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Abstract
Optimization  performances  of  three  most  frequently  utilized  optimization  algorithms,  GA  (Genetic  Algorithm),  PSO  (Particle  Swarm

Optimization),  and  SCE  (Shuffled  Complex  Evolution),  are  compared  to  examine  their  accuracy,  computation  efficiency,  and  convergence

efficiency. Micro scale TGA (thermogravimetric analysis) experiments of wood were conducted at three heating rates to collect the necessary data

for analysis. Gauss multi-peak fitting method was first applied to identify the contribution of each component of wood to the mass loss rate (MLR)

curves.  Then  the  Kissinger  method  and  three  isoconversional  methods,  including  KAS,  Tang,  and  DAEM  methods,  were  employed  to  extract

kinetics  of  wood  pyrolysis.  The  average  values  of  the  four  sets  of  solutions  were  adopted  to  determine  the  search  range  in  the  following

optimizations.  A  thermally  thin  numerical  model  was  developed  to  inversely  model  the  collected  experimental  data  combining  the  three

algorithms.  The  results  showed that  wood pyrolysis  can  be  described by  a  four-component  parallel  reaction scheme.  The  four  sets  of  kinetic

parameters  derived  using  different  analytical  methods  are  very  close  to  each  other.  When  extracting  kinetics  from  experimental  data  using

numerical  model  and optimization algorithms,  the accuracies  of  the three algorithms are  ranked as  SCE > PSO > GA.  While  the computation

efficiencies  and  convergency  efficiencies  are  ranked  as  GA  ≈ PSO  >  SCE  and  PSO  >  SCE  >  GA,  indicating  each  algorithm  has  its  inherent

advantages and limits. In most optimization applications, PSO is more favorable considering its better overall performance.
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 Introduction

Compared  with  fossil  fuel  energy,  renewable  energy  offers
many promising advantages,  such as  improved economic  effi-
ciency  and  reduced  pollutant  emission,  and  therefore  has
drawn much attention in a wide range of applications. Existing
studies have shown that renewable energy sources will  be the
main  supply  in  future  development  processes[1−2].  Biomass  is
one of  the  most  commonly  used renewable  energy resources,
and  comprehensive  knowledge  of  pyrolysis  reaction  mecha-
nisms  and  kinetics  is  extremely  important  to  promote  the
development  of  biomass  pyrolysis  technologies.  Determina-
tion  of  the  unknown  kinetic  parameters  for  a  specific  type  of
biomass  is  crucial  for  accurately  describing  the  pyrolysis
process.  By  contrast  to  the  time-consuming  and  difficult
manual determination of parameters[3], heuristic algorithms[4−5]

are  more  effective  in  solving  the  problem  and  are  therefore
widely used.

The most extensively used heuristic optimization algorithms
include  Genetic  Algorithm  (GA)[6],  Hill  Climbing  algorithm
(HC)[7],  Particle Swarm Optimization (PSO)[8],  Shuffled Complex
Evolution  (SCE)[9],  etc.  Li  et  al.[10] extracted  kinetics  of  MDF
(medium density  fiberboard)  pyrolysis  using GA.  Abdelouahed
et al.[11] discussed the calculation method of kinetic parameters
of  biomass  pyrolysis  based  on  GA  and  concluded  that  the
Kissinger  method  was  the  best  method  to  determine  kinetics.
Ferreiro et al.[6] studied the effect of biomass type on pyrolysis-
related behaviors under different heating conditions using GA.
Gong  et  al.[7] developed  a  numerical  model  for  pyrolysis  of

oriented  strand  board  (OSB)  using  HC.  Xu  et  al.[12] extracted
kinetics  of  lignocellulose,  wood  and  rape  straw  using  PSO.
Aghbashlo  et  al.[13] combined  PSO  with  an  adaptive  network-
based  fuzzy  inference  system  (ANFIS)  to  correlate  the  predic-
tion of  the  kinetic  constant  of  lignocellulose  pyrolysis.  Ding et
al.[14] compared  various  biomass  models  using  SCE  and
concluded  that  a  three-component  parallel  reaction  scheme
was  more  appropriate.  Purnomo  et  al.[15] compared  the  effi-
ciency and accuracy of five different optimization algorithms in
calculating biomass kinetics and showed that SCE was the most
accurate.  Different  optimization  algorithms  have  their  own
advantages  and  limitations  and  are  useful  in  solving  different
types  of  problems.  When  applying  these  algorithms,  rational
selection  according  to  the  specific  problems  and  appropriate
parameter settings are crucial for obtaining reliable outcomes.

GA[11] is  an  optimization  algorithm  based  on  Darwinian
survival  of  the  fittest  theory.  By  simulating  the  natural  evolu-
tionary  process,  it  transforms  the  problem  to  be  solved  into
multiple individuals,  and each individual encompasses a set of
parameters that need to be solved. Through genetic, crossover
and  mutation  operations,  new  individuals  are  created,  evalu-
ated and selected to  gradually  approach the  optimal  solution.
GA[6] has powerful parallel processing capability and is suitable
for solving complex, nonlinear, multi-peaked and difficult prob-
lems. In addition, it's easy to implement with simple parameter
settings.  PSO[8] transforms  the  encountered  problem  into  a
minimization problem by simulating the behavior of  a flock of
birds  when  searching  for  food.  The  algorithm  first  initializes
random groups of particles that can be considered as possible
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solutions. By adjusting the position and speed of each particle,
the  swarm  approaches  the  optimal  solution.  PSO  has  a  global
search  capability  with  the  influence  of  local  optimal  solutions.
However,  it  should  be  noted  that  the  search  accuracy  of  PSO
depends on the initial state and parameter setting of the popu-
lation[16],  so reasonable initialization and parameter tuning are
required.  Additionally,  the  algorithm  may  converge  prema-
turely, resulting in the search of only the local optimal solution
but  not  the  global  optimal  solution.  SCE[9,15] combines  the
concept  of  complexity  science  and  the  ideas  of  biological
evolution.  In each iteration,  the algorithm updates the current
optimal  solution  by  randomly  swapping  parameters  in  multi-
ple small  systems contained in complex systems.  SCE uses the
idea  of  random  swapping  and  can  effectively  deal  with  high-
dimensional  optimization  problems  with  multiple  local
minima[17].  However, the parameter setting of this algorithm is
relatively  complicated  and  requires  reasonable  parameter
adjustment. In addition, the computational complexity of SCE is
high,  requiring  a  large  amount  of  computational  and  storage
resources.

