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Abstract
SWI3  proteins  as  the  core  accessory  subunits  of  SWI/SNF  chromatin  remodeling  complexes  (CRCs)  could  jointly  take  part  in  the  genome

epigenetic regulation upon disrupting the interaction between DNA and histones, ulteriorly regulating the accessibility of DNA-binding proteins

or TFs to DNA. Research on chromatin remodeling complexes in plants lags behind yeast and animals, however, the last decade has witnessed an

intensive  effort  to  enhance  our  understanding  of  identification,  characterization  and  molecular  mechanisms  of  CRCs  in Arabidopsis which

provided  the  information  for  further  studies  in  other  plant  species.  So  far,  genome-wide  identification  of  SWI3  family  in  citrus  has  not  been

reported. Here, four CsSWI3 genes based on Citrus sinensis genome were identified and clustered into four subfamilies. According to conserved

domains and motifs analysis, we found that each CsSWI3 protein contained three conserved domains and the members in the same subfamily

showed strong similarity with those in Arabidopsis. All of the CsSWI3 members were localized in the cell nucleus, which was consistent with the

role  as  the  subunit  of  CRCs.  Analysis  of  promoter  cis-regulatory  elements  indicated  that CsSWI3 genes  may  be  involved  in  stress  response,

phytohormone  response  and  growth  and  development  of  citrus.  Meanwhile,  they  were  expressed  extensively  in  citrus  tissues  and  disparate

development stages in fruit. We found that the expression level of CsSWI3A, CsSWI3B and CsSWI3C are positively correlated with sugar content

during fruit development, especially for CsSWI3B. This study provides comprehensive information for the CsSWI3 gene family and sets a basis for

its function identification in citrus.
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 Introduction

In  eukaryotes,  chromosome  DNA  with  a  long  linear  length
needs to be packaged into the nucleus, which presents a topo-
logical  problem.  To  this  end,  the  nucleosome  is  crucially
needed in packaging and condensing the genome as the basic
structural  unit  of  chromatin[1].  The canonical  nucleosome is an
octamer composed of two copies of each of the four canonical
histones  (H3,  H4,  H2A  and  H2B),  surrounded  by  147  bp  DNA.
The dense structure of chromatin is conducive to the storage of
genetic  information  and  stable  inheritance,  but  it  also  causes
obstacles  for  DNA  elements  to  be  exposed  in  a  regulated
manner  during  gene  transcription,  DNA  replication  and  DNA
repair. In this case, nucleosome is further considered as a highly
dynamic unit through which the genome can be epigenetically
regulated, such as DNA methylation, histone modification, non-
coding RNA and ATP-dependent chromatin remodeling[2]. ATP-
dependent  chromatin  remodeling  complexes  participate  in
various regulatory processes to regulate gene expression, tran-
scription,  replication,  and  recombination,  such  as  loosening
DNA entanglement by disrupting the interaction between DNA
and  histones,  loosening  DNA  tangles,  slipping  nucleosome
DNA,  expelling  histone  dimers  or  octamers,  and  exchanging
histone dimers[3].

