
Energy Storage and Saving 3 (2024) 96–105

Available online 23 February 2024
2772-6835/© 2024 The Authors. Published by Elsevier B.V. on behalf of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Research article 

A modified transformer and adapter-based transfer learning for fault 
detection and diagnosis in HVAC systems 

Zi-Cheng Wang a, Dong Li a,*, Zhan-Wei Cao a,b, Feng Gao b, Ming-Jia Li c 

a Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi’an Jiaotong University, Xi’an, Shaanxi 
710049, China 
b Science and Technology on Space Physics Laboratory, China Academy of Launch Vehicle Technology, Beijing, 100076, China 
c School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, China   

A R T I C L E  I N F O   

Keywords: 
Fault detection and diagnosis 
Transfer learning 
HVAC system 
Energy saving 
Transformer model 

A B S T R A C T   

Fault detection and diagnosis (FDD) of heating, ventilation, and air conditioning (HVAC) systems can help to 
improve the energy saving in building energy systems. However, most data-driven trained FDD models have 
limited generalizability and can only be applied to specific systems. The diversity of HVAC systems and the high 
cost of data acquisition present challenges for the practical application of FDD. Transfer learning technology can 
be employed to mitigate this problem by training a model on systems with sufficient data and then transfer it to 
other systems with limited data. In this study, a novel transfer learning approach for HVAC FDD is proposed. 
First, the transformer model is modified to incorporate one encoder and two decoders connected, enabling two 
outputs. This modified transformer model accommodates absent features in the target domain and serves as a 
robust foundation for transfer learning. It has effective performance in complex systems and achieves an accu
racy of 91.38% for a system with 16 faults and multiple fault severity levels. Second, the adapter-based 
parameter-efficient transfer learning method, facilitating the transfer of trained models simply by inserting 
small adapter modules, is investigated as the transfer learning strategy. Results demonstrate that this adapter- 
based transfer learning approach achieves satisfactory performance similar to full fine-tuning with fewer 
trainable parameters. It works well with limited data amount in target domain. Furthermore, the findings 
highlight the significance of adapters positioned near the bottom and top layers, emphasizing their critical role in 
facilitating successful transfer learning.   

1. Introduction 

The building industry is one of the most energy-intensive sectors 
globally, accounting for approximately 30% of global energy con
sumption and 26% of energy emissions [1]. During the operation of a 
building, heating, ventilation and air conditioning (HVAC) systems 
consume the largest amount of energy, responsible for around 50% of 
the total energy consumption [2]. However, these systems are charac
terized by complex compositions and harsh running conditions, making 
them susceptible to various failures that can impact their performance. 
Research indicates that equipment failures and improper controls 
contribute to a substantial 15% to 30% of energy wastage in commercial 
buildings [3]. By promptly detecting and diagnosing faults, the 
long-term healthy operation of building HVAC systems can be ensured. 
It is possible to effectively enhance the energy efficiency of buildings 

and achieve energy savings ranging from approximately 10% to 30% [4, 
5]. Moreover, in critical applications such as the medical industries and 
data centers, the operation of HVAC systems with faults may result in 
severe consequences, including system malfunctions or sudden shut
downs, causing significant losses [6]. 

Fault detection and diagnosis (FDD) techniques involve monitoring 
system conditions to detect and identify faults promptly, ensuring safe 
and efficient system operation [7]. In recent years, the integration of 
building energy systems with a large number of sensors for HVAC sys
tems has led to the collection of massive operational data. Concurrently, 
artificial intelligence (AI) technologies have rapidly advanced, offering 
valuable tools for addressing critical issues. These advances have pre
sented opportunities for employing AI-based methods in FDD of HVAC 
systems. These methods, called intelligent FDD or data-driven methods, 
utilize advanced algorithms to intelligently monitor and analyze system 
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operating conditions, effectively ensuring safe and efficient operation 
[8–11]. 

In the realm of intelligent FDD methods, the quantity and quality of 
data play a crucial role. However, obtaining large-scale fault data in 
experimental settings for each system deployment is costly and even 
unfeasible. While the FDD model demonstrates a certain level of 
generalizability, it struggles to maintain universality when confronted 
with intricate engineering environments [12,13]. Transfer learning, a 
machine learning approach, facilitates the reuse of a model initially 
developed for one task on another related task. This approach enhances 
learning in new tasks by leveraging knowledge obtained from related 
tasks that may have adequate data [14]. The implementation of transfer 
learning could potentially address these problems including the lack of 
data and the limited generalizability of the FDD model, thus facilitating 
its practical application. 