Although  all  these  three  prevailing  algorithms  have  been
widely  used  in  determining  kinetics  of  biomass  pyrolysis,  few
studies  have compared their  optimization capabilities,  such as
computation  efficiency  and  accuracy.  To  challenge  this  issue
and  fill  the  research  gap  of  existing  studies,  we  launch  a
comparative  study  of  these  three  algorithms  by  extracting
kinetics  of  wood,  a  representative  biomass  material.  Based  on
the  originally  obtained  thermogravimetric  experimental  data,
the contribution of each sub-reaction in the pyrolysis process is
firstly  identified  by  Gauss  multi-peak  fitting  method,  followed
by  the  estimation  of  kinetics  of  each  separated  reaction  using
several model-free methods. Subsequently, the average values
of  the  multiple  sets  of  solutions  are  served  as  the  initial  solu-
tion  to  determine  the  search  ranges  of  the  three  optimization
algorithms.  Then,  the  efficiency  and  accuracy  of  each  algo-
rithm are discussed in detail based on the optimization results.

 Experiment and model-free methods

 Thermogravimetric tests
Nitrogen  atmosphere  was  selected  to  conduct  the  pyrolysis

tests  of  beech  wood  using  a  NETZSCH  STA449F3  thermal
analyzer.  Three  different  heating  rates  of  5,  10  and  20  K/min
were  used  to  heat  the  5−7  mg  wood  powders  from  290  to
1,070 K. Heating rate plays an important role in collecting pro-
per experimental data. Very slow heating rate, such as 1 K/min,
allows the reactions to come closer to equilibrium and there is
less  thermal  lag  in  the  sample  and  apparatus.  Contrarily,  high
heating  rates  give  faster  experiments,  which  are  more  repre-
sentative  of  the  heating  rates  in  fires,  but  deviate  more  from
equilibrium  and  result  in  greater  thermal  lag.  Larger  heating
rates  are  suitable  for  finding  a  wide  range  of  decomposition,
while  smaller  heating  rates  show  better  performance  in  the
separation  of  individual  events.  Heating  rates  used  in  tests
should  preferably  be  in  the  range  of  1−20  K/min  as  recom-
mended  by  ICTAC  (International  Confederation  for  Thermal
Analysis and Calorimetry) Kinetics Committee[18]. Consequently,
these  three  representative  heating  rates,  5,  10  and  20  K/min,
were used in this study. A ceramic crucible was employed and a
small hole was set in the center of the crucible lid to allow the
release  of  volatiles  during  pyrolysis.  All  samples  were  dried  in
an oven for at least 72 h before tests to minimize the impact of

moisture. Given that thermogravimetric experiments are highly
reproducible, only three replicate experiments were performed
at each heating rate to estimate the experimental uncertainty.

 Model-free methods
Utilization of a suitable kinetic parameter calculation method

allows a rough estimate of the search range for the subsequent
optimization.  Model-free  methods,  including  the  Kissinger
method  and  isoconversional  methods,  are  introduced  in  this
section  and  will  be  utilized  to  calculate  the  kinetics  of  wood.
Previous studies showed that the kinetic parameters calculated
by  the  Kissinger  method  are  very  close  to  other  isoconver-
sional methods, such as KAS, Tang, DAEM methods.

In  a  single-step  pyrolysis  reaction,  the  degree  of  conversion
of the solid, α, can be expressed as:

α =
(m0−m)

(m0−m∞)
(1)

m m0 m∞where ,  and  are the transient,  initial  and final  masses of
the sample, respectively. The reaction kinetic equation is:

dα
dt
= λ (T ) f (α) (2)

t f (α)
λ

λ

where  is  time, T is  the  absolute  temperature,  is  the
differential form of the reaction model and  is the reaction rate
constant. For a first order reaction,  can be expressed as:

λ = Aexp
(
− Ea

RT

)
(3)

A Ea R

β = dT/dt

where ,  and  refer  to the pre-exponential  factor,  activation
energy  and  ideal  gas  constant,  respectively.  With  constant
heating rate  , Eq. (2) can be converted to:

dα
dT
=

A
β

exp
(
− Ea

RT

)
f (α) (4)

g (α)The  integral  function  of  the  conversion  rate, ,  can  be
expressed as:

g (α) =
w α

0

dα
f (α)

=
A
β

w T

T0
exp

(
− Ea

RT

)
dT (5)

T0where  is the initial temperature.

 Kissinger method
The  Kissinger[19] method  uses  the  peak  temperature  of  the

reaction peak for  plotting,  and the equation can be expressed
as:

ln
(
βn

Tp,n
2

)
= ln

(
−AR

Ea
f ′

(
αp

))
− Ea

RTp,n
(6)

n p

f ′
(
αp

)where  the  subscript  and  refer  to  the n-th  heating  rate  and
peak of MLR curve. When the model is a first-order kinetic model,

the value of  is −1, Eq. (6) can be further simplified as:

ln
 βn

T 2
p,n

 = ln
(

AR
Ea

)
− Ea

RTp,n
(7)

ln
(
βn/T 2

p,n

)
1/Tp,n

Ea

A straight line can be obtained by plotting  versus
.  The slope and intercept of the line can be employed to

estimate  and A, respectively.