SWI/SNF  (switch  defective/sucrose  nonfermentable)  com-
plexes, a class of the most exhaustively studied ATP-dependent
chromatin  remodelers  so  far,  can  regulate  the  accessibility  of
transcription factors or other DNA-binding proteins to DNA by
altering  the  interaction  between  DNA  and  histone  octamers.
Although  the  identification  and  characterization  of  chromatin
remodeling complexes in plants lag behind yeast and animals,
recent studies have revealed whether and how chromatin remo-
delers in Arabidopsis function in multi-subunit complexes[4,5,6,7].
Otherwise, conserved and plant-specific subunits of chromatin
remodeling complexes have been identified and characterized
which provided a basis for further study of the molecular mech-
anisms of chromatin remodeling complexes in plants[4]. Due to
the importance of these remodeling complexes, the absence of
core accessory subunits usually leads to severe developmental
defects[8].  As the component of the minimal functional core of
the  conserved  SWI/SNF  complex,  SWI3  subunit  discovered  in
Arabidopsis (four  AtSWI3  proteins)  may  exert  non-redundant
regulatory  functions  by  participating  in  the  assembly  of  other
SWI/SNF complexes,  affecting the nutritional and reproductive
stages of embryogenesis and plant development, which shows
remarkable  functional  diversification[5].  Even  though  plants
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have been at the forefront of understanding the biological role
of  chromatin  remodeling  factors  in  growth,  development  and
stress  response  through  forward  genetics[6],  there  are  few
related studies on fruit trees. In recent years, 11 AcSWC subunits
(SWI2/SNF2-Related 1 chromatin remodeling complex) in pine-
apple  has  been  identified  and AcSWC6 was  characterized  as
involved in the stress response in plants[7,9].  Four SlSWI3s were
identified and characterized in tomato, in which SlSWI3B could
function on gene regulating in reproductive development, and
SlSWI3C may participate in vegetative growth[10].  Nevertheless,
there  is  no  relevant  research  in  citrus  to  date  which  suggests
the  identification  and  mechanical  analysis  of  SWI/SNF  com-
plexes needed to be deeply explored.

Citrus  is  one  of  the  most  widely  cultivated  fruit  crops  with
important  economic  and  nutritional  value  around  the  world.
Sugars  and  organic  acids  are  considered  to  be  significant
contributors  to  flavor  quality  among  the  major  compounds  in
citrus fruits, and the sugar/acid ratio is recognized as the major
determinant  of  sweetness  and  ripeness[11].  In  this  study,  we
identified four SWI3 family genes in Citrus sinensis. All members
of the CsSWI3 gene family were comprehensively analyzed, in-
cluding physicochemical properties, phylogenetic relationships,
chromosome  distribution,  subcellular  localization,  conserved
motifs  and  domains,  gene  structure,  promoter  cis-regulatory
elements, expression profiles in different development periods
of  fruit  and  other  tissues  in  'Bingtang'  orange,  and  correlation
between  their  expression  and  accumulation  of  sugar  and
organic  acids  in  citrus  fruits.  In  general,  our  works  provide  a
basis for further study on chromatin remodeling dominated by
SWI/SNF complex and its core accessory subunits in citrus.

 Materials and methods

 Plant materials
The  'Bingtang'  sweet  orange  (Citrus  sinensis)  materials

include  fruit,  stem,  leaf  and  flower  used  in  gene  expression
analysis were obtained from Quzhou, Zhejiang Province, China.
Four  developmental  stages  were  selected:  105,  135,  165  and
195  DAFB  (days  after  full  bloom)  in  2021.  Fruits  with  uniform
size  and  appearance  were  selected  in  each  sample  point  as
biological  replicates.  Fruit  flesh,  stems,  leaves  and  flowers
were frozen in liquid nitrogen and stored at  −80 °C for  further
analysis.

 Identification of SWI3 family in C. sinensis genome
Four  AtSWI3  protein  sequences  in Arabidopsis thaliana[5]

were  used  to  retrieve  the  SWI3  family  members  in  sweet
orange  based  on  its  genome  database  (http://citrus.hzau.edu.
cn/download.php)  through  the  Blast  function  in  TBtools  soft-
ware. Conserved domains of the putative SWI3 family members
were  analyzed  on  Pfam  database  (http://pfam.xfam.org)  and
visualized  by  TBtools  software[12,13].  The  members  containing
SWIRM  domain  (Pfam:  PF04433),  SWIRM-associated  region  1
domain  (Pfam:  PF16495)  and  SANT  domain  (Pfam:  PF00249)
were finally identified as SWI3 family protein sequences. Analy-
sis  of  physiological  and  biochemical  properties  including
molecular weight (MW), theoretical isoelectric point (pI), grand
average of hydropathicity (GRAVY) and instability index (II) was
achieved  by  uploading  CsSWI3  protein  sequences  to  the
ExPASy database (www.expasy.org/tools/protparam.html/)[14].

