for the case of Ny = 3. Here faint yellow represents the dielectric cylinders of the PC and light gray denotes the surrounding PECs. b The
projected band structure (gray) with the dispersion of the boundary mode (cyan) along the kx direction when Ny is large enough. The band structure
for Ny = 3 is plotted with the solid lines, where the gray lines denote bulk bands and the red and blue lines denote the boundary modes. Three
nodes are marked by the yellow dots and pointed by the black arrows. c, d Measured (color code) and simulated (lines) band structures for Ny = 2
and 3, respectively. Here the solid green lines represent the bulk modes, and the dashed green lines represent the two boundary modes, respectively.
The lattice constant of the PC, the height, radius, and relative permittivity of the cylinder are a= 14 mm, h= 8 mm, r= 3 mm, and εr = 9.0,
respectively. A small air gap d= 4 mm is kept between the side PEC boundaries and the PC
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experiments. As shown in Fig. 3b, at a frequency of
11.63 GHz (not one of the nodal points), the stimulated
boundary mode couples to another boundary after pro-
pagating tens of lattice sites and then recouples to the
original boundary. In contrast, when the frequency mat-
ches the frequency of a node (11.80 GHz), the excited
boundary mode stays on the lower side while propagating
to the right as shown in Fig. 3c. The field oscillation
period is inversely proportional to the coupling strength
between the boundary modes: the smaller the coupling
strength, the longer the oscillation period. The oscillation
period is infinite at a node frequency. Thus, just a few
lattice sites are able to prohibit the interaction between
adjacent boundary guiding modes effectively.
If we remove the PEC boundary on one side of the PC,

there is some probability that the remaining boundary
mode can tunnel through the PC and radiate into the free
space as the PC is finite. However, if the wave vector
matches those of the nodes, the tunneling probability
vanishes, and the remaining boundary mode is completely
trapped. We call these finite barriers trapped boundary
modes FBICs as they also fit into the definition of BICs.

The upper panel of Fig. 4a shows the experimental setup,
where we replace one of the PEC boundaries with air. The
sample will be covered by another PEC top layer in the
experiments and simulations. Figure 4b shows the band
structure and the Q factor of the remaining boundary
mode for Ny = 2, wherein the colored line marks the
boundary band, and the solid black lines denote the bulk
bands. The area outside the light cone (lower right shaded
region) and above the first-order diffraction limit (upper
right shaded region) are not shown. As a reference, the
red (even state) and blue (odd state) dashlines denote the
boundary mode dispersion for the case with PEC on both
sides. The frequencies of the bulk bands and the
remaining boundary mode shift slightly. Interestingly, the
frequencies of the remaining boundary mode at the nodes,
where the red and blue lines cross, do not change.
Moreover, besides the usual symmetry-protected BIC at
the Γ point, another two BICs (FBICs) are emerging at
those nodal wavevectors. The lower panel of Fig. 4a shows
the amplitude of the boundary mode at the second nodal
wave vector (kxa=2π ¼ 0:325), where we can see the
eigenfield vanishes inside the air. More information about
the eigenfields is provided in Supplementary Materials
Sec. IV. The results for Ny = 3 and 4 are provided in Fig.
S8, where we can see three and four FBICs, respectively.
In short, the remaining boundary mode can be trapped
completely at nodal wavevectors within very few lattice
sites at which the bulk bandgap is not even well-defined.
In contrast, those modes not at nodal wavevectors host a
finite Q factor and become leaky modes.
We proceed to show the origin of these FBICs and we

start with the topological characterization. Different from
BICs in photonic crystal slabs where there are two peri-
odic wavevectors44, our system is periodic along only the
kx direction. We introduce another geometric parameter
η so as to define a winding number. As shown in Fig. 4c,
we change the circular dielectric cylinder to elliptical and
η ¼ r1=r2 is defined as the ratio between two axes. We tilt
the elliptical cylinder such that the angle between one of
the main axes r1 (the long axis when η> 1) and the x
direction is 30°. According to the Bloch theorem, the
electric field can be written as Ekx;ηðx; yÞ ¼ eikxxukx;ηðx; yÞ,
where kx is the wave vector in the x direction, and ukx is
the periodic part of the Bloch wave. Only the TM mode
(Ez) is considered in our system. The amplitude and phase
of the outgoing wave are determined by the zero-order
Fourier coefficient cðkx; ηÞ ¼ ukx;η