 KAS method
The formula for the KAS[20] method is expressed as:

ln
(
β

T 2

)
= ln

AR
Eag (α)

− Ea

RT
(8)

ln
(
β/T 2

)
1/T

Ea

Using  this  formula,  a  straight  line  can  be  made  by  plotting

 to  at different heating rates and arbitrary conver-
sion rate. The slope of this line can be used to derive . For first
order  reactions,  the  reaction  mechanism  functions  are
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f (α) = 1−α g (α) = −ln (1−α) and , and Eq. (8) becomes:

ln
(
β

T 2

)
= ln

(
AR

−Ealn (1−α)

)
− Ea

RT
(9)

 Tang method
Tang  et  al.[21] proposed  the  Arrhenius  temperature  integral

approximation for Eq. (5):
−lnP (x) = 0.377739+1.894661ln (x)+1.00145x (10)

x =
Ea

RT
(11)

P(x) =
g(α)βR

AEa
(12)

Substituting the approximation into Eq.  (5)  and taking loga-
rithms  on  both  sides,  the  expression  of  the  Tang  method  is
obtained:

ln
(
β

T 1.894661

)
=ln

(
AEa

Rg (α)

)
+3.635041−

1.894661lnEa−1.001450
Ea

RT
(13)

ln
(
β/T 1.894661

)
1/T Ea

At different heating rates and arbitrary conversion rate, plot-

ting  versus  makes a straight,  and  can be
estimated  based  on  the  slope.  Similarly,  for  a  first  order  reac-
tion, Eq. (13) can be transformed into:

ln
(
β

T 1.894661

)
= ln

(
AEa

−Rln (1−α)

)
+3.635041−

1.894661lnEa−1.001450
Ea

RT
(14)

AThe  pre-exponential  factor, ,  can  be  calculated  from  the
intercept.

 DAEM method
DAEM[22] is an effective method to study the reaction behav-

ior of complex systems including an infinite number of parallel
first  order  reactions.  The  simplified  DAEM  model  can  be
expressed as:

ln
(
β

T 2

)
= − E

RT
+ ln

(AR
E

)
+0.6075 (15)

Ea A
ln(β/T 2) 1/T

Similarly,  and  can be calculated based on the slope and
intercept of the linearly fitted line of  to .

 Numerical model and optimization algorithms

 Numerical model
To simulate  the measured mass  and mass  loss  rate  (MLR)  of

sample  in  the  thermogravimetric  analysis  experiments,  a  0D
numerical  model  for  the  pyrolysis  of  a  thermally  thin  solid  is
developed.  The  0D  model  implies  the  temperature  gradient
inside  the  condensed  phase  is  neglected  compared  to  the
traditional  1D heat  transfer  model.  The general  forms of  pyro-
lysis reaction and reaction rate are:

θ1Comp1+ θ2Comp2→ θ3Comp3+ θ4Comp4 (16)

w j = −c
n j,1
Comp1

c
n j,2
Comp2

A jexp
(
−

Ea, j

RT

)
 ( j = 1,2,3 · · · ) (17)

Comp θ
w n
c

j

where  denotes  component,  is  the  stoichiometric
coefficient  by  mass,  and  are  reaction  rate  and  the  reactant
concentration index,  is  the transient mass of  the reactant after
normalization,  the  subscript  refers  to  the j-th  reaction.  The
transient mass change rate of each component is calculated as:

dci

dt
=

N j∑
j=1

θ j,iw j (18)

N j

θ j,i

where  the  subscript i denotes i-th  component,  is  the  total
number  of  reactions.  is  positive  or  negative  when  the i-th
component serves as a reactant or a product.  The total  transient
mass (m) and MLR can be calculated as:

m =
Ns∑
s=1

cs; MLR =
Ng∑
g=1

N j∑
j=1

V j,gw j (19)

Ns Ngwhere  and  are  the  total  numbers  of  solid  and  gaseous
components,  respectively.  To  commence  simulation,  the  initial
mass  fraction  of  the  starting  reactants,  the  mass  stoichiometry
coefficients,  and  the  three  components  of  Arrhenius  kinetics  for
each reaction need to be assigned. The initial values of m and MLR
for the intermediate and final products are set to be zero.

 Optimization algorithms

Ea A

Three  most  frequently  utilized  optimization  algorithms,  GA,
PSO, and SCE, are used to compare their performance by deter-
mining  kinetics  of  wood  combining  the  numerical  model  and
experimental  results.  Detailed  information  of  the  three  algo-
rithms  was  introduced  in  our  recent  publications[23,24].  A  four-
component  reaction  scheme  is  applied  to  describe  the  pyro-
lysis  of  wood,  namely  the  evaporation  of  water,  pyrolysis  of
cellulose,  hemicellulose and lignin.  Each reaction includes four
unknown  parameters,  namely , ,  stoichiometric  coefficient
of  solid  product,  and  the  reaction  order.  To  gain  comparison
purpose,  the  initial  search  ranges,  population  sizes,  iteration
numbers, and objective functions of the three algorithms when
implementing optimizations are set to be identical.

 GA (Genetic algorithm)
GA simulates the process of population evolution, adopting a

series  of  genetic  operations  such  as  selection,  crossover  and
mutation  for  the  current  population  to  create  a  new  genera-
tion  and  gradually  progress  the  population  to  a  state  close  to
the optimal solution. In GA, each set of unknown parameters is
referred  to  as  an  individual,  and  a  combination  of  tens  to
thousands  of  individuals  is  defined  as  a  population.  Offspring,
namely  all  potential  solutions,  are  continuously  produced  by
the  overall  population  through  genetic,  crossover  and  muta-
tion  operations.  An  objective  function,  also  known  as  fitness
function, is essential  for the assessment process.  The objective
function  utilized  in  current  study  takes  both m and MLR into
account, as recommended by ICTAC Kinetics Committee[25]:

R2 =

Nm∑
l=1

(
ml,exp−ml,num

)
ml,exp− m̄l,exp

+

NMLR∑
l=1

(
MLRl,exp−MLRl,num

)
MLRl,exp−MLRl,exp

(20)

Nm NMLR

m̄ MLR

where ,  are  the  total  numbers  of  experimental  data
points  of m and MLR,  the  subscript exp and num denote
experimental and numerical values, respectively,  and  are
the  average  values  of  experimental m and MLR,  respectively.  A
lower  value  of R2 generally  represents  higher  accuracy  of  the
algorithm  and  better  fit  between  experimental  and  simulation
results.  This  objective  function will  also  be used in  the following
PSO and SCE algorithms.