Research on the utilization of transfer learning for intelligent FDD of 
HVAC systems has attracted much attention. Liu et al. [15] conducted a 
comparative study to assess the effectiveness of transfer learning based 
FDD in two chillers. This study considered various transfer learning 
settings. The findings of this study confirmed the efficacy of transfer 
learning in FDD, especially in cases where experimental data are limited. 
In the process of transfer learning, features from different fields inevi
tably have deviation. Data from different sources typically have 
different formats. To effectively utilize tabular data collected from 
various building systems, Fan et al. [16] introduced an image-based 
transfer learning framework. They employed t-SNE to convert the 
tabular data into image format and evaluated several transfer learning 
strategies. The study demonstrated that the image-based method was an 
effective approach for addressing the challenge of compatibility in 
multi-source data within the building domain. Zhang et al. [17] inves
tigated the deviation of features from different domains. They proposed 
a transfer learning strategy that involved feature transformation. This 
method enabled the effective FDD transfer learning for HVAC systems in 
real-world scenarios, where only limited normal data were available in 
target domain. Martinez-Viol et al. [18] emphasized the significance of a 
domain similarity analysis between different domains. They proposed a 
filtering mechanism called dissimilarity reduction to select training 
samples prior to transfer, which can mitigate the problem of negative 
transfer. Consequently, the transfer learning of FDD for HVAC systems 
was not constrained by the assumption of high similarity between the 
domains. Some studies explored the competence of diverse transfer 
learning strategies in HVAC FDD tasks. Zhu et al. [19] introduced a 
transfer learning strategy for FDD migration between building chillers. 
The strategy included a heterogeneous data standardization and a 
domain adversarial neural network (DANN). Their model comprised 
three parts: a feature extractor, a task predictor, and a domain classifier. 
Li et al. [20] conducted a study to compare three deep transfer learning 
strategies for convolutional neural network FDD of HVAC systems. The 
strategies evaluated were network-based fine-tuning, mapping-based 
domain adaptive neural network, and adversarial-based domain adver
sarial neural network. They found that fine-tuning resulted in the best 
performance among these deep transfer learning techniques. Zhang 
et al. [21] examined the impact of three critical factors on cross-domain 
FDD for HVAC systems. These factors included the level of resemblance 
between the two domains, the availability of labeled data in the target 
domain, and classifier type employed. They evaluated three strategies: 
direct prediction-based, feature transformation-based, and pre-training 
and fine-tuning-based. The study revealed that the selection of classi
fier had a significant influence on results and the pre-training and 
fine-tuning method was more robust. 

Investigations have demonstrated the substantial potential of trans
fer learning in FDD. However, achieving satisfactory transfer effects 
across diverse scenarios remains a challenge. Consequently, there is a 
need to refine existing transfer learning methodologies or develop novel 
approaches. Additionally, it is crucial to investigate the extent to which 
the FDD model can be effectively transferred. A transfer learning 

strategy that facilitates transfer over a broader range or aligns more 
closely with practical requirements would be beneficial. Such im
provements could significantly enhance the application of FDD in HVAC 
systems. 

Hence, a novel data-driven FDD transfer learning approach is pro
posed in this study. The approach comprises a basic model, which is a 
modified transformer with one encoder and two decoders, and an 
adapter-based parameter-efficient transfer learning strategy. The 
modified transformer is trained and evaluated on the source domain. 
Subsequently, the adapter-based transfer learning method is employed 
to transfer the model to the target domain. Two transfer learning sce
narios are designed to evaluate the effectiveness of the proposed method 
with fine-tuning. Several influencing factors are also examined. 

The structure of the presented study is organized as follows: Section 
2 provides an introduction of the proposed method, including the 
modified transformer and the transfer learning methods. Section 3 in
troduces the setup of data experiments. Section 4 presents the results of 
direct tests and transfer learning, along with an investigation of influ
encing factors. Finally, Section 5 summarizes the conclusion. 

2. Theoretical background and research methodology 

2.1. Modified transformer model 

The transformer-based model is a kind of neural networks originally 
designed for natural language processing (NLP) tasks proposed by 
Google in 2017 [22]. This model relies on attention mechanisms instead 
of convolutional layers or recurrent layers. The transformer showed 
excellent results on various NLP tasks and it soon became the dominant 
language model architecture [23]. Showing great power of attention 
mechanism, it has also been widely adapted and used in other tasks 
including computer vision [24], medical imaging [25], time series 
application [26], FDD [27,28] and so on. 

