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A B S T R A C T

Potential natural vegetation (PNV) is a valuable reference for ecosystem renovation and has garnered increasing
attention worldwide. However, there is limited knowledge on the spatio-temporal distributions, transitional
processes, and underlying mechanisms of global natural vegetation, particularly in the case of ongoing climate
warming. In this study, we visualize the spatio-temporal pattern and inter-transition procedure of global PNV,
analyse the shifting distances and directions of global PNV under the influence of climatic disturbance, and
explore the mechanisms of global PNV in response to temperature and precipitation fluctuations. To achieve this,
we utilize meteorological data, mainly temperature and precipitation, from six phases: the Last Inter-Glacial (LIG),
the Last Glacial Maximum (LGM), the Mid Holocene (MH), the Present Day (PD), 2030 (2021–2040) and 2090
(2081–2100), and employ a widely-accepted comprehensive and sequential classification system (CSCS) for
global PNV classification. We find that the spatial patterns of five PNV groups (forest, shrubland, savanna,
grassland and tundra) generally align with their respective ecotopes, although their distributions have shifted due
to fluctuating temperature and precipitation. Notably, we observe an unexpected transition between tundra and
savanna despite their geographical distance. The shifts in distance and direction of five PNV groups are mainly
driven by temperature and precipitation, although there is heterogeneity among these shifts for each group.
Indeed, the heterogeneity observed among different global PNV groups suggests that they may possess varying
capacities to adjust to and withstand the impacts of changing climate. The spatio-temporal distributions, mutual
transitions and shift tendencies of global PNV and its underlying mechanism in face of changing climate, as
revealed in this study, can significantly contribute to the development of strategies for mitigating warming and
promoting re-vegetation in degraded regions worldwide.
1. Introduction

It is an indisputable fact that the Earth has been experiencing rapid
climate warming, with a speed of 0.2 �C per year over the past 40 years,
compared with pre-industrial levels (IPCC, 2021). The most rapid
warming has been observed at high altitudes and latitudes, such as Tibet
and the polar regions (Schickhoff et al., 2015). Climate warming has
significantly impacted on the physiological and biochemical processes,
species composition, and community structure of vegetation, and has
increasingly affected atmospheric circulation and human activities in
these areas (Chen et al., 2019). However, in addition to sequestering
and Resources, Chang’an Univers
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carbon, vegetation, particularly forests can physically cool nearby areas
by releasing certain cooling molecules, humidifying the air and creating
clouds, which alleviates climate warming to some extent (Duveiller et al.,
2021; Popkin, 2019). Vegetation, therefore, rises a key function of
regulating the balance of matter, energy and information among spheres
of the Earth, and provides some pivotal ecosystem services, such as ox-
ygen, fibre, fuel and food for humanity (Bonan et al., 1992).

As a crucial reference, potential natural vegetation (PNV) is essential
in comparison with real natural vegetation in degraded ecosystems.
Previous studies have classified regional or global PNV and analysed the
sensitivity of its pattern to meteorological factors using bioclimatic or
ity, Xi’an, 710054, China.
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biophysical models (Zhao et al., 2002; Yuan et al., 2011; Wang et al.,
2011). However, due to the overly-complicated physio-ecological pro-
cedures and the huge computation of input data for models, these studies
conducted coarse spatial simulations of global PNV and failed to achieve
long-time series patterns of global PNV. This limits our understanding of
the adaptive mechanisms of global PNV to past and ongoing climate
change.

As a well-known bioclimatic model, the comprehensive and sequen-
tial classification system (CSCS) has been widely applied to classify
regional or worldwide PNV (Liang et al., 2012a, 2012b; Du et al., 2021;
Liu et al., 2021). The CSCS classifies PNV classes using thermal and hu-
midity units while it calculates humidity with two stable and
easily-observed meteorological variables of precipitation and tempera-
ture (Eq. 1 and Supplementary Material Table S1). 42 zonal classes of
global PNV are divided by the CSCS, including desert, forest, shrubland,
savanna, grassland, and tundra at the landscape level (Fig. 2; Liang et al.,
2012a). Due to low consumption of time and computing resources, the
CSCS is well-accepted in classifying PNV, capturing spatio-temporal
distribution of PNV and predicting shift trends of PNV associated with
climate change at the regional scales (Ren et al., 2021). Nevertheless, up
to now, the quantitative relationship between climatic variables and PNV
shift remains not well addressed.