 PSO (particle swarm optimization) algorithm
Inspired  by  the  behaviors  of  bird  populations,  PSO  is  devel-

oped  as  an  alternative  optimization  algorithm.  PSO  algorithm
includes  velocity  and  position  models,  where  the  velocities  of
particles are used to update the positions of  the particles,  and
the  positions  represent  the  potential  solutions  in  the  search
ranges.  The  velocity  and  position  updating  processes  require
each particle to keep in mind the previous optimal position as
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well as the global optimal position searched by all particles. At
the  beginning  of  iteration,  the  velocities  and  positions  of  the
particles are randomly assigned according to a specified range.
Then they are updated according to the following relationship:

vk+1
i j = vk

i j+q1(xpb
i j − xk

i j)+q2(xgb
i j − xk

i j) (21)

xk+1
i j = xk

i j+ vk+1
i j (22)

i j
x v
xpb xgb

where  and  are the numbers of particles and parameters in the
particles,  and  represent  the  position  and  velocity  of  the
particles, ,  are  the  local  and  global  best  positions  of  the
particles, q1 and q2 are two random numbers located within [0,2].

 SCE (shuffled complex evolution) algorithm
SCE is an efficient optimization algorithm due to its excellent

global  search  performance  and  convergence  speed,  and  it  is
suitable  for  solving  high-dimensional  complex  nonlinear  pro-
blems. The main principle of SCE is that each parameter has its
own  specific  search  range,  within  which  the  fitting  value  is
calculated  for  each  randomly  generated  individual  as  well  as
the ranking. The probability that an individual is selected is:

f (xk) = n+1− k (k = 1,2,3 · · · ,n) (23)

p (xk) =
f (xk)∑n

k=1
f (xk)

=
2(n+ k−1)

n (n+1)
(24)

xk

n
f (xk)
p (xk)

where  represents the k-th individual ranked from the lowest to
the  highest  individual  fitness  value,  is  the  total  number  of
individuals,  is  the  function  determining  the  assignment  of
individuals,  is  the  probability  that  the k-th individual  is
selected.  Individuals  are  divided  into  multiple  complexes  for
evolution based on sorting. During evolution, the better adapted
particles  would  replace  the  less  adapted  particles  as  parents  to
generate  the  next  generation.  Then,  all  groups  are  mixed  and
reordered  and  the  process  is  repeated  until  the  convergence
condition is satisfied.

 Results and discussion

In  this  section,  we  analyze  the  kinetics  of  wood  pyrolysis
based on thermogravimetric experimental data obtained at the
three different heating rates (5,  10 and 20 K/min),  followed by
an  analytical  discussion  of  the  performance  of  the  three  algo-
rithms, GA, PSO and SCE, in terms of both efficiency and accu-
racy in optimizing the kinetic parameters.

 Analyses of thermogravimetric results

m0

Figure  1 shows  the  measured  mass  and MLR curves  during
wood  pyrolysis  at  different  heating  rates.  Both  mass  and MLR
data are normalized by the initial mass . As expected, higher
heating  rates  shift  the  mass  and MLR curves  toward  higher
temperature range. In Fig. 1b, it can be reasonably inferred that
wood  pyrolysis  encompasses  four  main  decomposition  reac-
tions: water evaporation, decomposition of hemicellulose, cellu-
lose,  and  lignin,  corresponding  to  the  first  minor  peak  before
400  K,  the  asymmetrical  left  shoulder  of  the  main  peak,  the
main peak,  and the long tail,  respectively.  In  order  to evaluate
the contribution of each reaction to the total MLR and estimate
the  relevant  kinetics,  Gauss  multi-peak  fitting  method[26] is
adopted  to  resolve  the MLR curve  at  each  heating  rate  into
multiple  elemental  curves,  as  shown  in Fig.  2.  Each  elemental
curve  corresponds  to  an  elemental  pyrolysis  reaction.  Gauss
multi-peak  fitting  method  needs  only  one  parameter  when
separating overlapped multiple peaks,  which renders its  simp-
licity  in  shape  and  easy  optimization  compared  with  other
separation methods, such Weibull, Gauss, Gamma, and Symme-
tric logistic, as demonstrated by ICTAC Kinetics Committee[25].

 Kinetic analyses
Pyrolysis  reaction  scheme  of  beech  wood,  including  four

elemental  reactions,  is  listed  in Table  1.  Based  on  previous
studies[24],  the  reaction  of  water,  hemicellulose  and  cellulose
can be described by first order reactions, while lignin is a high-
order  reaction.  Consequently,  there  are  totally  12  parameters,
excluding  the  stoichiometric  coefficient  of  water  evaporation,
in  each  optimization  run.  Therefore,  in  this  section  the  kinetic
analyses are implemented for these four components using the
methods introduced previously.

ln(β/T 2
p) 1/Tp A

Ea

A Ea

ln(β/T 2) 1/T ln(β/T 1.894661) 1/T
ln(β/T 2) 1/T Ea

Based on the separated curves in Fig. 2, the Kissinger method
is  first  used  to  estimated  kinetics  of  each  reaction.  Plotting

 ~  and executing linear fitting,  shown in Fig.  3, 
and  of  each  reaction  can  be  estimated  based  on  the  slop
and intercept,  as listed in Table 2.  The relatively good linearity
of  the  fitted  lines  confirms  the  reliability  of  the  Kissinger
method.  In  addition,  and  are  also  estimated  by  the  KAS
method  (  ~ ),  Tang  method  (  ~ ),
and DAEM method (  ~ ).  The derived A and  are
listed in Table  2,  and the  linear  fittings  at  different  conversion
rates are depicted in Figs 4−6, respectively.
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Fig. 1    Dependencies of (a) mass and (b) MLR of beech wood on temperature at different heating rates.