The model generally follows an encoder-decoder architecture. The 
encoder component facilitates the transformation of an input sequence 
into a latent representation. Subsequently, the decoder produces final 
output sequence based on the encoder output. In adapting the trans
former model for the FDD tasks of HVAC systems, we innovated beyond 
the traditional encoder-decoder arrangement. As shown in Fig. 1, the 
modified transfer model has one encoder and two decoders connected. 
The encoder processes time series data from multiple sensors, creating a 
latent representation. The first decoder uses this representation to 
determine the HVAC system’s fault type or confirm normal operation, 
and also utilizes the same representation as the key and value in the 
cross-attention process. Subsequently, the second decoder, taking the 
output of the first decoder as its input, evaluates the fault’s severity level 
using the encoder’s latent representation for cross-attention. This two- 
stage decoding process ensures a precise and thorough FDD, harness
ing the foundational transformer mechanisms, but it is tailored to the 
specificity of HVAC systems. 

The processing of input vectors initiates with a positional encoding 
layer. In the transformer architecture, which solely relies on the atten
tion mechanism and lacks convolution or recurrence, there is no 
inherent understanding of the order or position of input vectors. To 
provide the model with a sense of sequence order, positional encoding is 
incorporated before inputting the vectors into the model encoder. The 
positional encoding takes the form of vectors that are added to the input 
embeddings. The values of these positional encoding vectors are deter
mined by the position of each vector in the input sequence, as shown in 
the Eqs. (1) and (2). 

PE(pos, 2i)= sin
(
pos
/

100002i/dmodel
)

(1)  

PE(pos, 2i+ 1)= cos
(
pos
/

100002i/dmodel
)

(2)  

where, pos denotes the location of the vector in the sequence; i denotes 
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the dimension index of the positional encoding; dmodel denotes the 
dimension of the model. 

Following that, the positional encoding is incorporated into the 
input. This enables the model to learn the relative positions of the input 
vectors in the sequence. By incorporating positional information, the 
model can understand relationships between vectors according to where 
they appear in the sequence. 

After incorporating positional encoding, the transformer model 
consists of both encoder and decoder components. These components 
are composed of multiple encoder layers and decoder layers, respec
tively. In both the encoder and decoder layers, several crucial elements 
are shared, including the multi-head attention module, the feedforward 
network, residual connections, and layer normalization. The primary 
difference is that the encoder layer only has a self-attention module, 
while the decoder layer includes both a self-attention module and a 
cross-attention module. In summary, the transformer encoder and 
decoder utilize multi-head attention and feedforward networks in a 
stacked architecture. This design allows them to effectively capture 
sequential dependencies and intrinsic patterns. 

Specifically, in one encoder layer, the input data, which consists of 
time series sequences of vector representations, first passes through the 
multi-head self-attention module. The attention mechanism is a cate
gory of neural network techniques utilized in the deep learning models 
to selectively prioritize critical components within the input data [22, 
29]. It endows the model with the ability to weigh the significance of 
various portions of the inputs. Attention mechanisms have proven to be 
particularly efficacious when processing sequential data. The attention 
mechanism is composed of three parts: the query, key, and value com
ponents. Self-attention, as shown in Fig. 2, is a specific form of attention 
mechanism in which the query, key, and value are derived directly from 
the input data. Each element in the sequence concurrently serves as a 
query, key, and value. This enables the model to concurrently allocate 
the attention to diverse segments of the sequence, thus facilitating the 
learning of complex patterns. Multi-head attention represents a variant 

of the attention mechanism, as shown in Fig. 3. Unlike typical attention 
mechanism which operates on a single set of query, key, and value, it 
partitions the query, key, and value into several distinct sets or heads, 
which are subsequently processed in parallel [30]. Attention scores are 

Fig. 1. Modified transformer model with one encoder and two decoders.  

Fig. 2. Self-attention mechanism.  

Z.-C. Wang et al.                                                                                                                                                                                                                                



Energy Storage and Saving 3 (2024) 96–105

99

computed independently for each head, then the outputs from the heads 
are concatenated and passed through a fully connected layer to generate 
the final output. Each individual head directs its attention towards a 
different facet of the input sequence, enabling the model to find diverse 
representations and perspectives of the input. This allows the model to 
integrate information from diverse sources and learn more intricate 
relationships between the inputs and outputs. The multi-head mecha
nism provides increased modeling power and flexibility compared to 
regular single-head attention. 

The attention mechanism functions by initially computing weight 
coefficients through the utilization of the query and key. Subsequently, 
these weight coefficients are employed to aggregate the corresponding 
values. To implement self-attention calculation, the initial step involves 
computing the query, key, and value shown in Eqs. (3)–(5) for each 
element of a sequence of input vectors X = [x1, x2, …, xn], where, xi 
represents the input vector for the ith element. 

Qi = Wqxi (3)  

Ki = Wkxi (4)  

Vi = Wvxi (5)  

where Wq, Wk, and Wv denoted the weights updated during training. 
The calculation of the attention map is then performed by consid

ering the query and key, as shown in Eq. (6). 

wij = softmax

(
QiKT

j
̅̅̅̅̅
dk

√

)

(6)  

where, dk is the dimensionality. 
The output vector for the ith element is calculated by obtaining the 

weighted summation of the value vectors shown in Eq. (7), utilizing the 
weights that were computed before. 