Understanding the response of PNV shifting to climate warming has
recently received increased attention for a better interpretation of carbon
cycling. However, accurately predicting the extent and magnitude of this
shift globally using models remains challenging. For purpose of investi-
gating the impact of climate change on variation of PNV at the global
scale, we propose three hypotheses: I. if global PNV follows the same
pattern as temperature and precipitation on the Earth, the shift distance
and shift direction of all five groups of global PNV would remain un-
changed (Fig. 1a). II. however, if global PNV responds to warming plus
precipitation increase, some global PNV groups would be extended
northward (Fig. 1b). III. if global PNV, in contrast, responds to cooling
plus precipitation reduction, some global PNV groups could be shortened
toward the equator (Fig. 1c). To verify these hypotheses, this study at-
tempts to 1) divide the detailed classes of global PNV using the CSCS and
meteorological data during paleoclimatic, present and future periods; 2)
visualize the spatio-temporal distribution, transition among five groups
of global PNV, and analyse their responses to climate fluctuations during
these periods; and 3) explore the mechanism of global PNV in face of
climate change. Quantifying global PNV pattern responses to climate
change at a long time-series scale helps us better understand the inherent
Fig. 1. Schematic representation of climate change impacts on five groups of global p
(b), cooling plus precipitation reduction (c) scenarios. The thermometers with green,
The numbers of sky-blue raindrop (two, three, one) represent normal, precipitation in
for global potential natural vegetation is illustrated by the length of solid red arrows
north and south. (For interpretation of the references to colour in this figure legend
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adaption strategies of vegetation to climate change and is useful for
policy decision of revegetation in damaged natural ecosystems for
government.

2. Materials and methods

2.1. Data and pre-processing

To retrieve the paleoclimatic, historical (near current) and future
spatio-temporal patterns and variations in global PNV, we downloaded
three types of projected meteorological data from the global climate and
weather websites (https://www.worldclim.org/data/index.html,
accessed 18 October 2023). The data include monthly average minimum,
maximum temperature and monthly total precipitation. The paleo-
climate data was stored under version 1.4, while the historical and future
climate data was stored under version 2.1. These data were collected for
various time periods: paleogeological periods (including LIG, Last Inter-
Glacial, approximately 120,000 to 140,000 years ago; LGM, Last Glacial
Maximum, approximately 22,000 years ago; MH, Mid Holocene,
approximately 6,000 years ago), PD (Present Day, 1970–2000), and
future periods (2030, 2021–2040; 2050, 2041–2060; 2070, 2061–2080;
2090, 2081–2100). The paleoclimatic and historical meteorological data
were modelled using global climate models and the meteorological data
during future periods were processed using 23 global climate models and
four shared socio-economic pathways (SSP126, 245, 370 and 585). These
data have a spatial resolution of 30 s, which is approximately 1-km, and
were gridded using thin plate smoothing splines with the ANUSPLIN
software (version 4.4) developed by the Australian National University
(Xu and Hutchinson, 2013).

In this study, we selected the paleoclimatic, historical and future
meteorological datasets modelled by CCSM4 (community climate system
model version 4) and MRI-ESM2-0 (meteorological research institute-
earth system model version 2.0, Japan) because they have been widely
used in the fields of atmospheric science, biogeochemistry and ecology
(Yukimoto et al., 2019). In addition, we chose two combinations of
scenarios and periods, namely SSP370_2030 and SSP585_2090, for future
meteorological datasets. These scenarios represent the lowest tempera-
ture with relatively deficient precipitation (SSP370_2030) and the
highest temperature with fairly abundant precipitation (SSP585_2090)
projected under scenario 370 in 2030 and scenario 585 in 2090,
respectively (Supplementary Material Fig. S1). According to the classi-
fication variables and approaches of the CSCS, the projected
otential natural vegetation under normal (a), warming plus precipitation increase
red and blue mercury column mean normal, warming and cooling, respectively.
crease and precipitation reduction, respectively. The shift distance of each group
. The N and S at two endpoints of each solid red arrow indicate the direction of
, the reader is referred to the Web version of this article.)