 
Pyrolysis kinetics of biomass

Page 4 of 10   Wang & Gong Emergency Management Science and Technology 2023, 3:9



Ea

Ea

ln(β/T 2)
1/T

Ea

Ea

The  calculated A and  by  the  four  analytical  methods  in
Table  2 are  similar  despite  some  minor  deviations. Figure  7
shows  the  variation  trends  of  calculated  of  the  four  main
components  in  wood  with  varying  conversion  rates.  Since  in
the Kissinger and DAEM methods  linearly depends on

 which is similar to those in the KAS and Tang methods, only
the results of the KAS and Tang methods are plotted in Fig. 7. In
Fig.  7a & c,  of  water  and  cellulose  decline  linearly  with
increasing α,  whereas in Fig. 7b & d opposite variation trend is
observed  for  hemicellulose  and  lignin.  Vyazovkin  et  al.[25]

suggested a pyrolysis process can be described by a single step
reaction only  if  the difference between the maximum and the
minimum values of  is smaller than 20% of the average value.

(
Ea,max −Ea,min

)
/Ea,aveIn Fig.  7a−d,  the  ratios  of  are  18.6%,

4.01%,  3.38%,  4.15%,  implying  all  these  reactions  could  be
regarded as single step reactions.

 Comparison of accuracy of GA, PSO and SCE
To  compare  the  optimization  performance  of  the  three

focused algorithms, the same optimization settings are used for
each algorithm. The average values of the four analytical meth-
ods in Table 2 are used in determining the search ranges. More
specifically,  these  average  values  are  employed  as  the  mean
values  of  the  search  ranges  during  optimization.  The  lower
bounds  of  search  ranges  are  set  to  be  0.1  times  of  the  mean
values,  while  the  upper  bounds  are  selected  to  ensure  these
mean values are the average values of the search ranges. Figure
8 shows the values of objective function (R2)  and computation
times (tcom) of the optimization runs using the three algorithms
with  200-3000  population  sizes  and  fixed  iteration  number  of
200. R2 of  GA  changes  irregularly  as  the  population  size  is
smaller than 1000, but it declines with further increase of popu-
lation  size.  This  phenomenon  indicates  the  accuracy  of  GA
strongly  depends  on  population  size. R2 of  PSO  descents
quickly  for  population  size  smaller  than  800  and  increase
slightly beyond this range. While the R2 of SCE are always very
low and changes slightly with varying population size, suggest-
ing  the  accuracy  of  SCE  is  very  high  and  is  barely  affected  by
population  size.  In Fig.  8b, tcom of  the  three  algorithms  all
increase  with  population  size.  The  difference  is  that  both tcom
and its increasing rate of SCE are much larger than those of GA
and PSO, implying the computation efficiencies of GA and PSO
are approximately  identical  to each other  and both are higher
than that of SCE. As introduced in by Shi et al.[24], each iteration
of  SCE  involves  multiple  complex  systems,  and  therefore  the
computational  complexity  is  higher  than  the  other  two  algo-
rithms,  requiring  a  larger  amount  of  computational  and  stor-
age resources. Meanwhile, Table 3 lists tcom and R2 of the three
algorithms  with  varying  population  sizes.  Distinctly,  the
computation efficiencies of the three algorithms are ranked as
GA ≈ PSO > SCE, while the accuracies are ranked as SCE > PSO >
GA.
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Fig. 2    Separated MLR curves using Gauss multi-peak fitting method at different heating rates.

Table 1.    Reaction mechanism of beech wood.

# Reaction

1 Water → Vapor
2 Hemicellulose → θ1 Char + (1−θ1) Gas_H
3 Cellulose → θ2 Char + (1−θ2) Gas_C
4 −Lignin → θ3 Char + (1-θ3) Gas_L
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ln(β/Tp

2) 1/TpFig.  3    Linear  fittings  of  vs  in  the  Kissinger
method.

A EaTable 2.    Estimated  (s−1) and  (kJ/mol) of wood pyrolysis by the Kissinger, KAS, Tang, and DAEM methods.

Component
Kissinger KAS Tang DAEM Average

A Ea A Ea A Ea A Ea A Ea

Water 1.49 × 103 44.8 1.01 × 103 42.6 2.61 × 103 42.9 1.53 × 103 42.6 1.72 × 103 42.7
Hemicellulose 1.12 × 1012 147.8 1.30 × 1013 144.7 3.06 × 1013 154.9 9.31 × 1012 144.7 1.77 × 1013 148.1
Cellulose 4.09 × 1012 166.3 4.70 × 1012 174.8 4.84 × 1012 169.7 4.12 × 1012 174.8 4.55 × 1012 173.1
Lignin 2.34 × 1011 180.5 6.40 × 1011 170.7 1.46 × 1012 171.2 7.96 × 1011 170.7 9.66 × 1011 170.9
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 Comparison of efficiency of GA, PSO and SCE
Similarly,  the  convergence  efficiencies  of  the  three  algo-

rithms  are  compared  using  fixed  population  size  of  3000  and
6000 iterations, and the evolutions of R2 are portrayed in Fig. 9.

GA,  PSO,  and  SCE  converge  at  1000,  500,  and  800  iterations,
respectively.  Meanwhile,  the  decreasing  rate  of R2 of  PSO  is
higher than the two others. Consequently, it can be reasonably
concluded  that  the  convergence  efficiencies  of  three
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algorithms can be ranked as PSO > SCE > GA. However, in Fig.

8b, the computation efficiencies are ranked as GA ≈ PSO > SCE.

