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Abstract 

Integer Ambiguity Resolution (IAR) can significantly improve the accuracy of GNSS Precise Orbit Determination (POD). 
Traditionally, the IAR in POD is achieved at the Double Differenced (DD) level. In this contribution, we develop an Un-
Differenced (UD) IAR method for Global Positioning System (GPS)+ BeiDou Navigation Satellite System (BDS) + Galileo 
navigation satellite system (Galileo)+ Global’naya Navigatsionnaya Sputnikovaya Sistema (GLONASS) quad-system 
POD by calibrating UD ambiguities in the raw carrier phase and generating the so-called carrier range. Based on this 
method, we generate the UD ambiguity-fixed orbit and clock products for the Wuhan Innovation Application Center 
(IAC) of the International GNSS Monitoring and Assessment System (iGMAS). One-year observations in 2020 from 150 
stations are employed to investigate performance of orbit and clock products. Notably, the UD Ambiguity Resolu-
tion (AR) yields more resolved integer ambiguities than the traditional DD AR, scaling up to 9%, attributable to its 
avoidance of station baseline formation. Benefiting from the removal of ambiguity parameters, the computational 
efficiency of parameter estimation undergoes a substantial 70% improvement. Compared with the float solution, 
the orbit consistencies of UD AR solution achieve the accuracy of 1.9, 5.2, 2.8, 2.1, and 2.7 cm for GPS, BeiDou-2 
Navigation Satellite System (BDS-2), BeiDou-3 Navigation Satellite System (BDS-3), Galileo, and GLONASS satellites 
respectively, reflecting enhancements of 40%, 24%, 54%, 34%, and 42%. Moreover, the standard deviations of Satellite 
Laser Ranging (SLR) residuals are spanning 2.5–3.5 cm, underscoring a comparable accuracy to the DD AR solution, 
with discrepancies below 5%. A notable advantage of UD AR lies in its capability to produce the Integer Recovered 
Clock (IRC), facilitating Precise Point Positioning (PPP) AR without requiring additional Uncalibrated Phase Delay 
(UPD) products. To assess the performance of quad-system kinematic PPP based on IRC, a network comprising 120 
stations is utilized. In comparison to the float solution, the IRC-based PPP AR accelerates convergence time by 31% 
and enhance positioning accuracy in the east component by 54%.
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Introduction
Considering the swift evolution of Global Navigation Sat-
ellite System (GNSS), China established the International 
GNSS Monitoring and Assessment System (iGMAS) to 
monitor and evaluate the performance and operational 
status of GNSS constellations (Chen et al., 2015). As one 
of the Innovation Application Centers (IAC) of iGMAS, 
Wuhan University has actively contributed to the quad-
system precise products for Global Positioning System 
(GPS), BeiDou Navigation Satellite System (BDS), Galileo 
navigation satellite system (Galileo), Global’naya Navi-
gatsionnaya Sputnikovaya Sistema (GLONASS) satellites 
since June 2020, encompassing precise orbits, clocks, and 
biases (Li et al., 2022c).

An essential aspect in precise GNSS data process-
ing is the resolution of the integer ambiguity unknowns 
in phase observations, which significantly impacts the 
accuracy and reliability of GNSS data processing (Dong 
& Bock, 1989; Teunissen, 1995; Li et  al., 2022a). Tradi-
tionally, Integer Ambiguity Resolution (IAR) is achieved 
at the Double Differenced (DD) level, whereby the phase 
ambiguities are differenced between receiver pairs and 
satellite pairs to eliminate hardware delays, yielding read-
ily fixable DD ambiguities (Blewitt, 1989; Ge et al., 2005). 
In recent years, novel methods have emerged to achieve 
IAR at the Un-Differenced (UD) level for a single receiver, 
obviating the need to form baselines. These methods 
include the Uncalibrated Phase Delay (UPD) model, the 
decoupled clock model, and the Integer-Recovered Clock 
(IRC) model (Collins, 2008; Ge et  al., 2008; Laurichesse 
et al., 2009; Li et al., 2013, 2018). These methods calibrate 
the hardware delays through a least square adjustment 
utilizing the data from a GNSS reference network and 
subsequently apply the corrections at each station. This 
means the UD AR is a technique processing the single-
receiver data relative to a network solution. Teunissen 
and Khodabandeh (2015) demonstrated that the single 
receiver’s integer ambiguity is actually the double-dif-
ferenced ambiguity. Therefore, single-receiver AR is an 
undifferenced analysis strategy alternative to the tradi-
tional DD AR strategy (Schaer et al., 2021).

One prominent advantage of UD AR lies in its efficient 
station-by-station processing without baseline forma-
tion (Blewitt et  al., 2010). Through calibrating resolved 
integer ambiguities, raw carrier phase can be converted 
to ambiguity-free observations, known as carrier range, 
significantly enhancing computational efficiency for 
undifferenced GNSS data processing. For instance, GPS 
Precise Orbit Determination (POD) with carrier ranges 
demonstrated a fivefold improvement over traditional 
methods when applied to 460 GNSS stations (Chen et al., 
2014), and the 5-s interval real-time GPS+ Galileo POD 
can be achieved with UD AR (Dai et al., 2022). Moreover, 

Chen et  al. (2014) demonstrated that the UD AR can 
improve the GPS orbit overlap accuracy compared with 
the traditional DD AR by 10%, owing to the enhance-
ment for the continuity of phase observation. Deng et al. 
(2022) illustrated that the 6-h orbit prediction precision 
of UD AR solution was improved by 9%-25% compared 
with DD AR solution. Furthermore, researches suggested 
that UD AR can offer higher fixing rates and enhance the 
robustness in quality control compared to conventional 
approaches (Geng & Mao, 2021; Ruan & Wei, 2019).

