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Mangrove management in China is converting from emphasis on occupied area to intrinsical quality. 
Mangrove species have varied ecological values, e.g., those having well-developed prop roots are more 
beneficial for coastal stabilization. The detailed distribution of mangrove species on a national scale 
remains a challenge, impeding species-specific applications in the ecology and management of mangroves, 
as well as evaluations of related Sustainable Development Goals. Although local-scale studies have explored 
various data sources, the variability of plant phenology is the key factor preventing their generalization 
from local areas to large latitudinal spans (e.g., the coast of China). The separability time period, defined 
by a separability metric for each scene of the image time series, provides a potential way to tackle the 
aforementioned problem. We conducted a case study on mapping Kandelia obovata in China based on 
Sentinel-2 time-series imagery, as it is a representative native mangrove species with the largest latitudinal 
span and tolerance to low temperatures. The proposed approach considered the separability between 
K. obovata and its typical co-occurring mangrove species, as well as that between K. obovata and salt 
marshes. The overall accuracy of the generated K. obovata map in China for 2020 reached 88.5% based 
on independently collected samples. The proposed approach is transferable to diverse mangrove species 
that inhabit a vast latitudinal span. The implications for sustainable mangrove management were discussed 
to reveal the benefits to precise management of mangroves, accurate biomass and carbon estimations 
accounting for species differences, and effective evaluation of mangrove ecosystem services.

Introduction

China is shifting from afforestation to ecological restoration 
with an emphasis on mangrove restoration in the Special Action 
Plan for Mangrove Protection and Restoration (2020–2025), 
which is issued by the Ministry of Natural Resources and the 
National Forestry and Grassland Administration. Mangrove 
restoration is tightly bound to mangrove species, e.g., Kandelia 
obovata has an impressive ability to withstand low tempera-
tures, dominating mangrove poleward expansion to displace 
salt marshes under climate change [1,2]. With the largest lati-
tudinal span in China, K. obovata has not been reported in the 
literature on its detailed distribution at the national scale, which 
impedes the implementation of precise management, accurate 
biomass and carbon estimations, and effective policies [3–5]. 
The habitats of this mangrove species have low accessibility due 
to the prevalence of tidal flooding, oxygen-deprived muddy 
substrates, and a profusion of thick trunks and aerial roots [6]. 
Therefore, remote sensing technology, which retrieves informa-
tion through electromagnetic waves in a noncontact manner, 
provides the possibility of mapping nation-scale K. obovata.

Previous studies have focused on mangrove distribution, and 
some have attempted to identify and map local-scale mangrove 
species using various combinations of machine learning meth-
ods and diverse data sources [7–9]. These machine learning 
methods have varied forms, but their core is the same: determin-
ing decision boundaries in the designated feature space to mini-
mize classification errors based on training data. As a field of 
machine learning, deep learning also follows the criteria, with 
the difference that they automatically derive features from larger 
amounts of labeled samples [10].

Unmanned aerial vehicles (UAV) carrying various payloads 
have provided multispectral, hyperspectral, and light detection 
and ranging (LiDAR) data at the centimeter level and guarantee 
fine discriminability between mangrove species [11]. However, 
UAV-based mangrove species mapping is limited to local areas 
on account of the expenses associated with data collection and 
the high processing pressure of acquired data [12].

High-resolution commercial satellites provide image scenes 
with a width of more than 10 km, importantly improving the effi-
ciency of data acquisition, at the expense of a lower spatial resolu-
tion and limited payload. The acquired images typically have 

Citation: Zhao C, Jia M, Zhang R, 
Wang Z, Mao D, Zhong C, Guo X. 
Distribution of Mangrove Species 
Kandelia obovata in China Using 
Time-series Sentinel-2 Imagery for 
Sustainable Mangrove Management. 
J. Remote Sens. 2024;4:Article 
0143. https://doi.org/10.34133/
remotesensing.0143

Submitted 29 September 2023  
Accepted 27 March 2024  
Published 15 April 2024

Copyright © 2024 Mingming Jia et al.   
Exclusive licensee Aerospace 
Information Research Institute, 
Chinese Academy of Sciences. 
Distributed under a Creative 
Commons Attribution License 4.0 
(CC BY 4.0).

D
ow

nloaded from
 https://spj.science.org on A

pril 29, 2024

https://doi.org/10.34133/remotesensing.0143
mailto:jiamingming@iga.ac.cn
https://doi.org/10.34133/remotesensing.0143
https://doi.org/10.34133/remotesensing.0143
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.34133%2Fremotesensing.0143&domain=pdf&date_stamp=2024-04-15


Zhao et al. 2024 | https://doi.org/10.34133/remotesensing.0143 2

4 multispectral bands and a meter-level spatial resolution, such 
as IKONOS, GF-2, and ZY-3. Studies have applied these com-
mercial satellite images to map mangrove species and have con-
firmed that separability can be improved by using more spectral 
bands [13]. This was also proved by the emergence of applications 
that combined UAV-based payloads with such abovementioned 
multispectral images, even using the WorldView-2/3 with more 
than 8 spectral bands at a spatial resolution better than 0.5 m [14]. 
Consequently, applying these data to map mangrove species at a 
national scale still requires considerable cost and computational 
resources.