Oi =
∑n

j=1
wijVj (7) 

The feedforward module is a crucial component in transformer ar
chitectures, following the attention module. Typically, this module 
comprises of two fully-connected linear transformations, separated by a 
ReLU activation function. The feedforward module is used to further 
process the output of the attention module. This module helps the 

transformer-based architecture to model complex non-linear in
teractions between the input sequence elements and to learn more 
expressive representations. 

The key distinction between the encoder and decoder lies in the fact 
that the decoder incorporates two attention modules: a self-attention 
module and a cross-attention module. In the cross-attention modules 
of the decoder, the output of the encoder serves as the key and value, 
while the output of the first self-attention module acts as the query. This 
design enables the decoder to attend not only to the first output but also 
to the encoded latent representations of the input sequence, providing a 
crucial link between the encoder and decoder. The cross-attention 
module, by allowing the decoder to access source context and ex
change information with the encoder, serves as a bridge between the two 
components. This enriches the decoder’s representations by incorpo
rating information from the encoder, resulting in more contextually 
relevant and accurate output generation. 

In this study, a modified transformer architecture was proposed for 
the FDD of HVAC systems. The encoder layers are structured in a stacked 
manner to constitute the encoder, which generates a latent representa
tion of the input data. The first decoder module utilizes this latent rep
resentation from the encoder to classify fault types or determine the 
normal state of the system. Building upon the outputs of both the 
encoder and the first decoder, the second decoder assesses the severity 
level associated with any identified fault. This model architecture fa
cilitates a hierarchical FDD approach, where fault types are initially 
identified, followed by an assessment of the relative severity of faulty 
conditions through the second decoder. This architecture serves as the 
basic model for both direct FDD and transfer learning. 

Furthermore, in the context of transfer learning, the self-attention 
structure of the modified transformer model proves beneficial for 
handling absent features within the target domain in comparison to the 
source domain. Unlike most transfer learning methods that assume an 
identical feature list in both domains, which may not align with reality, 
the proposed modified transformer allows the direct padding of missing 
feature locations in the target domain with zeros. The self-attention 
mechanism in transformers calculates attention weights based on the 
similarity between positions, and zero values at certain positions effec
tively result in those positions having no influence on the attention 
weights and the final output. This characteristic is particularly valuable 
in transfer learning scenarios, as it facilitates the process by mitigating 
the impact of absent features. 

2.2. Transfer learning strategies 

Transfer learning is a machine learning technology which can 
transfer learned expertise and experience from a task or domain (source 
domain) with abundant data to a task or domain (target domain) with 
limited data [31]. By reusing existing data, rules, or models, learning 
efficiency and performance on new tasks can be effectively improved. 
There are many methods to transfer learned experience or knowledge. 
They can be categorized as instance-based approach, feature-based 
approach, model-based approach, and relation-based approach [32]. 
Some popular techniques used in FDD of HVAC systems include feature 
transformation methods [16,17,21], domain-adaptive neural network 
[20], domain adversarial neural network [19,20], pre-training and 
fine-tuning method [20,21], and some others. Among them, pre-training 
and fine-tuning method is the most popular method. It provides a simple 
yet effective way to transfer learning. Additionally, parameter-efficient 
transfer learning represents a novel transfer learning technique [33]. 
One of the parameter-efficient transfer learning methods enables 
transfer simply through adapter modules inserted into the model ar
chitecture. But its potential for FDD of HVAC systems has not been 
investigated. In this study, the performance of parameter-efficient 
transfer learning method will be evaluated with pre-training and 
fine-tuning method as the transfer strategies for FDD of HVAC systems. 
The descriptions of these two methods will be given in this section. 

Fig. 3. Multi-head attention mechanism.  
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2.2.1. Pretraining and fine-tuning method 
The pre-training and fine-tuning method is an extensively used 

transfer learning approach that has demonstrated success [31]. This 
approach involves initially pre-training a neural network model on a 
large source dataset and subsequently fine-tuning the pre-trained model 
on a smaller target dataset for a specific purpose. During the fine-tuning 
process, the weights of individual layers in the neural network can be 
treated in various ways: they can be fixed, used as initialization (tuned), 
or re-trained based on experimental results or prior knowledge. The 
strategy chosen for each layer depends on its specific role within the 
network. Additionally, factors such as the size and similarity between 
the two datasets need to be taken into account. Typically, earlier layers 
in the neural network, which learn more general features, are often 
fixed, while later layers, responsible for learning more specialized fea
tures, are fine-tuned. However, these are general guidelines, and the 
optimal choice of fixing or fine-tuning layers may vary depending on the 
specific task and dataset. 