https://www.worldclim.org/data/index.html


Fig. 2. Index chart for determining global potential natural vegetation class in the comprehensive and sequential classification system (modified based on Feng et al.,
2013). The names of 42 PNV classes were shown in Supplementary Material Table S2. The numbers of aureate sun, black raindrop and light-green dewdrop
demonstrate the degree of GDD0 (above 0 �C during growing degree days, �C), rainfall (mm) and humidity (non-dimension). The classes filled with light green, red,
orange, grass green and blue under the five black icons express the five groups of global potential natural vegetation of forest, shrubland, savanna, grassland, tundra,
respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
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meteorological data mentioned above were utilized to calculate the
annual accumulated temperature above 0 �C (GDD0) and the annual total
precipitation (p) using mathematical manipulations. These calculated
values were then employed in simulating humidity (h).

2.2. Principle of the CSCS

The CSCS classifies PNV using two bioclimatic variables: GDD0 and h.
The humidity (h) is calculated as follows (Ren et al., 2008):

h¼ p
0:1� GDD0

(1)

where 0.1 is the adjusted coefficient. The classification of the 42 PNV
classes is presented in Supplementary Material Table S1, and the specific
codes and names for each of the 42 classes can be found in Supplemen-
tary Material Table S2. To illustrate the classification process, let’s
consider an example. If a grid cell in the humidity (h) layer has a value
greater than or equal to 2.0 (unitless) and the corresponding grid cell in
the GDD0 layer has a value greater than or equal to 8,000 �C, this grid cell
would be classified as VIIF42 (tropical-perhumid rain forest).

To facilitate the visualization of the general variation trends in the
global PNV, we regrouped the original 42 classes into five groups
(including forest, shrubland, savanna, grassland and tundra, desert was
excluded in our analysis and not shown in Fig. 2 owing to its extremely
sparse vegetation cover and most of the short-life plants emerge at the
occasion of rainfall events in summer, and they complete their life history
in a short time). For detailed information on the regrouping foundation
and approach, please refer to Supplementary Material Table S3.
3

2.3. Geometrical center points, shift trends of distance and direction

The geometrical center points, shift trends of distances and directions
of five PNV groups were determined following Hart (1954) and Yue et al.
(2011):

8>>>>><
>>>>>:

xmðtÞ ¼
XimðtÞ
n¼1

smnðtÞ � xmnðtÞ
smðtÞ

ymðtÞ ¼
XimðtÞ
n¼1

smnðtÞ � ymnðtÞ
smðtÞ

(2)

where t is one of the six periods; im(t) and sm(t) are the patch amount and
total area (km2) of mth group during t, respectively; smn(t) and [xmn(t),
ymn(t)] mean the area (km2) and coordinate (longitude and latitude,
degree) of geometrical center point of nth patch in mth group during t,
respectively.

Dm ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxmðtÞ � xmðt � 1ÞÞ2 þ ðymðtÞ � ymðt � 1ÞÞ2

q
(3)

Dm is the shift distance (km) of mth group from t–1 to t; [xm(t), yn(t)]
and [xm(t–1), ym(t–1)] state the coordinates (longitude and latitude, de-
gree) of geometrical center points of mth group during t and t–1.