 Phylogenetic analysis and chromosomal location
of SWI3 family

Phylogenetic  analysis  of  SWI3  family  proteins  in  sweet
orange, Arabidopsis,  rice  and  tomato  was  performed  using
MEGA11 software[15]. Clustal W was used to perform multiple se-
quence  alignment  and  the  phylogenetic  tree  was  constructed
based  on  the  maximum  likelihood  method  with  1,000  boot-
strap  tests[16].  Moreover,  iTOL  (https://itoleditor.letunic.com/)
was  used  to  ornament  the  final  phylogenetic  tree[17].  The
genome  annotation  file  of  sweet  orange  in  gff  format  down-
loaded  on  its  genome  database  (http://citrus.hzau.edu.cn/
download.php) and visualized by TBtools software was used to
analyze the chromosomal localization of CsSWI3s.

 Gene structure, conserved motif and domain
analysis of CsSWI3s

Gene  structure  information  of SWI3s in  sweet  orange  and
Arabidopsis  were  involved  in  their  genome  annotation  files
respectively.  MEME  Suite  5.5.2  tool  (https://meme-suite.org/
meme/tools/meme)  was  used  to  analyze  the  conserved  motif
of  CsSWI3s  based  on  their  protein  sequences[18].  In  addition,
conserved domain analysis was achieved by Pfam database. All
the analysis results above were illustrated by TBtools.

 Subcellular localization of CsSWI3 genes
The  CDS  (coding  sequence)  of CsSWI3 genes  without  stop

codon were constructed in the pCAMBIA1300-35S-eGFP vector
and electroporated into Agrobacterium tumefaciens GV3101[19].
The  cultures  of Agrobacterium in  appropriate  amount  were
suspended in infiltration buffer (10 mM MES, 10 mM MgCl2 and
150mM AS) with an OD600 of 0.75 and was transiently expressed
in transgenic N.  benthamiana (expressed H2B-RFP as  a  nuclear
marker)  leaves  by  a  needleless  syringe.  After  2  d  of  growth  in
the  greenhouse  with  a  light/dark  cycle  of  16:8  h  at  24  °C,  the
injection area was imaged with a confocal laser scanning micro-
scope (Nikon 578 A1-SHS, Tokyo, Japan).

 Promoter cis-regulatory elements analysis of
CsSWI3s

The Plant CARE database (http://bioinformatics.psb.ugent.be/
webtools/plantcare/html/)  was  used  to  analyze  the  promoter
cis-regulatory elements of CsSWI3s based on the 2kb upstream
sequences extracted from their genomic nucleotide sequences
with  Phytozome  13  database  (https://phytozome-next.jgi.doe.
gov)[20,21].  Furthermore,  the  analysis  results  were  visualized  by
TBtools.

 RNA extraction and cDNA synthesis
Total  RNA  was  extracted  with  RNAiso  Plus  (Takara,  Beijing,

China) kit following the manufacturer's protocol. Subsequently,
gDNA  wiper  (Vazyme,  Nanjing,  China)  was  used  to  remove
genomic  DNA  from  1ug  of  extracted  total  RNA,  and  the  first
strand  cDNA  was  synthesized  using  HiScript® II  qRT  SuperMix
(Vazyme).

 Expression analysis of CsSWI3s
Primer sequences for RT-qPCR were designed by the Primer-

Blast  tool  in  NCBI  website  (https://www.ncbi.nlm.nih.gov/
tools/primer-blast/).  The  concentration  of  cDNA  template  was
adjusted  according  to  the  CT  value  of  Actin  gene  (Ciclev
10025866m). The RT-qPCR reaction mixture (20 µl) included 10
µl  ChamQ Universal SYBR qPCR Master Mix, 2 µl  diluted cDNA,
0.4 µl  of  each  gene-specific  primer  (10 µM)  and  7.2 µl
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DEPC-treated water. The reaction was performed using Ssofast
Eva  Green  Supermix  Kit  and  CFX96  instrument  (Bio-RAD)  with
following program: initiated at 95 °C for 5 min, followed by 50
cycles of 95 °C for 10 s, 60 °C for 10 s and 75 °C for 15 s. Melting
curves  with  the  citrus  Actin  gene  (XM_006464503)  as  internal
control  were  used  to  examine  each  gene  at  the  end  of  each
run[22]. The 2−ΔCᴛ method was used to analyze the gene expres-
sion levels.  Primers  used for  RT-qPCR are  listed in Supplemen-
tal Table S1.