Another advantage of UD AR lies in its ability to gen-
erate IRC products, facilitating single-receiver AR at the 
user end (Loyer et  al., 2012). This approach has demon-
strated a substantial improvement in the convergence 
speed and positioning accuracy of Precise Point Position-
ing (PPP) and POD for Low Earth Orbit (LEO) satellites 
(Laurichesse, 2011; Li et  al., 2019a; Montenbruck et  al., 
2021; Zhang et  al., 2021). Thus, to generate the high-
precision UD-fixed orbit and IRC products, more and 
more analysis centers within the International GNSS 
Service (IGS), such as the Centre National d’ Etudes Spa-
tiales (CNES) and Collecte Localisation Satellites (CLS), 
the Center for Orbit Determination in Europe (CODE), 
Wuhan University, and GeoForschungsZentrum (GFZ), 
have adopted the UD AR method (Deng et al., 2022; Geng 
et al., 2019; Katsigianni et al., 2019; Schaer et al., 2021).

However, previous studies primarily focused on UD 
AR for GPS or GPS + Galileo POD, while few studies 
investigated the UD AR POD method for the emerging 
BeiDou-3 Navigation Satellite System (BDS-3) and GLO-
NASS satellites that transmit Frequency Division Multiple 
Access (FDMA) signals. As a result, the GPS + BDS + Gali-
leo + GLONASS quad-system UD ambiguity-fixed orbit 
and IRC products are currently not available. Thus, it is 
imperative to evaluate the accuracy of quad-system UD 
ambiguity-fixed orbit and IRC products, as well as the 
IRC-based PPP. Moreover, previous studies have under-
scored the enhancement of UD AR over the float solution. 
However, the performance differences and underlying rea-
sons between UD AR and DD AR methods need analyz-
ing, particularly in multi-GNSS scenarios.

In this contribution, a UD AR method for quad-system 
POD and PCE is developed by calibrating UD ambiguities 
in the raw carrier phase and generating the so-called car-
rier range. Based on this method, the iGMAS Wuhan IAC 
produces quad-system UD ambiguity-fixed orbit and clock 
products, an alternative to the traditional DD ambiguity-
fixed products. This article provides the theoretical back-
ground, strategies, and the validation results of the new UD 
ambiguity-fixed products. Moreover, it offers a compre-
hensive comparison and analysis between the UD AR and 
the traditional DD AR methods concerning the generation 
of quad-system orbit and clock products.
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Following this introduction, “Method” section demon-
strates the quad-system GNSS UD AR methods, while 
“Data and process strategy” section elucidates the GNSS 
data and the processing strategies adopted in this study. 
Then, “Results” section presents the experimental valida-
tion and resultant analyses. Finally, the conclusions are 
summarized in “Conclusions” section.

Method
Multi‑GNSS observation model
The observation models for GNSS pseudorange P and car-
rier phase L can be expressed as follows (unit: meter),

where s and r refer to satellite and receiver, respectively; n 
is the frequency; ρs

r denote the geometric distance 
between the phase centers of GNSS transmitter and 
receiver antenna, also including tropospheric delay, rela-
tivistic effects, etc.; tr is the receiver clock offsets; ts 
denotes the satellite clock offsets; I sr,1 refers to the slant 

ionospheric delay; γn is expressed as f
2
1

f 2n
 ; b and B denote 

the pseudorange and carrier phase hardware delays, 
respectively; �n is the wavelength; Ns

r,n is the integer 
phase ambiguity in cycles; esr,n and εsr,n refer to the sum of 
multipath errors and measurement noise.

To eliminate the first-order ionospheric delay, the Ion-
osphere-Free Combination (IFC) is widely used in GNSS 
data processing. The GPS + BDS + Galileo + GLONASS 
combined IFC observation model is expressed as,
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where the superscripts G , C , E , and Rk denote the GPS, 
BDS, Galileo, and GLONASS satellites, respectively; sub-
scripts k in Rk is the GLONASS channel number; Ns

r,IF 
is the IFC ambiguity in meter; ωX−G denote the pseu-
dorange Inter-System Biases (ISB) among BDS, Galileo, 
GLONASS and GPS. Considering the hardware delays 
for different GLONASS satellites vary with their chan-
nel number k , the GLONASS Inter-Frequency Bias (IFB) 
ωRk−G is estimated for each GLONASS channel.

There are two singularities in this linear system caused 
by the satellite clock and ISB parameters. In this study, 
all the clock offsets are defined relative to a selected sta-
tion with its GPS receiver clock offsets arbitrarily fixed to 
zero. Reference stations are also selected for other sys-
tems to fasten their ISBs to zero (Li et al., 2015).

Undifferenced ambiguity resolution
As illustrated in Eq.  (3), the estimated ambiguity N̂  
loses its integer property due to the phase and code 
delays. Consequently, we must eliminate the satellite and 
receiver UPDs absorbed in the ambiguity parameter to 
achieve the UD AR. Since the estimated IFC ambiguity 
is not naturally an integer, the Wide-Lane (WL) and Nar-
row-Lane (NL) ambiguities ( N1 in this study) are adopted 
in IAR,

where �NL is the wavelength of NL ambiguity; NWL 
denote the WL ambiguity, which can be obtained from 
the Hatch-Melbourne-Wübbena (HMW) combination 
(Hatch, 1983; Welbourne, 1985; Wubbena, 1985). Then, 
the NL ambiguity can be computed with WL and IFC 
ambiguities.