θm ¼ tan
�
ymðtÞ � ymðt � 1Þ
xmðtÞ � xmðt � 1Þ

�
(4)

θm is the shift direction (angle) of mth group from t–1 to t; 90�, 180�,
270� and 360� are defined as due east, south, west and north,
respectively.
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2.4. Data analysis

The area and percentage calculation of transition among the five PNV
groups were generated using the patch analysis embedded in Arc
Toolbox. This analysis involves a pixel-by-pixel comparison to determine
the changes in group composition and the corresponding areas and
percentages of transition. Meanwhile, the shift distance and shift direc-
tion of the five PNV groups were calculated using raster calculator in Arc
Toolbox. Furthermore, we visualized the spatio-temporal distributions
and geometrical center points, transitions, and shift trends among the
five groups during the six periods using ArcMap 10.8.2 (Esri Inc., 2020).
Additionally, all of the mappings in this study were resampled to a 1-km
spatial resolution and attached with the World_Natural_Earth projected
coordinate system, along with the WGS_1984 geographic coordinate
system, to ensure accurate visualization and calculation.

The figures were plotted by “plotrix” and “ggplot2” packages in R. In
order to identify important factors affecting the shift distance and shift
direction, six meteorological variables including monthly average
maximum temperature, monthly average minimum temperature,
monthly average temperature, annual accumulated temperature above 0
�C, monthly total precipitation and annual total precipitation were
applied into the principal component analysis with “ggcorrplot”, “Fac-
toMineR” and “factoextra” packages in R. Moreover, to better understand
the underlying mechanisms of fluctuating temperature and precipitation
Fig. 3. Spatio-temporal distributions and areas of the five groups of global potential
Mid Holocene (c), Present Day (d), 2030 (e) and 2090 (f). Two dashed lines in each b
light grey lines in each sub-map mean the continental borders.
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impacting on global PNV, the Spearman coefficients were determined to
judge the significant degree between two above-mentioned independent
and six above-involved dependent variables using “corrplot” package in
R (version 4.3.1; R Core Team, 2023).

3. Results

3.1. Spatio-temporal distribution of global potential natural vegetation

During the LIG, MH, PD, 2030 and 2090, forests exhibit the largest
spatial coverage (Fig. 3a and c–f). In contrast, shrubland consistently
maintains the smallest distribution potential across all six periods
(Fig. 3). However, during the LGM, tundra occupies the largest extent due
to the lowest temperatures and precipitation during this period. The cold
and arid climate of the LGM results in the savanna and grassland also
occupying a relatively small percentage of the Earth’s total area (Fig. 3b).
As temperature and precipitation levels rise, creating a warm-humid
condition (Supplementary Material Fig. S2), thermophilic and hygroph-
ilous plants rapidly expand their ranges, resulting in savanna and
grassland surpassing the tundra in terms of spatial coverage (Fig. 3a, e
and f).

At the spatial scale, forests are predominantly distributed within the
range of 30� N–60� N and 10� N–10� S, with the exception of Southeast
Asia, which has a unique precipitation pattern due to the Qinghai-Tibet
natural vegetation during the Last Inter-Glacial (a), Last Glacial Maximum (b),
ar chart represent a y-axis break to preserve the visibility of the lowest block. The
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plateau’s upheaval around 7–11 million years ago (Miao et al., 2022;
Ding et al., 2022). This geographical feature, known as the ‘third pole’,
alters the monsoon and west wind routes in Southeast Asia due to its
massive mountain range. Grasslands are present briefly between 40� N
and 60� N in the northern hemisphere. Savanna, with the broadest
ecological range, stretches from 40� S to 40� N, even encompassing the
majority of Australia. Shrublands are scattered in fragmented areas
alongside forests, occupying the smallest total area among the five global
PNV groups. Tundra is consistently found in regions with circumpolar
latitudes and high elevations, such as the Arctic and the Qinghai-Tibet
plateau, due to its cold and relatively humid conditions (Fig. 3). How-
ever, the spatial patterns of the five global PNV groups exhibit significant
variations during the LGM and 2090, primarily due to the extremely low
and high temperatures experienced during these two periods, respec-
tively (Supplementary Material Fig. S2a and c). The exceptionally low
temperatures during the LGM result in tundra expanding extensively
towards equatorial latitudes, encroaching upon the niches of grasslands
and forests. Consequently, the spatial extent of grasslands, forests and
savannas shrinks towards the equator (Fig. 3b). Conversely, the excep-
tionally high temperatures in 2090 lead to the rapid retreat of tundra and
the substantial expansion of forests, grasslands and savannas towards the
North Pole (Fig. 3f).
3.2. Transition of global potential natural vegetation