 Statistical analysis
Data  analysis  was  performed  using  Microsoft  Excel  and

Graph  Pad  Prism  9.  All  experiments  included  at  least  three
biological  replicates  in  this  research  and  the  error  bar  repre-
sented standard error (SE). The least significant difference (LSD)
between  different  developmental  stages  was  calculated  (p <
0.05).  Figures  were  drawn  using  Graph  Pad  Prism  9  and
Microsoft PowerPoint.

 Results

 Identification of SWI3 family in C. sinensis genome
A  total  of  four CsSWI3 genes  were  identified  from  the C.

sinensis genome by homologous sequence alignment with the
AtSWI3 genes in Arabidopsis. All of the CsSWI3 proteins contain
SWIRM  domain  (Pfam:  PF04433),  SWIRM-associated  region  1
domain  (Pfam:  PF16495)  and  SANT  domain  (Pfam:  PF00249)
which  have  been  reported  in Arabidopsis before[6].  Bioinfor-
matic analysis showed that the CsSWI3 proteins contained 466
to  1038  amino  acids  with  their  molecular  weights  (MW)
ranging from 52.00  to  112.70  kDa,  theoretical  isoelectric  point
(pI) from 4.77 to 5.49 and the instability index (II) from 35.42 to

50.95,  and all  of  them were  hydrophilic  proteins.  (Supplemen-
tal Table S2)

 Phylogenetic analysis and chromosomal location
of SWI3 family

A  phylogenetic  tree  has  been  constructed  in  order  to  eluci-
date  the  evolutionary  relationships  between  CsSWI3s  and  the
same family members in other species reported to date, includ-
ing  four  AtSWI3s  in Arabidopsis thaliana,  six  OsSWI3s  in Oryza
sativa (rice) and four SlSWI3s in Solanum lycopersicum (tomato).
The 16 SWI3 proteins were classified into four subfamilies (SWI
3A  to  SWI3D)  predicated  on  previous  studies  in Arabidopsis[5],
which  is  also  responsible  for  the  naming  of  CsSWI3s  (Fig.  1).
Each  subfamily  contains  one  CsSWI3  member  (CsSWI3A,
CsSWI3B, CsSWI3C, CsSWI3D) respectively.

The results of chromosomal localization analysis showed that
four CsSWI3s distributed on only  three chromosomes of  the C.
sinensis genome: CsSWI3A on  chr7, CsSWI3B and CsSWI3C on
chr3, CsSWI3D on chr8 (Fig. 2).

 Gene structure, conserved motif and domain
analysis of CsSWI3s

Gene structure analysis shed lights on the exons and introns
framework  of AtSWI3s and CsSWI3s and  may  suffice  for  the
further  understanding  of  evolutionary  relationships  of  CsSWI3
family. The number of exons within CsSWI3s ranges from 5 to 8
(Fig.  3).  Meanwhile, CsSWI3s in  the  same  cluster  with AtSWI3s
have  the  same  quantity  of  exons  with  the  exception  of
CsSWI3B,  which  further  confirms  the  results  of  the  phyloge-
netic analysis.

A total of ten motifs were identified (Fig. 4b) and their logos
predicted by MEME database are displayed in Fig. 4d. Except for
SlSWI3B, all of the SWI3 family proteins contain SWIRM domain
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Fig.  1    Phylogenetic  relationship  of  SWI3  family.  Branches  in  purple,  red,  blue  and  yellow  represent  the  subfamily  SWI3A  to  SWI3D
respectively.  Different  colored  marks  next  to  the  labels  depict  different  species:  red  pentagram,  sweet  orange;  purple  circle,  Aridopsis;  blue
square, rice and green triangle, tomato.