� �
, where the bracket

�h i denotes the spatial average over a unit cell. In general,
the coefficient cðkx; ηÞ is complex and we can define a
vector field for the far-field radiation as ~cðkx; ηÞ ¼
Re cðkx; ηÞ½ �bxþ Im cðkx; ηÞ½ �by. The topological charge q (or
the winding number) can be introduced as q ¼ 1

2π

H
Cdk �

∇ϕðkx; ηÞ, where C is a closed simple path in kx � η
parameter space in a counterclockwise direction, and
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Fig. 3 Coupling between boundary modes for Ny= 4 in the first
configuration. a A photo of the experimental sample with Nx = 57,
Ny = 4, and the red star denotes the position of the point source.
b, c Simulated and experimental electric field distributions for Ny = 4
at a non-node frequency of 11.63 GHz, and a node frequency
(11.80 GHz in the experiments and 11.82 GHz in the simulations). The
relative permittivity of the cylinders is set as εr = 9.0+ 0.02i
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ϕðkx; ηÞ is the phase of cðkx; ηÞ. The vector field for
cðkx; ηÞ in the parameter space expanded by kx and η
around the at-Γ BIC and these two FBICs is shown in Fig.
4d, wherein the x and y components of the vectors
represent the real and imaginary parts of cðkx; ηÞ,
respectively. The Q factor is also given with the color as
the background. The topological charge of the symmetry-
protected BIC at the Γ point is +1, while those of the two
FBICs are both �1. Thus, cðkx; ηÞ vanishes at the vortex
center and the corresponding boundary mode exhibits an
infinite Q factor. The topological charges of the three
BICs are also sketched in Fig. 4b. The two FBICs sharing
the same charge indicate that they cannot be annihilated
by each other. We emphasize that the charge we define
through the winding number in the ðkx; ηÞ space does not
depend on the tilting angle of the elliptical cylinder. (See
Supplementary Materials Sec. IV) Meanwhile, the winding
number defined here is different from the Zak phase
defined before. The nontrivial Zak phase ensures that the
presence of the boundary mode as a function of kx while
the nonzero winding number here proves that the
boundary mode at some special wavevectors, i.e., the
nodes, are indeed BICs.
In addition, we also provide an explanation to unveil the

underlying physical mechanism of these FBICs. Let us
start with the case with PEC on both sides of the PC. The

coupling strength between the boundary modes vanishes
at these nodes; thus, these two boundary modes degen-
erate. Such a degeneracy is protected by the mirror
symmetry. As a result, an arbitrary linear combination of
these two boundary modes at nodes is also an eigenmode
of the system when the mirror symmetry is preserved. In
other words, the state Ψj i ¼ a1 ψ1j i þ a2 ψ2j i is also an
eigenstate of the system at these nodes, where ψ1j i and
ψ2j i represent the boundary modes, and a1 and a2 are
arbitrary coefficients. As for the case that the PEC
boundary is preserved at only one side, one radiation
channel is open. The corresponding radiation coefficient
is the overlap integral between the modes and the radiated
plane wave, i.e., c ¼ pjΨh i ¼ a1 pjψ1h i þ a2 pjψ2h i. The
nonradiative condition is reached when c= 0. Such a
condition can always be satisfied at a specific combination
of a1 and a2. Thus, there is one “BIC” at each node when
only one side of the boundary is PEC. As an alternative
explanation, we can consider the field distributions of the
eigenmodes. For the case with PEC on both sides, a linear
combination of these two boundary modes leads to a new
eigenmode whose unit-cell-averaged magnetic field
component parallel to the boundary is zero. For such an
eigenmode, even if the PEC on one side is removed, it
preserves and still cannot radiate to the environment.
According to the definition, such a mode should be a
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“BIC”. Since the field distribution of this mode is mainly
localized near the remaining PEC boundary, we name it a
finite barrier-enabled BIC.
The non-radiation feature of FBICs can also be con-

firmed by transport measurements. We place a point
source at the lower-left corner (marked by the red star in
Fig. 4a) to excite the remaining boundary mode localized
at the PEC boundary. As shown in Fig. 4a, the field of the
boundary mode mainly concentrates near the remaining
PEC boundary. Thus, for each unit cell along the x
direction, we average over the field amplitude inside the
air gap and the unit cell closest to the PEC boundary and
take this value as the field amplitude for that unit cell.
Figure 5a shows the measured field profile (average field
amplitude inside each unit cell along the x direction) of
the boundary modes at different frequencies. Near