The transition from forest to tundra occurs predominantly during the
phase from the LIG to the LGM, covering a vast area of 2.67 � 107 km2,
accounting for 87.76% of the total changed area. This conversion is more
Fig. 4. Quantitative and spatial transitions of the five groups for global potential nat
to the Last Glacial Maximum (a), from the Last Glacial Maximum to the Mid Holocene
(d), from 2030 to 2090 (e) and from the Last Glacial Maximum to 2090 (f). The light g
Sa: Savanna, G: Grassland, T: Tundra.
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extensive compared to the transitions between the forest and the other
three groups. Notably, the transformation from grassland to tundra en-
compasses a larger area (8.07 � 106 km2) and a higher percentage
(85.34%) than the conversion occurring between grassland and the other
three groups during this phase (Fig. 4a). Additionally, during the phase
from the LGM to 2090, there is a significant reverse transition from
tundra to forest and tundra to grassland. These conversions cover
extensive areas of 2.20 � 107 km2 and 8.03 � 106 km2, respectively,
constituting percentages of 96.34% and 90.89% (Fig. 4f). Similarly,
throughout the other four transitional periods (Fig. 4b–e), interactive
conversions between tundra and forest, as well as between tundra and
grassland, are noticeable. This is due to the overlapping niches of plants
in these three groups and their high sensitivity to fluctuations in tem-
perature and precipitation.

It is indeed surprising that all noticeable transitions among groups
occur in circumpolar latitudes and high elevation regions, such as the
Arctic and Qinghai-Tibet plateau, which are widely recognized as
ecologically fragile regions. Furthermore, it is interesting to note that no
transitions have been observed between tundra and shrubland or
savanna across the Earth’s surface during the previous five transitional
phases (Fig. 4a–e). This lack of transition is likely due to the significant
geographic distances separating these three groups. However, during the
phase from the LGM to 2090, an unexpected inter-conversation between
tundra, shrubland and savanna is observed. This can be attributed to the
substantial differences in annual mean temperature and annual precipi-
tation, with variations of 16.07 �C and 125.32 mm between these two
periods (Supplementary Material Fig. S2). This suggests that inter-
replacement among PNV groups is possible even when they are
ural vegetation during six distinct transitional phases: from the Last Inter-Glacial
(b), from the Mid Holocene to the Present Day (c), from the Present Day to 2030
rey lines in each sub-map mean the continental borders. F: Forest, Sh: Shrubland,
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geographically isolated from each other, as long as there exists a signif-
icant hydro-thermal difference between the two periods (Fig. 4f). This
explanation can be verified in the mass outbreak and extinction events
caused by extreme climatic change during snowball glaciation and
thermal maximum (Song et al., 2023; Stott and Kennett, 1991).

3.3. Geometrical centers, shift distances and shift directions

The geometrical centers of tundra are located in the Arctic region,
while forest and grassland are situated in the mid-low latitudes of the
northern hemisphere. Savanna and shrubland, on the other hand, are
distributed near the equator. This distribution pattern generally aligns
with the temperature and precipitation conditions observed during each
period (Fig. 3). Over time, the savanna shifts towards northwest, while
the other four groups shift northward. As the Earth becomes cooler, the
geometric centers of all five groups tend to move towards more southern
latitudes. It is interesting to note that even though shrubland has the
smallest distribution on the Earth, it demonstrates the widest amplitude
of movement among the five groups. Conversely, the savanna, despite
having a larger area among the five groups, exhibits the narrowest
fluctuation in its geometric center. (Fig. 5b and d).