The pre-training and fine-tuning method will be employed to 
compare with the adapter-based transfer learning method described 
below. In this study, the pre-training and fine-tuning methods will be 
performed starting from tuning the top layers. 

2.2.2. Parameter-efficient transfer learning 
More recently, parameter-efficient transfer learning methods have 

been proposed to promote the use of transfer learning. One popular 
approach involves the incorporation of small adapter modules into the 
pre-trained model architecture [33]. On the target domain, only the 
adapter parameters are updated, while the parameters of the original 
pre-trained model remain unchanged. This strategy facilitates knowl
edge transfer with minimal re-training of parameters. 

In this study, the adapter module includes a down projection, a ReLU 
activation function, an up projection, and a residual connection at the 
end. This is the most common setting method for adapter module. The 
locations of the adapters are shown in Fig. 4. There are two adapters in 

each encoder block. Specifically, the first adapter is situated after the 
self-attention module and before the add and norm operations, while the 
second adapter is positioned after the feed forward module and before 
the add and norm operations. Similarly, each decoder block features 
three adapters, placed after the self-attention module, cross-attention 
module, and feed-forward module, preceding the add and norm 
operations. 

3. Data experiments 

To investigate the presented transfer learning methods for FDD of 
HVAC systems, a series of data experiments have been designed. The 
data utilized in this study are sourced from the LBNL fault detection and 
diagnostics data sets [34,35]. This database comprises labeled time se
ries data from several typical HVAC systems operating under both 
normal and various fault states. The experimental setup is outlined in 
Fig. 5. 

Two typical scenarios are designed to assess the transfer performance 
of the presented transfer learning methods for FDD. The first scenario 
involves a cross-system transfer, which simulates the condition in which 
a basic model is trained on one system and subsequently transferred to a 
similar system. This scenario is intended to explore the extent to which 
transfer learning can facilitate the generalization of knowledge across 
similar but not identical systems. The second scenario involves a 
simulation-to-reality transfer, which simulates the condition in which a 
basic model is trained on simulation data and subsequently transferred 
to real-world data. This scenario aims to investigate the effectiveness of 
transfer learning in bridging the gap between simulation and reality, and 
thereby, improving the performance of FDD for real-world applications. 

Specifically, the comparison between data in the source domains and 
target domains of these two scenarios is shown in Table 1. In the first 
cross-system scenario, the source domain is a dual-duct air handling unit 
(AHU), while the target domain is a single-duct AHU. The dual duct 
system comprises two separate parallel duct systems that carry hot and 

Fig. 4. Inserted adapters and their locations.  
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cold air flows individually. This is a bigger data set. In contrast, the 
single-duct system only consists of one duct and it is a smaller data set. 
All the data of the source domain (dual-duct AHU), including 56 fault 
and fault-free states with different severity levels and 53 features, are 
incorporated to build a powerful basic model using the proposed 
modified transformer model. In target domain (single-duct AHU), only 
the corresponding features that are contained in the source domain are 
selected (21 in total) for the transfer learning of the FDD model. There 
are 13 fault and fault-free states with different severity levels in target 
domain, which are also less than source domain. In the second 
simulation-to-reality scenario, the source domain is also the dual-duct 
AHU in the first scenario, which is the simulation data. The target 
domain is a single zone constant air volume or variable air volume (fixed 
supply air fan speed or not) AHU. The experiments were conducted by 
Lawrence Berkeley National Laboratory in the LBNL’s FLEXLAB test 
facility. Similarly, all the data in source domain are used to build a basic 
FDD model using the proposed modified transformer model. There are 
10 corresponding similar features in the target domain that are also 
contained in the source domain, while there are 10 fault and fault-free 
states with different severity levels in target domain. All the data are 
read by applying a sliding window of size 5 directly on the transient 
data. More detailed description about the data and tested systems can be 
found in the inventory of data sets for AFDD evaluation of the used LBNL 
fault detection and diagnostics data sets. 

4. Results and discussion 

4.1. Evaluation metrics 

In this study, the diagnostic process follows a hierarchical order 
including two outputs. The involved faults are relatively complex, taking 

into account the types of faults and their severity levels. Therefore, the 
evaluation process and metrics need to be clarified. For a multi-class 
classification problem, the confusion matrix is utilized. A binary class 
confusion matrix as an example is presented in Table 2. The model 
makes the right prediction if the predicted label matches with the true 
class. Accuracy, Precision, Recall and F1 can be defined as Eqs. (8)–(11). 