The UD WL and NL ambiguity parameters can be 
expressed as a linear combination of the integer value 
and UPDs,

where subscript ∗ denotes WL or NL; N̂ s
∗
 and Ns

∗
 refer to 

the ambiguities of float and integer values, respectively; 
µ∗,r and µs

∗
 are the receiver and satellite UPDs.

Assuming there are n stations tracking m satellites, we can 
estimate the satellite and receiver UPDs by a least square 
adjustment as follows (Ge et al., 2008; Li et al., 2013),

(4)
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where δN∗,i denotes the fractional part of the float ambi-
guity, which is computed by δN∗,i = N̂∗,i − N∗,i ; In is the 
identity matrix of dimension n ; Rn refers to the vector 
(1, 1, · · · , 1)T with dimension n ; ⊗ denotes the Kronecker 
product. To solve the rank deficiency in Eq.  (6), a satel-
lite or receiver UPD is selected as the reference and fixed 
to a prior value. Notably, the receiver UPD for a specific 
receiver µ∗,r varies with different GNSS systems. As a 
consequent, the UPD should be separately estimated for 
each system (Li et al., 2018, 2022b). Specially, the IFB of 
a particular GLONASS satellite varies with the receivers’ 
manufacturers, antennas, domes, and even firmware, so 
the GLONASS UPD estimation is usually utilized with 
homogeneous receivers (Liu et al., 2017).

Based on the above algorithm, the satellite UPD can be 
precisely estimated using around 100 globally distributed 
stations. For a single-receiver user, the integer property 
can be recovered for Single-Differenced (SD) ambiguity 
by correcting the satellite UPD and making the difference 
between two UD ambiguities from different satellites,

where subscripts s1 and s2 are two different satellites. 
Subsequently, the integer values of SD ambiguities can be 
resolved through a rounding or search strategy (Dong & 
Bock, 1989; Teunissen, 1995).

To further obtain the integer UD ambiguities, we select a 
UD ambiguity with the highest precision as the datum and 
directly fix it to the nearest integer value after correcting 
satellite UPD. Then, an independent subset of SD ambigui-
ties is selected by their fixing probability (Ge et al., 2005). 
Subsequently, all the UD ambiguities can be resolved as,

where N ref
∗

 is the datum UD ambiguity; the design matrix 
is a full-rank square matrix with 1, − 1, and 0.

(6)
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By correcting the integer WL and NL ambiguities, 
a raw phase observation can be converted to a carrier 
range as follows (Blewitt et al., 2010; Chen et al., 2014),

The carrier range is an unambiguous phase observa-
tion, like high precision pseudorange measurement. 
Therefore, the pseudorange observation becomes unnec-
essary when applying carrier range. The ameliorated 
multi-GNSS observation model based on carrier range 
can be expressed as:

with

where ω̃X−G and t̃r,IF are the carrier phase ISB and clock 
offsets. Due to the removal of ambiguity parameters, 
the receiver and satellite phase delays are obliged to be 
absorbed by ISB and clock estimates. Different from the 
legacy code clock t̂ sIF in Eq. (2), the obtained phase clock 
t̃ sIF , also known as the integer clock, can support users 
to achieve single-receiver ambiguity resolution without 
extra UPD products (Geng et al., 2019; Laurichesse et al., 
2009; Loyer et al., 2012; Schaer et al., 2021).

Data and processing strategy
Multi‑GNSS constellations and tracking networks
Currently, more than 120 GNSS satellites are opera-
tional, transmitting navigation signals to global users. 
With the modernization of GPS and GLONASS, six 
GPS Block III and four GLONASS-K1 satellites were 
launched. The current GPS and GLONASS constel-
lations comprise 31 and 24 operational satellites, 
respectively. Since July 31, 2020, the Chinese BDS-3 
has provided fully operational global services, with the 
entire constellation consisting of 30 satellites, includ-
ing 3 GEostationary Orbit (GEO), 3 Inclined GeoSyn-
chronous Orbit (IGSO), and 24 Medium Earth Orbit 
(MEO) satellites (Yang et  al., 2021). The current Gali-
leo constellation comprises 22 fully operational sat-
ellites, 2 testing satellites on improper orbits, and 3 
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unserviceable satellites (Hadas et al., 2019). Table 1 pro-
vides a comprehensive overview of the current deploy-
ment status of multi-GNSS constellations, delineating 
satellite block types, transmitted signal types, and the 
number of available satellites as of July 2023.

We employed the observations of one year at 150 IGS 
Multi-GNSS Experiment (MGEX) stations in 2020 to 
conduct GPS + BDS + Galileo POD. All these stations 
enable to track both GPS and Galileo dual-frequency 
signals, while about 120 of them can also track the col-
laborative B1I/B3I signals of BDS-2 and BDS-3. Since 
the code and phase IFB of a specific GLONASS satel-
lite vary with receiver types (Yamada et  al., 2010), we 
adopted a network comprising homogeneous receiv-
ers for both DD and UD AR (Liu et  al., 2017). Hence, 
we selected all available MGEX stations equipped with 
SEPT POLARX5 receivers (103 stations) to execute 
GPS + GLONASS POD utilizing the data in the same 
period.

Figure  1 illustrates the distribution of selected sta-
tions utilized for the multi-GNSS POD. The POD pro-
cess used all available GPS, Galileo, GLONASS, BDS-2 
IGSO/MEO satellites, and a significant portion of the 
BDS-3 MEO satellites. However, the BDS GEO satel-
lites were excluded due to their frequent orbit maneu-
vers and unfavorable observational geometry. In the 
selected period, the observations for BDS-3 satellites 
with PRN larger than C37 are insufficient, so C38-C46 
were also not used. Besides, R06 and R10 were not used 
due to the lack of dual-frequency observations.