As expected, the largest shift distance is observed in forest and
savanna during the phase from the LIG to the LGM. This is due to the
substantial temperature and precipitation differences during these two
periods. However, grassland and shrubland exhibit the largest shift dis-
tance during the phase from the LGM to the MH. Meanwhile, tundra
experiences the longest shift during phase from 2030 to 2090. It is
noteworthy that all five groups have the shortest shift distance during the
phase from the MH to the PD. This could be attributed to the relatively
Fig. 5. Geometrical centers (b and d, degree), shift distances (a, km), and shift dire
the Last Inter-Glacial to 2090. The two red cross lines represent the horizontal coor
(b) represents the borders of the zoom-in map (d). The light grey lines in each sub-m
of global potential natural vegetation. : Forest, : Shrubland, : Savanna,
figure legend, the reader is referred to the Web version of this article.)
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smaller differences in temperature and precipitation during this phase
compared to that during the other five phases (Fig. 5a; Supplementary
Material Fig. S2).

Surprisingly, during the phase from the LGM to the MH, tundra ex-
hibits the largest shift direction, though previous observations indicate
that forest has a slight advantage in terms of area and shift distance
compared to tundra during this phase. This approximately mirrored
reversal of direction for tundra and forest could potentially be attributed
to the extremely low temperatures experienced during the LGM (Fig. 5c;
Supplementary Material Fig. S2a and c). These extreme environmental
conditions may significantly influence the shift directions of these two
groups.

3.4. Global potential natural vegetation in face of climate change

Temperature has a greater effect on the distribution, transition, shift
tendency of distance and direction for five groups of global PNV than
precipitation across all six periods. Principal component analysis reveals
that temperature correlates positively with the shift tendency of distance
and direction of global PNV, while the relationship with precipitation is
negative (Supplementary Material Fig. S3a). Forest and grassland show
the highest correlation (R � 0.85) between shift distance and six mete-
orological factors, while tundra shows the weakest correlation (R <

0.33), with shrubland and savanna showing a moderate correlation
(0.64 < R < 0.79) (Supplementary Material Fig. S3b). The shift direction
of all five groups has a lower correlation with meteorological factors
compared to shift distance, with savanna displaying a negative correla-
tion (except for GDD0, Supplementary Material Fig. S3c).

Temperature and precipitation exert the greatest effect on the shift
ctions (c, angle) of the five groups for global potential natural vegetation from
dinate system with the origin (0, 0). The black rectangle in the zoom-out map
ap mean the continental borders. The five black icons represent the five groups
: Grassland, : Tundra. (For interpretation of the references to colour in this
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distance of shrubland, while savanna and tundra are least affected by
these two factors. With respect to shift distance, shrubland shows the
weakest response to temperature and precipitation, whereas savanna,
grassland and tundra exhibit the most pronounced shifts. When consid-
ering individual meteorological factors, both temperature and precipi-
tation positively impact the shift (both distance and direction) of all five
groups, except for the shift direction of savanna, which is negatively
related to these two factors. Notably, both temperature and precipitation
have the greatest impact on the shift distance of forest and grassland, but
exert the least impact on the shift direction of forest and tundra, as well as
the shift distance of tundra. At the same time, these two meteorological
factors have the least relation with shift direction of forest, tundra and
shift distance of tundra. Obviously, they have distinct impact on the shift
direction of shrubland (Fig. 6).

4. Discussion

4.1. Concept and modelling

Potential natural vegetation (PNV), initially proposed by Tüxen and
Preising in 1956, refers to the hypothetical vegetation that would exist in
a specific area under natural conditions, without any direct human
intervention. PNV serves as a useful tool for describing the likely vege-
tation composition in an area and is particularly valuable for assessing
regions without pristine vegetation. It assumes the absence of human
activities including plowing, planting, mowing and fertilizing, etc. The
CSCS utilizes two stable bioclimatic variables, namely the annual accu-
mulated temperature above 0 �C and humidity, to determine the PNV
class. This classification is solely based on climatic envelope and does not
consider human activities. Consequently, the vegetation classes identi-
fied by the CSCS align closely with the definition and classification of
PNV, as described in detail by Ren et al. (2021).