In Fig. 8b and Table 3, SCE consumes much more time than GA

and PSO, up to approximately 12 times. Apparently, each algo-

rithm has its  inherent merits  and limits.  Overall,  PSO is  a  more

favorable  algorithm  featuring  high  accuracy,  computation
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efficiency  and  convergence  efficiency.  Nevertheless,  particular
care  should  be  taken  when  applying  it  since  it  may  fall  into
local optimal solution.

 Parameter validation

Ea

In all the optimization runs in above, the minimum values of
R2 for GA, PSO, and SCE are 0.0826, 0.0747, and 0.0743, respec-
tively.  These optimizations are conducted at  10 K/min heating
rate and the corresponding results are listed in Table 4. Appar-
ently,  with  identical  optimization  setting,  only  minor  devia-
tions exit  among different  algorithms.  In  order  verify  the relia-
bility of the optimized parameters, the experimental results of 5
and  20  K/min  heating  rates  are  predicted  using  the  numerical
model  and  the  kinetics  listed  in Table  4,  as  exhibited  in Figs
10−12 corresponding  to  GA,  PSO,  and  SCE,  respectively.  Exist-
ing  studies[23] revealed  that  hemicellulose  pyrolysis  is  mainly
responsible  for  the  asymmetric  shoulder  of  the MLR curve,
cellulose decomposition is related to the main peak, and lignin
decomposition is located at a higher temperature range. In Figs
10 & 11, corresponding to GA and PSO algorithms, the numeri-
cal  curves  fit  the  experimental  data  well  and the  relative  loca-
tions of the subpeaks agree with the literature. Nevertheless, in
Fig.  12 the  peak  temperature  of  lignin  is  lower  than  that  of
cellulose  despite  the  overall  good agreement,  conflicting with
the  existing  conclusion.  This  divergence  is  presumably  caused
by  the  compensation  effect  among A,  and  reaction  order
when  extracting  kinetics  from  TGA  data  using  optimization
algorithms, which is still an unsolved problem[25].

 Conclusions

Pyrolysis  of  beech wood was  investigated experimentally  at
three  heating  rates  of  5,  10,  and  20  K/min.  Based  on  the

Ea

measured MLR curves, the overlapping peaks of wood was first
separated by Gauss multi-peak fitting method to identify their
contributions.  Then,  four  analytical  methods  were  used  to
determine  and A of  each  reaction.  Subsequently,  the  accu-
racy, computation efficiency, and convergence efficiency of GA,
PSO  and  SCE  algorithms  were  compared  at  10  K/min  heating
rate.  It  was  found  that  in  terms  of  optimization  accuracy,  SCE
was  the  best  followed  PSO,  and  then  GA.  While  for  computa-
tion  efficiency,  PSO  was  the  best,  then  GA  and  SCE.  Whereas
considering convergence efficiency,  the three algorithms were
ranked as  PSO > SCE > GA.  All  these indicated each algorithm
had its inherent advantages and limits, and PSO featured better
overall  performance.  Furthermore,  the  reliability  of  the
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Fig. 8    Objective function values and the computation times of the three algorithms when optimizing kinetics of wood pyrolysis with 200-
3000 population sizes and 200 iterations.

R2Table 3.    Computation times and  of GA, PSO and SCE optimizations.

Population size
GA PSO SCE

tcom × 104 (s) R2 × 10−2 tcom × 104 (s) R2 × 10−2 tcom × 104 (s) R2 × 10−2

200 0.16 8.82 0.15 7.86 1.79 7.43
400 0.34 9.09 0.30 7.70 1.82 7.43
600 0.40 8.26 0.49 7.68 2.57 7.43
800 0.55 8.48 0.58 7.47 2.78 7.43

1,000 0.76 8.83 0.75 7.50 3.31 7.43
2,000 1.27 8.30 1.54 7.52 5.46 7.47
3,000 2.26 8.44 2.66 7.67 5.55 7.56
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Fig.  9    Objective  function  value  evolutions  of  the  three
algorithms when optimizing kinetics of wood pyrolysis with 3,000
population size and 6,000 iterations.
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optimized  kinetics  was  verified  by  predicting  the  remaining
experimental  data  at  5  and  10  K/min  which  were  not  used
during parametrization.

An interesting conclusion attained is that no any single algo-
rithm  excels  others  in  all  aspects.  A  potential  solution  to  this

issue  may  be  developing  more  advanced  hybrid  algorithms
which  could  better  balance  the  accuracy,  computation  effi-
ciency,  convergence  efficiency,  storage  resource,  etc.  Mean-
while,  these  heuristic  optimization  algorithms  can  also  be
coupled with some artificial intelligence (AI) algorithms, such as

Table 4.    Best optimized kinetics of wood pyrolysis by GA, PSO and SCE.

Component Parameter Search range GA PSO SCE

Water A (s−1) 1.72 × 102−1.72 × 104 1.47 × 104 1.49 × 104 1.49 × 104

Ea (kJ/mol) 4.28 × 104−4.48 × 104 4.4 × 104 4.4 × 104 4.4 × 104

Hemicellulose A (s−1) 9.41 × 1011−9.41 × 1013 5.53 × 1012 4.49 × 1012 4.18 × 1012

Ea (kJ/mol) 1.38 × 105−1.58 × 105 1.4 × 105 1.38 × 105 1.38 × 105

θ 0−0.5 0.28 0.38 0.37

Cellulose A (s−1) 4.32 × 1011−4.32 × 1013 4.09 × 1012 3.95 × 1012 4.09 × 1012

Ea (kJ/mol) 1.6 × 105−1.8 × 105 1.63 × 105 1.63 × 105 1.64 × 105

θ 0−0.5 0.13 0.12 0.12

Lignin A (s−1) 6.0 × 1010−6.0 × 1012 2.22 × 1011 1.96 × 1011 1.15 × 1011

Ea (kJ/mol) 0−3.0 × 105 1.23 × 105 1.16 × 105 1.13 × 105

θ 0−1 0.14 0.01 0.01
n 0−5 4.67 4.99 5
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Fig. 10    Comparison between experimental and numerical MLRs using optimized parameters of GA at 5, 10 and 20 K/min heating rates.
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Fig. 11    Comparison between experimental and numerical MLRs using optimized parameters of PSO at 5, 10 and 20 K/min heating rates.