Citrus fruit quality formation
 

Li et al. Fruit Research 2024, 4: e002   Page 3 of 9



(Pfam:  PF04433),  SWIRM-associated  region  1  domain  (Pfam:
PF16495) and SANT domain (Pfam: PF00249), besides that, only
the  members  in  cluster  SWI3D  contain  a  Zinc  finger-ZZ  type
domain  (Fig.  4c).  Accordingly,  proteins  with  higher  homology
have  more  analogous  conserved  motifs  and  domains,  presu-
mably performing similar functions.

 Subcellular localization of CsSWI3 genes
A  subcellular  location  assay  of  CsSWI3  was  performed  by

expressing  in Nicotiana  benthamiana leaves  to  investigate  the
cellular  location.  Strong  green  fluorescence  of  CsSWI3s  was
observed  in  the  cell  nucleus,  meanwhile,  the  control  fluores-
cence signals were widely observed in nucleus, cytoplasms and
members,  which  indicated  that  four  CsSWI3  proteins  were  all
located in the nucleus (Fig. 5).

 Promoter cis-regulatory elements analysis of
CsSWI3s

A  total  of  84  promoter  cis-regulatory  elements  within  the
first  2  kb  fragment  upstream  of CsSWI3s were  predicted  and

divided  into  three  categories  based  on  their  functions:  phyto-
hormone response,  plant  growth and development  and stress
response, which containing 18, 8 and 58 elements respectively.
With the largest amount, stress response elements including 14
for  anaerobic  induction,  four  for  drought-inducibility,  one  for
defense and stress  responsiveness,  37  for  light  responsiveness
and  two  for  low-temperature  responsiveness,  indicating  that
CsSWI3s presumed to  play  a  significant  role  in  the  stress  resis-
tance  of  sweet  orange.  Otherwise,  phytohormone  response
elements (including one for ABA responsiveness, one for auxin
responsiveness,  four  for  gibberellin  responsiveness,  and 12 for
MeJA  responsiveness)  and  plant  growth  and  development
elements (including two for circadian control, two for cell cycle
regulation,  two  for  differentiation  of  the  palisade  mesophyll
cells  and  two  for  meristem  expression)  predicted  on CsSWI3
promoters indicated that phytohormone could regulate CsSWI3
genes  expression  to  some  extent  and CsSWI3s played  a  minor
role during plant growth and development (Fig. 6). Exact infor-
mation  of  promoter  cis-regulatory  elements  on  CsSWI3s  is
displayed in Supplemental Table S3.

 Expression analysis of CsSWI3s in different
development periods of fruits and different
tissues in 'Bingtang' sweet orange

Soluble  sugars,  including  fructose,  glucose  and  sucrose,
gradually accumulated during fruit  development periods,  with
a peak of 31.55 mg/g, 31.40 mg/g, 34.42 mg/g at 195DAFB. As
the  main  organic  acids  in  'Bingtang'  sweet  orange,  citric  acid
content  increased  during  the  fruit  early  developmental  stages
(peaked  at  135  DAFB)  and  decreased  afterwards  till  the  matu-
rity  stage  (195  DAFB),  while  malic  acid  had  slight  changes
during development (Fig. 7).

In order to further investigate the role of CsSWI3s during the
development  of  'Bingtang'  sweet  orange,  we  analyzed  the
expression  patterns  of CsSWI3s in  the  fruit  flesh  during  differ-
ent  development  periods  and  three  other  tissues  (stem,  leaf
and  flower)  (Figs  8, 9).  As  shown  in Fig.  8,  all CsSWI3 genes
expressed in the four development periods in 'Bingtang' sweet
orange  fruit  and CsSWI3B displayed  the  highest  expression
level.
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Fig.  2    Chromosomal  distribution  of CsSWI3s.  Color  of  the
chromosome represents the gene density.
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Fig. 3    Gene structure of CsSWI3s and AtSWI3s. Red and gray blocks represent exons and untranslated regions (UTRs) respectively, black lines
represent introns.
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This  fact  apart,  we  found  that CsSWI3s showed  different
expression  patterns  in  different  tissues  of  sweet  orange.  The
highest expression level of all the CsSWI3s was found in the leaf,
and CsSWI3B still displayed the highest level among all of them
(Fig. 9).