POD strategy
In this study, we utilized the GREAT (GNSS + REsearch, 
Application, and Teaching) software, developed by 
Wuhan University, for processing the quad-system 
GNSS data (Li et  al., 2021, 2023). Table  2 summarizes 
the detailed POD strategy. The UD IFC pseudorange and 
carrier phase formed by L1/L2 for GPS and GLONASS, 
E1/E5a for Galileo, and B1I/B3I for BDS were adopted in 
the POD. The a priori noises are 0.6 m for pseudorange 
and 0.01 cycles for carrier phase. Empirically, the a priori 
pseudorange noises of GLONASS are set to 3.0  m due 
to relatively lower pseudorange precision. The satellite-
induced code bias of BDS-2 satellites is calibrated with 
the existing models (Wanninger & Beer, 2015). The POD 
arc is 24  h with a sampling interval of 300  s. As to the 
Solar Radiation Pressure (SRP) models, the well-proved 
ECOM2 (9 parameters), ECOM (5 parameters), and the 
a priori box-wing model were employed for GPS/GLO-
NASS, BDS, and Galileo POD, respectively (Arnold et al., 
2015; Li et al., 2019b; Montenbruck et al., 2015; Springer 
et al., 1999).

Considering the code hardware delays originated in 
receiver vary with different systems and channels, the 
ISB of Galileo and BDS and IFB of GLONASS relative to 
GPS were estimated as constants for each 24-h arc. It was 
also reported that the ISB exists between BDS-2 and the 
newly complete BDS-3 (Zhao et al., 2020). Hence, BDS-3 
and BDS-2 are treated as two systems in parameter esti-
mation and ambiguity resolution, which means that the 
differential ambiguity will not be formed between BDS-3 
and BDS-2 satellites.

To validate the proposed method, the traditional DD 
ambiguity-fixed orbit and clock products are also pro-
cessed for comparison. The same DD AR strategy is used 
as Ge et al. (2005). Figure 2 shows the processing proce-
dure for POD. The daily POD is processed in the follow-
ing steps to ensure that all the experimental solutions use 

Table 1 Deployment status of the multi-GNSS constellations as 
of July 2023

a Non-operational satellite

System Blocks Signals Satellites

GPS IIR L1C/A, L1/L2 P(Y) 7

IIR-M L1C/A, L1/L2 P(Y), L2C, L1/L2 M 7

IIF L1C/A, L1/L2 P(Y), L2C, L1/L2 M, L5 12

III L1C, L1C/A, L1/L2 P(Y), L2C, L1/L2 M, L5 5 +  1a

BDS-2 GEO B1I, B2I, B3I 5

IGSO B1I, B2I, B3I 7

MEO B1I, B2I, B3I 3

BDS-3 GEO B1I, B3I, B2b 2 +  1a

IGSO B1I, B3I, B1C, B2a/b 3

MEO B1I, B3I, B1C, B2a/b 24

Galileo IOV E1, E6, E5a/b/ab 3 +  1a

FOC E1, E6, E5a/b/ab 19 +  4a

GLONASS M L1/L2 C/A + P 15

M + L1/L2 C/A + P, L3 6

K L1/L2 C/A + P, L3 3 +  1a

180° 120°W 60°W 0 60°E 120°E 180°

60°S

0

60°N

Fig. 1 Distribution of the selected MGEX stations utilized 
for the multi-GNSS POD} (pink dots: stations for GPS + BDS + Galileo 
POD; black dots: stations equipped with SEPT POLARX5 receivers 
for GPS + GLONASS POD



Page 6 of 15Wu et al. Satellite Navigation             (2024) 5:8 

the same input information: (1) the multi-GNSS POD is 
implemented iteratively till the convergence is achieved 
to generate the float IFC and WL ambiguities; (2) the DD 
and UD ambiguities are fixed to integer values with dif-
ferent ambiguity resolution methods; (3) apply the DD 
ambiguity constraints or carrier ranges to the POD esti-
mators and achieve ambiguity-fixed solutions. The ambi-
guities which are not fixed in the UD approach will be 
estimated as real numbers in step (3).

Results
Ambiguity fixing performance
High-quality WL and NL UPD products play a crucial 
role in the UD ambiguity resolution process. Previous 
research has demonstrated that the WL UPDs remain 
stable for several months, whereas the NL UPDs are sta-
ble within several hours (Ge et al., 2008; Li et al., 2018). 

Table 2 Processing strategy for multi-GNSS POD

Items Strategies

Observation model

Observations Undifferenced IFC pseudo-range and carrier phaseGPS: L1/L2; Galileo: E1/E5a; BDS: B1I/B3I; GLONASS: L1/L2

A prior noise Pseudo-range: 0.6, 0.6, 0.6, and 3.0 m for GPS, Galileo, BDS, and GLONASS, respectively
Carrier phase: 0.01 cycles

Weighting Elevation-dependent weighting with 7° cutoff

POD arc 24 h arc length, 300 s sampling

Satellite antenna igs14.atx

Receiver antenna igs14.atx

Phase-windup effect Corrected

Tropospheric delay The priori delays are computed with Saastamoinen model (Saastamoinen, 1972) and Global Mapping Function (Böhm 
et al., 2006); then, the residual delays are estimated as piecewise constant function every 2 h

Station coordinates Tightly constraint to IGS weekly solutions

Dynamic model

Earth gravity field 12 × 12 EGM2008 model (Pavlis et al., 2012)

N-body gravitation Planetary and lunar ephemeris DE 421 (Folkner et al., 2009)