8.0×10−4

6.0×10−4

5 K/min_SCE

MLR_exp.
MLR_num.
R2=0.0891

MLR_exp.
MLR_num.
R2=0.0751

MLR_exp.
MLR_num.
R2=0.0743

4.0×10−4

M
LR

 (s
−1

)

2.0×10−4

0.0
30
0
40
0

50
0

60
0

Temperature (K)
70

0
80

0
90

0
1,0

00 30
0
40
0

50
0

60
0

Temperature (K)
70

0
80

0
90

0
1,0

00 30
0
40
0

50
0

60
0

Temperature (K)
70

0
80

0
90

0
1,0

00

1.6×10−3

1.2×10−3

10 K/min_SCE

8.0×10−4

M
LR

 (s
−1

)

4.0×10−4

0.0

3.0×10−3

2.4×10−3
20 K/min_SCE

1.8×10−3

M
LR

 (s
−1

)

1.2×10−3

6.0×10−4

0.0

 
Fig. 12    Comparison between experimental and numerical MLRs using optimized parameters of SCE at 5, 10 and 20 K/min heating rates.
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machine  learning,  deep  learning,  support  vector  machines,
decision trees, random forest, and metaheuristics. Even though
AI  has been successfully  applied in many engineering applica-
tions,  few  attempts  invoking  AI  have  been  made  to  challenge
the  complex  pyrolysis  process  of  biomass.  All  these  need  in-
depth exploration in future studies.

Acknowledgments

This work is supported by the National Natural Science Foun-
dation  of  China  (51974164),  Natural  Science  Foundation  of
Jiangsu  Province  of  China  (BK20221311),  University  Natural
Science  Research  Project  in  Jiangsu  Province  (21KJA620002).
The authors gratefully appreciate the support.

Conflict of interest

The  authors  declare  that  they  have  no  conflict  of  interest.
Junhui  Gong  is  the  Editorial  Board  member  of Emergency
Management  Science  and  Technology who  was  blinded  from
reviewing  or  making  decisions  on  the  manuscript.  The  article
was  subject  to  the  journal's  standard  procedures,  with  peer-
review  handled  independently  of  this  Editorial  Board  member
and his research groups.

Dates

Received 13 June 2023; Accepted 21 August 2023; Published
online 8 September 2023

References

Sharma R, Sheth PN. 2018. Multi reaction apparent kinetic scheme
for  the pyrolysis  of  large size  biomass  particles  using macro-TGA.
Energy 151:1007−17

1.

Wu  C,  Huang  G,  Xin  B,  Chen  J. 2018.  Scenario  analysis  of  carbon
emissions'  anti-driving  effect  on  Qingdao's  energy  structure
adjustment  with  an  optimization  model,  Part  I:  carbon  emissions
peak value prediction. Journal of Cleaner Production 172:466−74

2.

Song C.  2011.  Parameter  estimation of  the  pyrolysis  model  for  fir
based  on  particle  swarm  algorithm. In:  2011  second  international
conference  on  Mechanic  Automation  and  Control  Engineering,
Hohhot,  Inner  Mongolia,  China,  2011.  USA:  IEEE.  pp.  2354-57.
https://doi.org/10.1109/MACE.2011.5987453

3.

Cai P, Nie W, Chen D, Yang S, Liu Z. 2019. Effect of air flowrate on
pollutant  dispersion pattern of  coal  dust  particles  at  fully  mecha-
nized mining face based on numerical simulation. Fuel 239:623−35

4.

Liu Q, Nie W, Hua Y, Peng H, Liu C, et al. 2019. Research on tunnel
ventilation systems:  dust  diffusion and pollution behaviour by air
curtains  based  on  CFD  technology  and  field  measurement.
Building and Environment 147:444−60

5.

Ferreiro  AI,  Rabacal  M,  Costa  M. 2016.  A  combined  genetic  algo-
rithm and least squares fitting procedure for the estimation of the
kinetic parameters of the pyrolysis of agricultural residues. Energy
Conversion and Management 125:290−300

6.

Gong J, Zhu H, Zhou H, Stoliarov SI. 2021. Development of a pyro-
lysis model for oriented strand board. Part I:  Kinetics and thermo-
dynamics  of  the  thermal  decomposition. Journal  of  Fire  Sciences
39:190−204

7.

Ding Y, Zhang Y, Zhang J, Zhou R, Ren Z, et al. 2019. Kinetic para-
meters  estimation  of  pinus  sylvestris  pyrolysis  by  Kissinger-Kai

8.

method  coupled  with  Particle  Swarm  Optimization  and  global
sensitivity analysis. Bioresource Technology 293:122079
Ding Y, Huang B, Li K, Du W, Lu K, et al. 2020. Thermal interaction
analysis  of  isolated  hemicellulose  and  cellulose  by  kinetic  para-
meters during biomass pyrolysis. Energy 195:117010

9.

Li  K,  Huang  X,  Fleischmann  C,  Rein  G,  Ji  J. 2014.  Pyrolysis  of
medium-density fiberboard: optimized search for kinetics scheme
and  parameters  via  a  genetic  algorithm  driven  by  Kissinger's
method. Energy Fuels 28:6130−39

10.

Abdelouahed L, Leveneur S,  Vernieres-Hassimi L,  Balland L, Taouk
B. 2017. Comparative investigation for the determination of kinetic
parameters  for  biomass  pyrolysis  by  thermogravimetric  analysis.
Journal of Thermal Analysis and Calorimetry 128:1201−13

11.

Xu L, Jiang Y, Wang L. 2017. Thermal decomposition of rape straw:
Pyrolysis modeling and kinetic study via particle swarm optimiza-
tion. Energy Conversion and Management 146:124−33

12.