In order to study the relationship between CsSWI3 genes and
sugar  as  well  as  organic  acids.  The  linear  regression  analysis
between CsSWI3 gene  expression  and  content  of  sugar  and
organic  acids  were  conducted,  the  results  showed  that  the
expression levels of CsSWI3A, CsSWI3B and CsSWI3C were posi-
tively correlated with glucose, fructose and sucrose contents, in
which  the  expression  level  of CsSWI3B showed  strongly  posi-
tive  correlation  with  fructose  content  (R2 =  0.7163, p <  0.01),
sucrose  content  (R2 =  0.6849, p <  0.01)  and  glucose  content
(R2 =  0.6759, p <  0.01),  while  a  lower  positive  correlation  was

observed  between  the  expression  level  of CsSWI3A and  fruc-
tose content (R2 = 0.509, p < 0.01), sucrose content (R2 = 0.5075,
p <  0.01)  and  glucose  content  (R2 =  0.4844, p <  0.05);  the
expression level of CsSWI3C and fructose content (R2 = 0.5530,
p <  0.01),  glucose  content  (R2 =  0.5393, p <  0.05)  and  sucrose
content (R2 = 0.3365, p < 0.05) (Fig. 10). However, there was no
correlation  between  organic  acid  content  and  the  expression
levels of CsSWI3s,  as well as sugar content and CsSWI3D expre-
ssion level.

 Discussion

SWI3  subunit  is  one  of  the  core  accessory  subunits  of
SWI/SNF complex, which is responsible for the normal develop-
ment of  plants under various growth conditions upon altering
the  interaction  between  DNA  and  histone  octamers  and  thus
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Fig. 4    Conserved motif and domain analysis of SWI3 proteins. (a) Phylogenetic tree of 18 SWI3 proteins. (b) Conserved motifs distribution of
SWI3 proteins.  Blocks in different colors refer to different motifs.  (c)  Conserved domains distribution of  SWI3 proteins.  Different domains are
presented in different colored blocks. (d) Ten conserved motifs with the consensus sequences predicted by MEME.
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regulating  the  accessibility  of  TFs  or  other  DNA-binding  pro-
teins to DNA[23,24]. In Arabidopsis, AtSWI3s could play regulatory
roles  by  participating  in  the  assembly  of  other  SWI/SNF

complexes, affecting the nutritional and reproductive stages of
embryogenesis  and  plant  development,  showing  remarkable
functional  diversity[5].  However,  the  study  on  chromosome
remodeling in fruit trees, especially in citrus, is still in its prelimi-
nary  stage.  In  this  research,  we  performed  a  comprehensive
analysis  on  the  identification  and  characterization  of  SWI3
subunits in Citrus sinensis.

Four  CsSWI3  subunits  (CsSWI3A,  CsSWI3B,  CsSWI3C  and
CsSWI3D)  with  three  conserved  domains  (SWIRM,  SWIRM-
associated  region  1  and  SANT  domain)  have  been  identified
based on genome database in C. sinensis. Through the phyloge-
netic  analysis  of  SWI3  proteins  in  four  species,  CsSWI3  had  a
similar  figure  to  those  in Arabidopsis (4  AtSWI3s),  rice  (6
OsSWI3s)  and  tomato  (4  SlSWI3s).  All  these  members  were
divided  into  four  clusters,  SWI3A  to  SWI3D.  Upon  the  gene
structure  analysis,  we  found  that CsSWI3s had  a  similar  struc-
ture  to AtSWI3s. Analysis  of  conserved  motifs  and  domains
exhibited  that  the  members  in  the  same  cluster  had  a  strong
similarity,  which  indicated  that SWI3 genes  seem  to  be  func-
tionally  analogous  in  the  same  cluster.  Only  the  members  in
cluster SWI3D contain a Zinc finger-ZZ type domain, indicating
that this subfamily may have particular functions. It was found
in Arabidopsis that  plants  carrying  the atswi3d mutation
showed  severe  dwarfing,  alterations  in  the  number  and  deve-
lopment  of  floral  organs,  and  complete  male  and  female
sterility[6]. Consistent with the roles as the subunit of chromatin
remodeling complexes,  all  of  the CsSWI3 members were local-
ized  in  the  cell  nucleus,  which  was  similar  to  AtSWI3s  in
Arabidopsis[4]. Promoter cis-regulatory elements (CREs) contain-
ing  binding  sites  for  TFs  or  other  regulatory  molecules  can
control plant development and physiology process by regulat-
ing gene expression[25].  Cis-regulatory  elements  identified in  2
kb  upstream  promoters  of CsSWI3s shown  in Fig.  6 shed  light
on  their  significant  stress  resistance  function,  participation  in
growth  and  development  (except CsSWI3D)  in  citrus  coupled
with the response to phytohormone.