11.45 GHz and 11.99 GHz (the two experimental FBIC
frequencies marked by the white dashed lines), the decay
of boundary modes is slower than other adjacent fre-
quencies. The electric fields of boundary modes decay
exponentially as a function of x, so we fit the field profiles
with Ae�γx and obtain the attenuation coefficient γ. To
clearly show the attenuation of the boundary mode, the
field profile and the fitting curve at the two FBIC fre-
quencies are provided in Fig. 5b, c. We can see the fields
indeed decay slowest at the FBIC frequencies and the
decaying profiles fit well with the function jEzj � Ae�γx.
The Q factor is inversely proportional to the attenuation

coefficients γ. Since γ can be directly extracted from the
field distribution, here we use γ to calibrate the existence
of FBICs. If there is no loss, the boundary mode propa-
gates to infinite; otherwise, γ ≠ 0. The blue line in Fig. 5d
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shows the numerically simulated values of γ when we
ignore the intrinsic material loss. Here we focus on the
frequency range where there is only the boundary mode
and hence the influence from other bulk modes can be
safely ignored. γ are zero at the FBICs frequencies
11.45 GHz and 11.92 GHz (For this FBIC, the frequency is
11.92 GHz numerically and 11.99 GHz experimentally,
with slight differences due to sample imperfections). γ is
finite when the working frequency deviates from these
two frequencies. In the experiments, there is unavoidable
material loss, and the total γ is given by γtot ¼ γrad þ γabs,
where γrad and γabs represent the attenuation when
considering only the radiation loss and absorption loss. In
the simulations, the relative permittivity of the cylinders is
set as εr = 9.0+ 0.02i. The red line in Fig. 5d shows the
simulated γ when the absorption loss is considered.
Comparing the red and blue lines in Fig. 5d, we can see
that γabs varies only a little in the interested frequency
range. Thus γ as a function of frequency exhibits two dips
at the two FBICs frequencies. Such a feature has also been
confirmed experimentally as shown with the black line in
Fig. 5d. The deviation of the black line from the red line
might be due to sample imperfections. As a supplement,
we provide the measured field distribution at a non-FBIC
frequency and the two FBIC frequencies (see Fig. S10 in
Supplementary Materials Sec. V).

Discussion
Summary
We provide two typical configurations and demonstrate

experimentally how a state is trapped by a finite barrier. The
first configuration offers a feasible approach for fine-tuning
the hopping of trapped states, which is a crucial ingredient
for nanophononics such as non-abelian braiding of pho-
tons16 and integration of multiple waveguides into a com-
pact device17. The second configuration provides a new
mechanism for realizing BICs. Instead of being concentrated
inside the PC, the field of an FBIC is outside of the PC,
which can thus boost light-matter interaction schemes based
on BICs. This physics discussed in our work is general and
can be extended into other wave systems such as phononic
crystals and cold atoms.

Materials and methods
Theory and simulation
The numerical band structure, the electric field dis-

tributions under source antenna excitation and the vortex
of far-field radiation shown in Figs. 2, 3, and 4 were
obtained by using commercial software COMSOL
Multiphysics45.

Experimental setup
The PC consisting of an alumina rod array was fixed to

the bottom metal (aluminum) plate. The microwave was

radiated from an antenna connected to our vector net-
work analyzer (VNA, Keysight N5242B), and electric
field distribution was measured by an antenna (also
connected to the VNA) fixed in a hole in the upper metal
plate. The relative position of the field-scanning antenna
with respect to the PC was controlled by a
stepping motor.
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