Aghbashlo M, Tabatabaei M, Nadian MH, Davoodnia V, Soltanian S.
2019.  Prognostication  of  lignocellulosic  biomass  pyrolysis  behav-
ior using ANFIS model tuned by PSO algorithm. Fuel 253:189−98

13.

Ding Y, Zhang J, He Q, Huang B, Mao S. 2019. The application and
validity  of  various  reaction  kinetic  models  on  woody  biomass
pyrolysis. Energy 179:784−91

14.

Purnomo DMJ, Richter F, Bonner M, Vaidyanathan R, Rein G. 2020.
Role  of  optimisation  method  on  kinetic  inverse  modelling  of
biomass pyrolysis at the microscale. Fuel 262:116251

15.

Kennedy J, Eberhart R. 1995. Particle swarm optimization. Proceed-
ings of ICNN'95 - International Conference on Neural Networks, Perth,
WA,  Australia,  1995.  USA:  IEEE.  pp.  1942−48. https://doi.org/10.
1109/ICNN.1995.488968

16.

Ding Y, Wang C, Chaos M, Chen R, Lu S. 2016. Estimation of beech
pyrolysis kinetic parameters by shuffled complex evolution. Biore-
source Technology 200:658−65

17.

Vyazovkin  S,  Chrissafis  K,  Di  Lorenzo  ML,  Koga  N,  Pijolat  M,  et  al.
2014.  ICTAC  Kinetics  Committee  recommendations  for  collecting
experimental  thermal  analysis  data  for  kinetic  computations.
Thermochimica Acta 590:1−23

18.

Kissinger HE. 1957.  Reaction kinetics  in differential  thermal analy-
sis. Analytical Chemistry 29(11):1702−6

19.

Akahira T, Sunose T. 1971. Method of determining activation deterio-
ration  constant  of  electrical  insulating  materials.  Research  Report.
Chiba Institute of Technology, Chiba, Japan. 16:22−31

20.

Tang W, Liu Y, Zhang H, Wang C. 2003. New approximate formula
for Arrhenius temperature integral. Thermochimica Acta 408:39−43

21.

Lang P, Liu P, Li Y, Li X, Lei T, et al. 2022. Study of pyrolysis kinetics
and thermodynamic parameters of different woodchip biomasses.
China Forest Products Industry 59:30−37

22.

Shi  L,  Gong  J,  Zhai  C. 2022.  Application  of  a  hybrid  PSO-GA  opti-
mization  algorithm  in  determining  pyrolysis  kinetics  of  biomass.
Fuel 323:124344

23.

Shi  L,  Zhai  C,  Gong  J. 2023.  A  method  for  addressing  compensa-
tion  effect  in  determining  kinetics  of  biomass  pyrolysis. Fuel
335:127123

24.

Vyazovkin  S,  Burnham  AK,  Favergeon  L. 2020.  ICTAC  Kinetics
Committee  recommendations  for  analysis  of  multi-  step  kinetics.
Thermochimica Acta 689:178597

25.

Liang B, Hu J, Yuan P, Li C, Li R, et al. 2019. Kinetics of the pyrolysis
process of phthalonitrile resin. Thermochimica Acta 672:133−41

26.

Copyright:  © 2023 by the author(s).  Published by
Maximum  Academic  Press  on  behalf  of  Nanjing

Tech  University.  This  article  is  an  open  access  article  distributed
under  Creative  Commons  Attribution  License  (CC  BY  4.0),  visit
https://creativecommons.org/licenses/by/4.0/.

 
Pyrolysis kinetics of biomass

Page 10 of 10   Wang & Gong Emergency Management Science and Technology 2023, 3:9

https://doi.org/10.1016/j.energy.2018.03.075
https://doi.org/10.1016/j.jclepro.2017.10.216
https://doi.org/10.1109/MACE.2011.5987453
https://doi.org/10.1016/j.fuel.2018.11.030
https://doi.org/10.1016/j.buildenv.2018.08.061
https://doi.org/10.1016/j.enconman.2016.04.104
https://doi.org/10.1016/j.enconman.2016.04.104
https://doi.org/10.1177/0734904120982887
https://doi.org/10.1016/j.biortech.2019.122079
https://doi.org/10.1016/j.energy.2020.117010
https://doi.org/10.1021/ef501380c
https://doi.org/10.1007/s10973-017-6212-9
https://doi.org/10.1016/j.enconman.2017.05.020
https://doi.org/10.1016/j.fuel.2019.04.169
https://doi.org/10.1016/j.energy.2019.05.021
https://doi.org/10.1016/j.fuel.2019.116251
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1109/ICNN.1995.488968
https://doi.org/10.1016/j.biortech.2015.10.082
https://doi.org/10.1016/j.biortech.2015.10.082
https://doi.org/10.1016/j.tca.2014.05.036
https://doi.org/10.1021/ac60131a045
https://doi.org/10.1016/S0040-6031(03)00310-1
https://doi.org/10.19531/j.issn1001-5299.202207006
https://doi.org/10.1016/j.fuel.2022.124344
https://doi.org/10.1016/j.fuel.2022.127123
https://doi.org/10.1016/j.tca.2020.178597
https://doi.org/10.1016/j.tca.2018.12.025
https://creativecommons.org/licenses/by/4.0/.

	Introduction
	Experiment and model-free methods
	Thermogravimetric tests
	Model-free methods
	Kissinger method
	KAS method
	Tang method
	DAEM method


	Numerical model and optimization algorithms
	Numerical model
	Optimization algorithms
	GA (Genetic algorithm)
	PSO (particle swarm optimization) algorithm
	SCE (shuffled complex evolution) algorithm


	Results and discussion
	Analyses of thermogravimetric results
	Kinetic analyses
	Comparison of accuracy of GA, PSO and SCE
	Comparison of efficiency of GA, PSO and SCE
	Parameter validation

	Conclusions
	References