Accuracy =
TP + TN

TP + TN + FP + FN
(8)  

Precision =
TP

TP + FP
(9)  

Recall =
TP

TP + FN
(10)  

F1 =
2

1
Precision +

1
Recall

(11) 

The overall accuracy is expressed in Eq. (12), representing the pro
portion of the number of samples with both outputs being correct to the 
total number of samples. For each output, there are accuracy 1 (for fault 
types) and accuracy 2 (for fault severity levels), given in Eqs. (13) and 
(14), respectively. 

overall accuracy =
Ncorrect samples for both outputs

Nall samples
(12)  

accuracy 1 =
Ncorrect samples for the first output

Nall samples
(13)  

accuracy 2 =
Ncorrect samples for both outputs

Ncorrect samples for the first output
(14)  

4.2. Direct FDD results in source domain 

To evaluate the proposed modified transformer model, it is employed 
for the direct detection and diagnosis of faults in the source domain. The 
model hyper-parameters are optimized with the Python toolkit Optuna. 

Fig. 5. The outline of data experiments.  

Table 1 
Comparison of data for 2 scenarios.  

Scenario Domain System Features Status Data 
amount 

Cross-system Source 
domain 

Dual-duct AHU 53 56 29,433,376 

Target 
domain 

Single-duct 
AHU 

21 13 6,614,529 

Simulation- 
to-reality 

Source 
domain 

Simulated 
AHU 

53 56 29,433,376 

Target 
domain 

Experimental 
AHU 

10 10 25,879  

Table 2 
A binary class confusion matrix.   

True class 

Predicted label Class 1 Class 2 

Label 1 True positive (TP) False positive (FP) 
Label 2 False negative (FN) True negative (TN)  
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Specifically, the number of encoder/decoder layers is selected within the 
range of 1 to 10 in integer. The encoder/decoder heads are tuned within 
the range of 8 to 32, with a step of 8. The dimensionality of the en
coders/decoders is calibrated to be a multiple of the number of heads 
(with the rate ranging from 8 to 64, in steps of 8) to satisfy architectural 
constraints. The size of the feedforward dimension is considered among 
options of 256, 512, 1024, 2048, and 3072. Some parameters are also 
further tuned by experience. The details of hyper-parameters are shown 
in Table 3. This optimized modified transformer model has 157.85 
million trainable parameters, indicating a powerful large model in the 
context of HVAC FDD problem. 

The FDD results show an overall accuracy of 91.38%, with accuracy 
1 (for fault types) of 95.86% and accuracy 2 (for severity level) of 
95.33%. The recalls for the first output and the second output are shown 
in Fig. 6. This modified transformer exhibits a satisfying FDD perfor
mance, considering the complexity of the system and the multiple faults. 

4.3. Transfer learning FDD in cross-system scenario 

The proposed modified transformer and the transfer learning stra
tegies are tested in this scenario. The dual-duct AHU dataset is used as 
the source domain and the target domain is the single-duct AHU dataset. 
In this scenario, the pre-trained model is tested directly on the target 
domain at first. The overall accuracy is 12.69%, with accuracy 1 of 
36.33% and accuracy 2 of 34.92%. This unsatisfactory result indicates 
that a transfer learning is necessary. Adapter-based transfer learning, as 
well as fine-tuning, is employed with multiple parameter settings. In 
adapter-based transfer learning, the adapter size ranges from 2, 4, 12, 
48, 96 to 192. The fine-tuning starts from the top layers, from the output 
layer, to the first/second/third/forth layers in the decoders, and to all 
layers. After transfer learning with different settings. The outcomes of 
the testing are shown in Figs. 7 and 8. 

As can be seen, the adapter-based method demonstrates a compa
rable result to full fine-tuning but with significantly fewer parameters. It 
achieves high test accuracy even with limited parameters, and the ac
curacy increases slightly with the increase of the trainable parameters. 
On the other hand, fine-tuning exhibits less satisfactory performance 
with a constrained number of trainable parameters. When incrementally 
adding tuning layers from the top down, introducing the first layer in the 
decoder leads to a substantial increase in accuracy. However, subse
quent layers (the second, third, and fourth layers) do not contribute 
significantly to the transfer learning performance. Finally, by tuning all 
parameters, fine-tuning has the potential to match or even surpass the 
effectiveness of the adapter-based method. 

The trend of accuracy variation with trainable parameters is basi
cally consistent for both outputs. The first output is more accurate than 
the second one. One of the interesting things is that the first accuracy 
even decreases with the second, third and fourth layers tuned. This 
means tuning more than one layers in the decoder even harms the 
transfer learning process. One layer in the decoder provides enough 
flexibility for this task. Accuracy does not increase with the increase of 
trainable parameters from the top down, which indicates fine-tuning is 

Table 3 
Hyper-parameters of the modified transformer.  