Ecological models serve as simplified representations of ecological
phenomena or processes, aiming to enhance our understanding of spe-
cific ecological patterns or processes. The focus of this study is on
investigating patterns and transitions of climate-induced variations in
Fig. 6. Mechanism schematic of the five groups for global potential natural vegetation
correlation between shift distance, shift direction and metrological factors (three: h
coloured lines with right or up arrowhead and three equidistant means the degrees be
two: moderate shift; one: weak shift). To further investigate the influence of clima
component analysis in conjunction with correction tests. The principal component
distance and direction, while the relationship between shift distance, shift direction
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PNV at the global scale. The study does not specifically address the
verification of the effectiveness and robustness of the CSCS or conduct
tests to evaluate the precision of PNV classification, which were provided
in our previous study (Ren et al., 2021). While some well-known bio-
climatology (Ramankutty and Foley, 1999), biogeochemistry (Holdridge,
1947) and physio-ecology process models (Smith et al., 2001) have been
frequently employed for global PNV classification, the CSCS still holds
significant potential due to its simplicity in terms of input/output pa-
rameters and its low time and computing requirements for large-scale
vegetation classification. Moreover, the CSCS provides more numerous
classifications of grassland compared to the above-mentioned models.
This suggests that the CSCS, despite its simplicity, is a capable bio-
climatology model suitable for large-scale classification of PNV.

4.2. Spatio-temporal distribution of global potential natural vegetation

Sun et al. (2010) conducted a study at the regional scale over cen-
turies in the Loess Plateau in western China. Using pollen records, they
found that the natural landscape during the middle Medieval Warm
Period (MWP) consisted mainly of forest-rangeland. Similarly, we found
that the temperate humid grassland, temperate forest and steppe
emerged in the Loess Plateau during MH, resulting in a natural landscape
combination of forest-rangeland. In another study, Zhang et al. (2011)
examined historical documents of the late 17th century in northeast
China and found that the dominant landscapes during that time were
forest and grassland. In line with the historical records, we discovered
that the PNV groups in northeast China consisted of steppe, temperate
forest, and temperate humid grassland. These findings align with the
landscapes identified in the historical records, indicating a degree of
similarity between the two studies.

4.3. Global potential natural vegetation responds to climate warming

The effects of climate warming impacting on vegetation pattern are
evident in various regions. As temperatures rise, tundra tends to shift
northward and towards high elevations, while savanna experiences a
in face of climate change. The numbers of small coloured rectangles indicate the
igh correlation; two: medium correlation; one: low correlation). The length of
tween shift distance, shift direction and metrological factors (three: severe shift;
te change on shift distance and shift direction, this study employed principal
analysis demonstrates that temperature positively affects the shift tendency of
, and precipitation is negative (see Supplementary Material Fig. S3a).
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contraction from medium latitudes towards the equator. Gonzalez et al.
(2010) found that both tundra and alpine plants located in the northern
hemisphere show the highest tendency to shift northward due to po-
tential climate warming. However, the response strategies of individual
plant species to projected climate warming are varied. In terms of future
trends, Bakkenes et al. (2002) reviewed possible scenarios and found that
by 2050, plant species would likely shift further northeast compared with
their current climate envelopes. In the long term, most of the Europe
potentially transitioning to a different PNV type may occur if current
climate warming continues to the end of this century. Additionally, some
notable change ‘hotspots’ include the Arctic and alpine areas, where
tundra may be substituted by forest in their overlapping zone due to the
sustained climate warming (Hickler et al., 2012).

Temperature seasonality is identified as the most influential predictor
for vegetation distribution, followed by the annual average temperature.
Among precipitation parameters, in contrast, the precipitation season-
ality has the least significance in the predictive model while the annual
total precipitation demonstrates a higher predictive power (Hinze et al.,
2023). Overall, these findings agree with the outputs of our study,
providing further support for the observed impacts of changing climate
impacting on PNV distribution. They are also substantially advantageous
to our understanding of the potential shifts in PNV and remarkably
highlight the significance of temperature and precipitation variables in
predicting vegetation responses to climate change.