Ocean tides FES 2004 (Lyard et al., 2006)

Solid earth and pole tides IERS conventions 2010 (Luzum & Petit, 2012)

Relativity effect IERS conventions 2010

Antenna thrust Correct (Steigenberger et al., 2018)

Solar radiation pressure GPS/GLONASS: ECOM2; BDS: ECOM; Galileo: ECOM + the a prior box-wing model

Estimated parameters

Estimator Sequential least square adjustment

Initial state Satellite position and velocity at initial epoch

Dynamic parameters SRP parameters

Satellite clock offset Epoch-wisely estimated as white noise

Receiver clock offset Epoch-wisely estimated as white noise; Estimate ISB of Galileo, BDS-3, BDS-2, and IFB of GLONASS channels as constants

Phase ambiguities Constant over each continuous observation arc

Earth rotation parameters Estimating Xpole, DXpole, Ypole, DYpole, DUT1, with UT1 fixed

NAV, SNX, DCB, ATX, etc.

IFC ambiguity POD estimator HMW observations

WL ambiguity

UPD estimation

Fix UD ambiguites

Independence check DD AR solution

POD with DD AR

Form DD ambiguities

Fix DD ambiguities DD constraints

UD AR solutionDD

UD Carrier range

POD with UD AR

NL ambiguity

AMB mode?

GNSS Observations

Fig. 2 Flowchart of POD using UD and DD AR solutions
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Figure 3 depicts the time series of multi-GNSS WL UPDs 
in 2020. It is observed that Galileo, GPS, and BDS-3 sat-
ellites exhibit excellent stability, with a STandard Devia-
tion (STD) of smaller than 0.02 cycles. The BDS-2 WL 
UPD series exhibit frequent but slight fluctuations, which 
could be attributed to the pseudo-range noise and other 
unmodeled biases. Several large jumps and discontinui-
ties are observed for R09, which may be due to regular 
maintenance activities (https:// www. glona ss- iac. ru/ 
news/ news_ glona ss).

Figure  4 presents the time series of multi-GNSS NL 
UPDs on 2020–05-01. The results show that all the sat-
ellites exhibit excellent stability with STD values smaller 
than 0.08 cycles. Once again, the performance of Gali-
leo, GPS, and BDS-3 is the best, followed by BDS-2 and 
GLONASS. The poorer quality of WL UPD and lower 
POD accuracy adversely affects the NL UPD quality of 
BDS-2 and GLONASS. Furthermore, the inconsistency 
of GLONASS IFBs among the selected homogeneous 
receivers may also affect GLONASS NL UPD accuracy.

After correcting the multi-GNSS WL and NL UPDs, 
the UD AR can be performed station by station. As 
depicted in Fig.  5, the WL fixing rates are 97–99% and 
95–98% for DD AR and UD AR, respectively, while the 
NL fixing rates are 93–97% and 87–96%. These results 
demonstrate a good consistency with the previous stud-
ies, e.g., Ge et al. (2005), Ge et al. (2008), Li et al. (2018), 
and Katsigianni et al. (2019).

It is noteworthy that the DD AR displays higher fixing 
rates but marginally fewer independent ambiguities than 
UD AR. This is because redundant DD candidates are 
much more than UD candidates. For instance, for GPS, 
there are over 330,000 DD candidates from more than 
1000 station pairs, whereas the UD candidates are only 
60,000. Therefore, the linear independence check selects 
more easy-to-fix DD ambiguities (Ge et al., 2005). Math-
ematically, the number of chosen independent DD ambi-
guities is three less than that of UD ambiguities. However, 
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forming DD ambiguity needs two stations simultaneously 
tracking two satellites for at least a few minutes, which 
is influenced by the distance and distribution of sta-
tions, especially for the areas with sparse stations like 
open seas, remote areas, etc. In contrast, the UD method 
is much more flexible because it processes the data of a 
single receiver. Moreover, the UD method corrected the 
UPD estimated from a global network, while the DD 
method eliminated the UPD by the DD operation, which 
was affected by the distance between the two stations and 
the quality of their ambiguities (Geng & Mao, 2021). In 
this context, the difference between NL ambiguity num-
bers of DD AR and UD AR is less than 1% for GPS and 
Galileo, owing to their relatively adequate and evenly 
distributed stations. In contrast, the stations capable of 
tracking BDS signals are fewer, and the IGSO satellites 
can only be tracked by regional networks, leading to dif-
ferences of 2% and 4% for BDS-3 and BDS-2. GLONASS 
demonstrates the largest difference of 9% since only 103 
unevenly distributed stations are selected to satisfy the 
requirement of homogeneous receivers.

Computational efficiency
With the rapid expansion of GNSS constellations and 
networks, the computational burden of GNSS network 
data processing has become a significant challenge. The 
sequential least squares adjustment method has been 
widely utilized in precise orbit and clock determination. 
This method uses Gauss elimination to remove inac-
tive parameters, such as elapsed ambiguities and zenith 
troposphere delays, and achieve higher efficiency than 
the batch least square adjustment (Ge et al., 2006). How-
ever, the Norm EQuation (NEQ) matrix still has many 
active ambiguities, and the parameter elimination pro-
cess is time-consuming. Figure  6 illustrates the number 

of active parameters per epoch under the assumption 
that n stations are tracking m satellites, and each sta-
tion on average observes 1/4 of the available satellites. 
The results show that ambiguities account for 57% of the 
NEQ dimension when 100 stations are tracking 120 satel-
lites. This percentage increases to 73% when the number 
of stations increases to 450.