Hyper-parameters Value Hyper-parameters Value 

Encoder layers 6 Encoder heads 16 
Decoder 1 layers 6 Decoder 1 heads 16 
Decoder 2 layers 6 Decoder 2 heads 16 
Encoder dimension 768 Encoder feedforward dimension 3,072 
Decoder 1 dimension 768 Decoder 1 feedforward dimension 3,072 
Decoder 2 dimension 768 Decoder 2 feedforward dimension 3,072  

Fig. 6. Recalls of the two FDD outputs.  

Fig. 7. Overall accuracy for scenario 1 with different trainable parameters.  

Fig. 8. Accuracies for scenario 1 with different trainable parameters.  
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not that easy to be performed. Specific layers to be fine-tuned may be 
decided according to the task, or experimental results. In contrast, for 
adapter-based method, simply increasing the adapter size proves effec
tive in achieving better results, highlighting its ease of use. 

4.4. Transfer learning FDD in simulation-reality scenario 

Similarly, the modified transformer and the transfer learning stra
tegies are tested in the second scenario. The simulated AHU dataset is 
the source domain and the experimental dataset is the target domain. 
Direct fault diagnosis of the pre-trained model without transfer learning 
is tested at first. The overall accuracy is 0.19%, with the first accuracy of 
22.39% and the second accuracy of 0.86%, much lower than the first 
cross-system scenario. This indicates that the two domains have bigger 
difference compared with the first cross-system scenario. Two transfer 
learning strategies, fine-tuning and adapter-based method, are tested. 
The adapter size ranges from 4, 12, 48, 96, 192, 384 to 768. In fine- 
tuning, the tuned layers will be added starting from the top layers. 
The outcomes of the testing are shown in Figs. 9 and 10. 

The results after transfer learning remain lower than the first sce
nario, consistent with the outcomes of direct testing. This may be due to 
the difference between source and target domain and the available data 
amount. The figures illustrate an overall accuracy improvement for 
adapter-based method, increasing from 0.7 to approximately 0.95. This 
growth is much larger than in the first scenario. However, compared to 
the first scenario, it cannot achieve good results with a limited number 
of trainable parameters. This could be the results of the limited total 
available data amount in this dataset. It takes about more than 10% of 
the total trainable parameters of full fine-tuning to achieve almost the 
same effect as full fine-tuning. Nevertheless, the performance of adapter- 
based method remains significantly better than fine-tuning when 
employing a limited number of trainable parameters. As for the separate 
accuracies for the first output and the second output, similar phenom
enon occurred. More layers in decoder would not help, or even slightly 
harm the transfer learning process. In this scenario, the accuracies of two 
outputs for the fine-tuning are similar to each other, with minimal dif
ference. This is slightly different from the previous results. 

4.5. Impact of available data amounts 

It should be noted that the target domain in the first scenario has 
more data than the target domain in the second scenario. The target 
domain in the first scenario has 6,614,529 pieces of data, while the 

target domain in the second scenario has just 25,879 pieces of data. 
Thus, the influence of the data size in target domain for two transfer 
learning strategies is investigated. Data in the first scenario is used and 
the available data in target domain is limited manually according to the 
experimental settings. For adapter-based method, the adapter size is 48 
and the trainable parameters are 3,736,342. For fine-tuning, the output 
layer and the first top layer in two decoders are tuned and the trainable 
parameters are 18,988,054. The test results are shown in Fig. 11. 
Overall, the performance of two strategies gets better when the available 
data increase. As shown in the figure, the performance of both methods 
will suddenly drop when the data amount is too small. However, the 
adapter methods are more robust to the changes of data amount. When 
the data amount is not too small, its changing magnitude is relatively 
smaller compared to the fine-tuning method. 

4.6. Ablation experiments 

Ablation experiments are conducted to evaluate the importance of 
adapters at different locations. Both scenarios are tested. The adapter 
size used in the first scenario is 48, and 96 for the second scenario. There 
are 6 layers in encoder and 6 layers in each decoder, forming 12 

Fig. 9. Overall accuracy for scenario 2 with different trainable parameters.  

Fig. 10. Accuracies for scenario 2 with different trainable parameters.  

Fig. 11. Test accuracy with different data amount in target domain.  
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positions in total, as shown in Fig. 12. In each time, adapters in the same 
encoder layer or two layers in the same position in two decoders are 
removed. There are two adapters in an encoder layer, and three adapters 
in a decoder layer. After the adapters removed, the model will not be re- 
trained and will be tested directly. 