In order to explore the temporal and spatial  specific expres-
sion  profile  of CsSWI3s in  citrus,  we  analyzed  the  expression
pattern  of CsSWI3s in  different  development  periods  of  fruits
and  in  different  tissues  (stem,  leaf  and  flowers)  of  'Bingtang'

 
Fig. 5    Subcellular localization of CsSWI3s. Bar = 20 µm.
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sweet  orange  through  qRT-PCR  experiments.  Gene  expression
of  the CsSWI3s showed an upward trend during fruit  develop-
ment  and  obvious  tissue  specificity.  The  highest  expression
level  in  leaves  was  consistent  with AtSWI3B in Arabidopsis,

which presumed the potential function of leaf development in
CsSWI3B and  needed  further  functional  verification[26].  In
addition,  to  study  the  potential  roles  of  the CsSWI3s in
sugar/acid  metabolism,  the  contents  of  sugar  and  organic
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acids,  which  were  the  vital  contributors  to  the  palatability  of
citrus  fruits,  in  different  developmental  stages  of  'Bingtang'
sweet orange fruits were determined, and their correlation with
CsSWI3s gene  expression  was  ulteriorly  analyzed  upon  the
linear  regression  method.  As  for  organic  acids,  there  was  no
significant  correlation  between  their  contents  and CsSWI3s
expression  levels.  Besides,  intriguingly, CsSWI3A, CsSWI3B and
CsSWI3C were  all  found  to  be  positively  correlated  with  the
content of the three sugars (fructose, glucose and sucrose), and
CsSWI3B showed  the  most  significant  positive  correlation,
indicating  that  it  may  be  involved  in  the  regulation  of  sugar
accumulation in citrus fruits, despite further functional verifica-
tion needed to be performed.

 Conclusions

In  the  present  study,  a  total  of  four CsSWI3 family  genes
belonging to four subfamilies have been identified based on C.
sinensis genome database. Each of CsSWI3 protein contains the
same  three  conserved  domains  as Arabidopsis,  furthermore,
subcellular  localization  in  the  nucleus  is  consistent  with  their
function  as  the  core  accessory  subunits  of  SWI/SNF  chromatin
remodeling  complex.  Meanwhile, CsSWI3s were  found  widely
involved in plant response to various stress and hormones, and
regulation  of  growth  and  development  through  the  promoter
cis-regulatory  element  analysis.  This  fact  apart, CsSWI3s were
expressed ubiquitously  in  various  citrus  tissues  and differently
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Fig. 10    Correlation analysis between CsSWI3s gene expression and content of sugar and organic acids based on the linear regression method.
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during the different development stages in fruit.  In addition, it
showed  positive  correlation  between  the  expression  level  of
CsSWI3A, CsSWI3B and CsSWI3C and  sugar  contents,  especially
for CsSWI3B.  Our  results  may  provide  comprehensive  informa-
tion for the CsSWI3 gene family in citrus and establish a founda-
tion  for  the  functional  identification  of CsSWI3 genes  in  the
regulation  of  sugar  accumulation  during  citrus  fruit  develop-
ment,  and  provides  a  basis  for  the  further  study  of  chromatin
remodeling complex in citrus and other fruit trees.
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