The carrier range presents a promising approach to 
significantly enhance computational efficiency in GNSS 
network data processing by eliminating the ambiguity. 
The generation of carrier range involves two steps: UPD 
estimation and UD AR, both of which can be processed 
quickly. The former step takes less than one minute, 
while the latter is station-based and can be executed in 
parallel on multiple processors and computers within five 
seconds (Chen et al., 2014). Subsequently, the computa-
tion time of the sequential least square adjustment can be 
divided into three parts: parameter elimination, forming 
NEQ, and solving NEQ. Notably, solving NEQ accounts 
for less than 0.3% of the total time. As the NEQ dimen-
sion is significantly reduced, the carrier range approach is 
expected to expedite parameter elimination. Additionally, 
pseudorange is no longer required in the carrier range 
approach, and only half of the observations need to be 
processed, resulting in a potential 50% reduction in the 
computation time of forming NEQ (Blewitt et al., 2010).

For verification purposes, a total of 450 IGS sta-
tions were utilized to implement the POD using IFC 
phase + range observations and carrier ranges of 
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DOY135, 2020. It is worth noting that only 277 sta-
tions can track Galileo signals, and this number is fur-
ther reduced to 159 if we consider BDS-3 signals. As 
illustrated in Fig.  7, the computation time of parameter 
elimination and forming NEQ increases geometrically 
and linearly, respectively, and their slopes are amplified 
with the growing number of satellites. Remarkably, the 
carrier range approach significantly increases the compu-
tational efficiency of parameter elimination compared to 
the traditional approach. For instance, the both GPS-only 
strategy with 450 stations and the triple-system strategy 
with 150 stations resulted in a 70% reduction in the com-
putation time. However, forming NEQ was improved by 
around 15–30%, which is lower than the expected ideal 
reduction of 50%. The possible explanation for this dis-
crepancy is that most error models, such as coordinates, 
clocks, and troposphere delays, are common for both 
range and phase observations and must be calculated, 
even though the range observations have been excluded.

Figure 8 illustrates the computation time of the whole 
DD AR module and UD AR module, including ambigu-
ity fixing and POD parameter estimation. It can be found 
that the time consumption of DD AR grows dramati-
cally with the increasing of station number, especially for 
multi-GNSS. In contrast, the UD AR presents a notice-
ably smaller slope for the time consumption. The GPS-
only DD AR module takes 1605  s when there are 450 
stations, while the UD AR module takes only 509 s, with 
the improvements of 68%.

Orbit consistency
We employed the multi-GNSS data of one year in 2020 
collected at 150 MGEX stations to evaluate the POD 
accuracy with UD AR. To assess the consistency of daily 
solutions, we conducted two-day arc solutions by fit-
ting the orbital parameters through consecutive one-day 

orbital solutions. The Root Mean Square (RMS) values 
of the two-day orbit fits were used as indicators of day-
to-day orbit consistency. Figure 9 illustrates the 3D RMS 
values of orbit fits of the float, DD AR, and UD AR solu-
tions. Notable improvements are found when comparing 
the UD AR solution and float solution. The UD AR solu-
tion presents the 3D RMS values of 1.9, 2.1, 2.7, 5.2, and 
2.8 cm for GPS, Galileo, GLONASS, BDS-2, and BDS-3 
satellites, with the improvements of 40%, 34%, 42%, 24%, 
and 54%. The performance is slightly better than the DD 
AR solution, with an improvement of 1–5% for different 
systems. This result is like the previous studies, e.g., Ruan 
and Wei (2019); Geng and Mao (2021). Remarkably, all 
the BDS-3 satellites exhibit a noticeable higher orbit con-
sistency when comparing the UD AR solution with DD 
AR solution, with an improvement of 3–7%.

Besides, it is noteworthy that satellites R01, R13, R16, 
R19, R20, and R22 exhibit much larger RMS values than 
other GLONASS satellites, aligning with the results by 
Prange et al. (2017) and Bury et al. (2022). A possible rea-
son is sharing the pre-2011 launch dates of these satel-
lites, engendering a requisite for re-calibration of their 
antenna phase center corrections (Dach et  al., 2019). 
Therefore, we mark these satellites as GLONASS-Me is 
this study. Moreover, the float solutions for satellites C27-
C30 and C34-C35 (in slot A) manifest notably larger RMS 
values relative to the satellites in slots B and C. This can 
be attributed to the sun elevation angles above the orbital 
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plane in slot A ranging within ±33
◦ , leading to the longer 

eclipse seasons. Nevertheless, the application of ambigu-
ity resolution significantly improves their orbit consist-
ency to a same level with other BDS-3 MEO satellites.

Orbit comparison
In addition, we compare the estimated orbits with MGEX 
final orbit products, e.g., COM from CODE (Prange 
et  al., 2017), GBM from GFZ (Uhlemann et  al., 2016), 
WUM from Wuhan University (WHU) (Guo et al., 2016), 
and ESM from the European Space Agency (ESA) (Mon-
tenbruck et al., 2017).

Figure  10 illustrates the 3D RMS values of the orbit 
differences with respect to different products. The orbit 
differences of BDS-3 satellites with respect to COM are 
absent due to the unavailability of CODE’s BDS-3 orbits 
for the year 2020. A substantial reduction of 50% in orbit 
difference is exhibited for GPS satellites between the float 
and UD AR solutions. Similarly, Galileo presents a sig-
nificant improvement of 32–49% in orbit difference by 
applying UD AR. Nevertheless, the discrepancy between 
the results of UD AR solution and DD AR solution is 
smaller than 5%.