The drop amplitude of the overall accuracy after ablating adapters is 
shown in Fig. 13. Two most important locations are the bottom (near 
input) and the top (near output). And the first 4 layers (position 7, 8, 9 
and 10) in decoders are the least important. This is not consistent with 
the general understanding for fine-tuning. While it is generally observed 
that during fine-tuning, the top layers of a pre-trained model tend to be 
more important, the specific behavior of adapters in different positions 
can vary. The importance of adapters in different positions within the 
modified transformer model can be influenced by various factors. Also, 
the removal of adapters in the first six positions (in encoders) actually 
eliminates two adapters, whereas removal in the last six positions 
removes six adapters. However, the drop amplitude observed when 
ablating adapters in encoders is still greater than when ablating adapters 
in decoders. This implies that the adapters in the encoders (those near 
the input) are the most important. 

Here are some possible explanations. The bottom adapters, being 
close to the input, may be responsible for capturing the most essential 

information from the input data. By ablating these adapters, the model’s 
ability to encode important features can be limited, resulting in a sig
nificant drop in performance. These adapters function like the feature 
extraction or transformation. Difference between features in different 
domains or feature absence can be addressed by these adapters. The top 
adapters near the output of the model are responsible for transforming 
the representations learned by the underlying encoder layers into task- 
specific outputs. These adapters have a direct impact on the final pre
dictions and are critical for aligning the model’s internal representations 
with the specific task at hand. Ablating these adapters might result in the 
model being unable to produce accurate or meaningful predictions for 
the task. 

In addition, one thing to be noticed is that the important positions of 
the two scenarios are slightly different. In scenario 1, which is a transfer 
learning between similar systems, bottom adapters are more important 
while the top adapters are less important. However, in scenario 2 which 
involves a transfer from simulation to real-world experiments, the top 
adapters are more important than the bottom adapters. This is consistent 
with the possible explanation mentioned above. In transfer learning 
scenarios involving similar systems, the emphasis is likely to be on 
feature transformation, as these systems may share identical, similar, or 
absent features that require alignment. Conversely, when transferring 
from simulation to real-world experiments on the same system, the 
significance of input features diminishes, highlighting the increased 
importance of the top adapters. 

However, in practical applications, it is recommended to use all 
adapters. The significance of adapter locations can be affected by a lot of 
factors. Incorporating adapters throughout the entire structure ensures 
an ample level of flexibility for effective transfer learning. And the 
trainable parameters of adapters can be adjusted by changing the 
adapter size, allowing for further optimization and customization. 

5. Conclusion 

In this study, a novel transfer learning approach for HVAC FDD is 
presented. A modified transformer model is developed as the basic 
model for transfer learning. It is designed with one encoder and two 
decoders connected, enabling simultaneous outputs of fault types and 
severity levels. Then, an adapter-based parameter-efficient transfer 
learning method is investigated for the transfer learning of the FDD 
model. Its performance is compared with the fine-tuning method in two 
designed scenarios. Finally, some influencing factors of the transfer 
learning are analyzed, including available data amount and important 
positions. The conclusions are as follows: 

Fig. 12. Position of ablated adapters.  

Fig. 13. Accuracy drop amplitude after ablating adapters.  
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(1) The proposed modified transformer model exhibits a good per
formance for the complex HVAC FDD tasks. The designed struc
ture allows this model to effectively classify the fault types and 
severity levels. While most transfer learning methods for FDD 
require a same feature list for two domains, which is not common 
in reality, this model allows absent features in target domain 
when doing transfer learning. It is a suitable large model in the 
context of HVAC FDD tasks and it serves well as a basic model for 
transfer learning.  

(2) The adapter-based parameter-efficient method emerges as an 
efficient transfer learning approach for HVAC FDD problems. 
Two scenarios, a transfer between similar HVAC systems and a 
transfer from simulation to real-world deployment, have been 
designed to investigate the transfer learning process. Leveraging 
the proposed modified transformer, this adapter-based method 
achieves comparable results to full fine-tuning with trainable 
parameters of a smaller order of magnitude. It demonstrates 
exceptional performance with limited trainable parameters.  

(3) The adapter-based method is more stable to the change of 
available data amount in the target domain, compared to fine- 
tuning. It works well when the data in target domain are not 
too small. In addition, the most important adapters for transfer 
learning locate near the bottom and top layers. Bottom layers 
play a crucial role in feature transformation or extraction across 
different domains. Top layers aid in aligning latent representa
tions with task-specific outputs, facilitating effective transfer 
learning. 

The modified transformer model and an adapter-based transfer 
learning method are investigated in this study. However, the test sce
nario is currently limited by the available data. It would be beneficial to 
conduct broader tests in various scenarios. It would also be helpful to 
investigate different configurations of adapters, including positions and 
structures. Furthermore, to enhance the effectiveness of transfer 
learning and the practical application of HVAC FDD, future work could 
focus on a data-driven and domain knowledge hybrid approach to 
measure domain similarities and differences. This will facilitate the 
seamless transfer of knowledge between different domains. 
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