4.4. Uncertainty and limiting

Our study highlights the extent, shifts and vulnerability of global PNV
across different time periods, including paleogeologic eras, present day
and future decades. It serves as a means to detect areas where natural
vegetation may be most vulnerable to future climate warming. However,
it is acknowledged that PNV, as classified by the CSCS, may differ from
the actual natural vegetation that covers the Earth’s surface. Moreover,
PNV may be altered by other crucial factors such as topography, glacier
changes, insolation, CO2 concentrations, soil conditions and land use
changes, which directly or indirectly affect the temperature and precip-
itation supplies to plants' survival. However, the impacts of these factors,
either alone or in combination, on plant growth and vegetation dynamics
have been shown to be complex, non-linear and context-dependent
(Bourdouxhe et al., 2023; Liu and Yin, 2013; Sykes et al., 1999). For
example, a recent study in West Africa has shown that long-term drought
can cause drier tropic forests to shift towards forest communities with
decreased functional, taxonomic and phylogenetic diversity. In addition,
studies have also shown that rising atmospheric CO2 concentrations may
counteract the drought effects on ecosystem structure and functioning
(Aguirre-Guti�errez et al., 2020). These raise concerns about the reliability
of the bioclimatic model and the precision of PNV classification.

It should be noted that due to the complexity and variability of
climate and vegetation, relying solely on current anthropic cognition and
abstracted model to understand ancient and future vegetation on
amount, distribution, variation and response to climate change may
introduce large uncertainties and limitations. To address these issues, one
possible approach could be to utilize close-to-nature data, such as pollen
data or remote sensing images as proxies to reconstruct historical natural
vegetation and project the future potential distribution of natural vege-
tation worldwide. Incorporating such data could enhance the accuracy
and reliability of vegetation classification and predictions. While our
study does not specifically address the practices for regenerating
degraded ecosystems, such as plant species selection, the output of this
study can still guide ecosystem management and conservation strategies
to avoid ecosystem destruction with ongoing climate warming and pre-
cipitation alteration.

5. Conclusions

We aim to depict the spatio-temporal patterns, inter-transitions,
8

geographical centers, shift trends of five groups of global PNV under
climate change. To investigate possible mechanisms of climate change
impacting on global PNV, we utilize long-time series meteorological
projected data and the widely used CSCS. We find that the distribution of
the five groups of global PNV generally corresponds to their ecotopes,
which serve as habitats for specific species and are primarily influenced
by changing climate. Sharp fluctuations of climate can lead to significant
conversions among groups of global PNV, particularly in regions with
circumpolar latitudes and high elevations worldwide. Changes in climate
also have a fundamental influence on the geometrical centers, shift trends
of PNV groups. As supposed in schema of this study (Fig. 1), warming
plus precipitation increase result in the shift of forest, grassland and
savanna to be extended northward while cooling plus precipitation
reduction lead to tundra expanding extensively towards the equator. In
some cases, even geographically distant PNV groups can be inter-
replaced if there are sufficient hydro-thermal differences among
different time periods. While temperature and precipitation play a
dominant role in shaping PNV, some specific PNV groups exhibit het-
erogeneous responses to changes in these two climatic variables,
reflecting the varying adaptabilities of species to climate change. The
outputs of this study can serve as a valuable benchmark for community
construction in ambitious ecological restoration projects worldwide.
However, it is admitted that there are large uncertainties associated with
the classification of PNV by the CSCS, as the projected vegetation may
differ from the actual natural vegetation in nature. To address this lim-
itation, the study suggests incorporating multiple data sources and ap-
proaches, including both bioclimatic models and close-to-nature data
(e.g., remote sensing data and pollen data), which can contribute to a
more comprehensive understanding of past, present, and future vegeta-
tion dynamics and inform effective ecosystem management strategies.
PNV, as a critical benchmark for degraded ecosystems, can significantly
reflect the impacts of global climate change on vegetation dynamics.
Moreover, in order to investigate the extent and magnitude of changing
climate impacting on PNV in detail, quantitative rather than qualitative
analysis between PNV shift and climate drivers should be conducted in
the future research.
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