For BDS-3 satellites, the disparities in orbit differ-
ences within the float solutions remain consistent across 
various products, hovering around 11 cm. However, the 
ambiguity-fixed results have notable variations with a 

shift in median values from ESM’s 5.7  cm to WUM’s 
8.7 cm. This divergence possibly stems from the different 
ambiguity resolution strategies adopted by different insti-
tutions, leading to the accuracy improvement by ambigu-
ity resolution ranging from 14 to 52%. Similar disparities 
are also observed for BDS-2 satellites across different 
products, with the median values of the UD AR solu-
tion spanning from COM’s 21.1 cm to WUM’s 10.9 cm. 
The possible reason resides in the different SRP models 
employed by these institutions.

Furthermore, the orbit difference of ambiguity-fixed 
solution for GLONASS satellites exhibit a minimal reduc-
tion or even exacerbation compared with GBM, WUM, 
and ESM products. Nevertheless, a notable reduction in 
orbit differences concerning COM is manifest, amount-
ing to a marked 38%. This discrepancy can probably be 
attributed to the fact that COM’s GLONASS orbits are 
ambiguity-fixed solutions (Prange et al., 2017), while the 
GLONASS orbits from GBM, WUM, and ESM remain 
the float solutions.

SLR validation
Satellite Laser Ranging (SLR) provides an independ-
ent distance measurement from SLR stations to satel-
lites with mm-to-cm-level precision. Therefore, the SLR 
residuals can serve as an external indicator of GNSS orbit 
accuracy. Currently, all the Galileo and GLONASS sat-
ellites and some BDS satellites are tracked by the Inter-
national Laser Ranging Service (ILRS) (Pearlman et  al., 
2019). One-year SLR observations in 2020 are employed 
to compute the SLR residuals. As depicted in Fig. 11, all 
the 34 available ILRS stations are used for the SLR vali-
dation. The outlier threshold is set to ± 0.2  m, and the 
elevation cutoff is 10

◦

.
Figure 12 presents the time series of SLR residuals for 

C20 and C29, respectively manufactured by the China 
Academy of Space Technology (CAST) and Shanghai 
Engineering Center for Microsatellites (SECM). The SLR 
residuals maintain temporal stability yet reveal dispersed 
deviations during eclipse seasons. It is noticeable that 
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distinct mean biases emerge, with C20 recording 6.7 cm 
and C29 registering − 2.7 cm, due to the contrasting area 
ratios between their X-bus and Z-bus surfaces (Zhao 
et  al., 2022). Furthermore, employing UD AR leads to 
notably diminished scatters compared to the float solu-
tion, evidenced by a reduction of STD values from 4.2 
and 4.4 cm to 3.1 and 3.5 cm, representing improvements 
of 28% and 20%, respectively. The results align with the 
DD AR solution, demonstrating a discrepancy of less 
than 1%.

Figure  13 illustrates the statistics of SLR residuals for 
BDS, Galileo, and GLONASS satellites. Compared with 
the float solutions, the STD values of UD AR solutions 
exhibit a substantial improvement of 21% for BDS-3 
satellites. This is followed by a 10% enhancement for 
GLONASS satellites and a 5% improvement for Gali-
leo satellites. Notably, the disparity between the UD AR 
solutions and the DD AR solutions remains insignificant, 
amounting to less than 3%.

For BDS-2 MEO and BDS-3 MEO satellites the residu-
als show comparable accuracy of about 3.5  cm when 
utilizing the UD AR solution. Conversely, for BDS-2 
IGSO satellites they exhibit larger scatters, with a STD of 
5.9 cm. For Galileo satellites, the UD AR solutions yield 
a mean STD value of 2.5 cm, while for GLONASS satel-
lites3.3 cm. However, for the GLONASS-Me satellites the 
residuals deviate significantly with STD value of approxi-
mately 7.4  cm, and the application of ambiguity resolu-
tion fails to improve orbital accuracy. This is possibly 
attributable to imprecise antenna phase center correc-
tions (Dach et al., 2019).

Clock comparison
To validate the generated precise clock products, we 
compare them with the final products from COM, GBM, 
WUM, ESM. The clock time series are aligned to a refer-
ence satellite to eliminate the systematic errors in clock 
comparisons (Ge et al., 2012).

Figure  14 illustrates the mean STD values of clock 
differences for different systems. The UD AR solution 
demonstrates a remarkable consistency with the precise 
products for GPS and Galileo satellites, the mean STD 
values ranging from 0.07 to 0.10  ns, with an improve-
ment of approximately 25% compared with the float solu-
tion. Noteworthy a progress is also observed for BDS-3 
satellites with the mean STD around 0.14 ns, exhibiting 
a significant improvement of 22% compared to the float 
solution. As for BDS-2 satellites, STD values exhibit vari-
ation among different products, ranging from the GBM’s 
0.14 ns to COM’s 0.28 ns. This finding is also similar to 
the orbit comparison results, possibly due to the different 
SRP models employed by these institutions.
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Furthermore, for GLONASS satellites the clock dif-
ference results are contrary to other systems. The STD 
values of GBM, WUM, and ESM exhibit substantial 
increment to about 0.40 ns when applying ambiguity res-
olution, representing a notable increase of 57% compared 
to the float solution. Nevertheless, the clock difference 
relative to COM shows a smaller STD value of 0.26  ns. 
This phenomenon likely stems from disparate ambiguity 
resolution strategies. Over all systems and different ref-
erence products, UD AR delivers the clock results with 
an accuracy comparable with DD AR, with discrepancies 
less than 3%.

PPP validation
To further assess the obtained quad-system precise 
orbit and IRC products, we utilize 120 globally dis-
tributed MGEX stations to execute GPS + BDS + Gali-
leo + GLONASS kinematic PPP AR, as depicted in 
Fig.  15. Three PPP schemes are adopted: S1: the float 
PPP solution using the orbit and clock from the DD AR 
solution; S2: the same as S1 but using extra UPD prod-
ucts to facilitate PPP AR; S3: PPP AR using the orbit 
and IRC from UD AR solution. Both S2 and S3 use WL 
UPD products to fix WL ambiguities.

We utilized the LAMBDA method to search for the 
optimal integer ambiguity solution (Teunissen, 1995). 
Simultaneously, to resolve as many high-quality ambi-
guities as feasible we implemented the partially fixed 
integer solution by selecting high elevation or high pre-
cision ambiguities (Teunissen, 1999; Li & Zhang, 2015). 
Moreover, we used the ratio test for the acceptance of 
the integer solution with an empirical threshold of 2 
(Han, 1997; Li et al., 2018). Furthermore, the reference 
coordinates were from the IGS weekly solutions.

Figure  16 illustrates the positioning errors for sta-
tions HARB, MKEA, and POVE in east, north, and up 
components. Notably, the ambiguity-fixed solutions (S2 
and S3) manifest a faster convergence speed compared 
to the float solution, achieving centimeter-level accu-
racy within ten minutes. The improvement is particu-
larly pronounced in the east components, from over 
ten minutes to several minutes. Between S2 and S3, 
the IRC-based AR solutions exhibit the convergence 
time and positioning errors similar to the UPD-based 
results.

Figure 17 illustrates the distributions of convergence 
time for all 120 stations. In this study, we defined the 
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convergence time as the duration required for the hori-
zontal positioning accuracy to surpass the threshold 
of 5  cm and maintain for ten successive epochs. The 
distributions of ambiguity-fixed solutions (S2 and S3) 
manifest a pronounced skewness towards zero, with a 
median value of 11  min, contrasting 16  min with the 
float solution’s (S1). Moreover, both S2 and S3 show an 
improvement of 31% in convergence time compared 
with the float solution.

Furthermore, we exam statistically the positioning 
errors, as illustrated in Fig.  18. The RMS values of six-
hour positioning error is computed, with the first 30 min 
of the initialization time excluded. Notably, S3 achieves 
the median of positioning errors of 0.6, 0.7, and 2.2 cm in 
east, north, and up components, a comparable accuracy 
with that of S2. Compared with S1, the positioning accu-
racy is improved by 54%, 13%, and 15% in the east, north, 
and up components, respectively.

Conclusions
This contribution expounds upon the mathematical 
method, processing strategy, and validation results of the 
UD-ambiguity-fixed quad-system orbit and clock prod-
ucts from the iGMAS Wuhan IAC. Our approach con-
verts raw phase observations to carrier ranges at a station 
by resolving integer UD ambiguities. Subsequently, the 
UD-ambiguity-fixed orbits and clocks are estimated 
based on these carrier range observations.

To validate the proposed method, the observations of 
one year at 150 MGEX stations in 2020 is employed. The 
quad-system WL UPDs manifests STDs of smaller than 
0.02 cycles over the entire 2020, while the NL UPDs dem-
onstrate daily STDs smaller than 0.05 cycles. Moreover, 
the success rate of ambiguity resolution with the UD 
method exhibits up to 9% higher than the traditional DD 
method, attributable to its avoidance of forming station 
baselines. Following this, the carrier range is generated at 
each station to facilitate the UD-ambiguity-fixed network 
solution. With the employment of carrier ranges, the 
computational efficiency of the parameter estimation for 
POD are significantly improved, particularly in the con-
text of massive GNSS networks. When handling the GPS 
observations at 450 stations or a composite of GPS, Gali-
leo, and BDS observations at 150 stations, the computa-
tional time required for equation formulation and matrix 
operations can be reduced by 30% and 70%, respectively.

Hence, the UD-ambiguity-fixed orbit products are 
assessed in terms of orbit consistency and orbit differ-
ence relative to precise products, and by SLR measure-
ments. The 3D orbit fits RMS values are 1.9, 5.2, 2.8, 2.1, 
and 2.7  cm for GPS, BDS-2, BDS-3, Galileo, and GLO-
NASS satellites, respectively, reflecting the improvements 
of 40%, 24%, 54%, 34%, and 42% compared to the float 
solution. The orbit fits are comparable with the tradi-
tional DD AR solution with the discrepancy smaller than 
2%. The orbit differences with respect to the final prod-
ucts from COM, GBM, WUM, and ESM also exhibit the 
improvements of 30–50% compared to the float solution. 
Concerning SLR validation, the STD value of SLR residu-
als for BDS-3 satellites is reduced by 21%. Overall, the 
STD values of UD AR solutions range from 2.5 to 3.5 cm 
for MEO satellites, comparable to DD AR solution.

Furthermore, we evaluate the accuracy of IRC using the 
clock difference with respect to the precise products. The 
STDs of the clock differences for GPS and Galileo satel-
lites span from 0.07 to 0.10 ns, while for BDS-3 satellites 
0.14 ns. The IRC products enable single-receiver AR for 
global users, obviating the need for UPD products. We 
validate the performance of IRC-based kinematic PPP 
AR using 120 globally dispersed MGEX stations. Com-
pared with the float solution, both the IRC-based PPP 
and UPD-based PPP achieve the convergence time of less 
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than 11 min, improved by 31%. The median positioning 
errors of IRC-based PPP are 0.6, 0.7, and 2.2 cm in east, 
north, and up components, with improvements of 54%, 
13%, and 15% compared with the float solution.
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