Medium-resolution satellites, which are freely accessible, have 
supported global-scale applications with the assistance of cloud 
computing platforms [15–17]. Regarding mangrove species 
mapping, efforts have been made to test the feasibility of using 
Sentinel-2, Landsat-8, and other data sources [18]. Sentinel-2 
has been employed for mapping mangrove species distribution 
because of its multiple narrow red-edge bands and rapid revisit 
cycle [12]. At a local scale, plant phenology has been incorpo-
rated through harmonic analysis of Sentinel-2 image time series 
to improve mapping accuracy [19]. However, the variability in 
plant phenology along latitudinal gradients hampers the gener-
alization of this approach to larger regional scales.

At the national scale, the median synthesis of Sentinel-2 image 
time series has been utilized for mapping the exotic mangrove 
species Sonneratia apetala in China [20]. The sensitivity of this 
mangrove species to chilling temperatures was used to determine 
the period for synthesis, and plant phenology was found to be 
dependent on latitude through case comparisons. This study 
obtained the first nation-scale distribution of a mangrove species; 
however, the approach may be difficult to generalize to other 
mangrove species, since native mangrove species have adapted 
to such temperature changes [21], especially to the mangrove 
species K. obovata which is tolerant to low temperatures.

An inspiration is that there may be a time period with 
higher separability because plant phenology is latitude-dependent 
[22,23]. The time period can be inferred through case areas 
in the southern and northern parts along latitudinal gra-
dients using a separability metric with its typically adjacent 
mangrove species. Moreover, another time period representing 
the senescence season could enhance discrimination between 
K. obovata and salt marshes, as the former is evergreen and the 
latter withers in winter. In summary, dual-temporal imagery, 
composed of a high-separability time period and a senescence 
season time period, has the potential to achieve a national-scale 
K. obovata map.

To solve the problem of varied plant phenology and insen-
sitivity to chilling temperatures in national-scale K. obovata, we 
proposed a new approach to map this mangrove species using 
dual-temporal Sentinel-2 imagery. This approach involves utiliz-
ing a high separability time period to distinguish it from typi-
cally adjacent mangrove species and a senescence season time 
period to differentiate it from salt marshes. The resulting 
K. obovata map of China can serve as a basis for monitoring man-
grove expansion, estimating species-level biomass and carbon 
storage, and regulating management practices and policies.

Materials and Methods

Study area
The coastal regions in China where mangroves are distributed, 
along with their 1-km buffer zones, were determined as the 

study area, spanning from 18°09′N to 28°25′N (Fig. 1). The 
monsoon climate characterizes the area, with an obvious rainy 
season with high temperatures and a dry season with low tem-
peratures. The dominance of the subtropical monsoon cli-
mate has facilitated the flourishing of cold-tolerant mangrove 
species, including K. obovata, due to winter air temperature 
extremes [24]. Moreover, human afforestation efforts have suc-
cessfully transplanted K. obovata from its natural northern limit 
to the more northern Yueqing Bay, which was previously occu-
pied by salt marshes [25,26].

The study object of this research is defined as a community 
vertically dominated by K. obovata in the upper canopy, in order 
to match the retrieved information from satellites. Although 
K. obovata is widespread, it is not always the dominant species 
in a region, as mangroves in China are characterized by wide-
spread pioneer mangrove communities [27]. From the perspective 
of mangrove succession, K. obovata dominated mangroves 
are categorized as having a middle succession stage [28].

Data sources
Sentinel-2 imagery was acquired by 2 polar-orbiting satellites and 
exhibited a revisiting cycle of 5 d at the equator. Ten multispectral 
bands are usually applied, encompassing 3 visual bands (B2, B3, 
and B4), 4 narrow bands (B5, B6, B7, and B8A), 1 near-infrared 
band (B8), and 2 shortwave infrared bands (B11 and B12). Among 
the bands, the visual and near-infrared bands offer a 10-m resolu-
tion, and the remaining bands with a 20-m spatial resolution were 
resampled for consistency. Google Earth Engine facilitates pro-
cessing because the surface reflectance product after preprocess-
ing (e.g., topographic correction and atmospheric correction) can 
be easily accessed and processed to extract time-series informa-
tion, and a cloud probability product was utilized to mask clouds 
and shadows.

To delineate the study area, a comprehensive map of China’s 
mangroves in 2019 was chosen as an auxiliary data source (http://
www.dx.https://doi.org/10.11922/sciencedb.00245). This map 
was derived from classification using Sentinel-1/2 and ALOS 
World 3D Digital Elevation Model (AW3D DEM) data and was 
carefully corrected using Google Earth images. After evaluation 
using 1,096 field sample plots implying mangrove survey exper-
tise, an accuracy rate of 96.7% was achieved. Applying this man-
grove map and its 1-km buffer zone as a constraint can improve 
the computational and correction efficiency.

Determining separability time period
Time period having higher separability with adjacent 
mangrove species
Plant phenology is ubiquitous for both deciduous plants in tem-
perate regions and evergreen plants in tropical regions [29]. 
Mangrove species, which have undergone parallel evolution, 
belong to diverse families and genera [30], resulting in variations 
in plant phenology. Consequently, the separability between 
K. obovata and the other mangrove species can change over time. 
The key to this research was to determine a time period with 
higher separability from adjacent mangrove species.

Separability can be measured by the Jeffries–Matusita (JM) 
distance, which qualifies the separability between class pairs 
[31]. The JM distance falls within the range of 0 to 2, with a low 
value indicating that the 2 classes may be confused using the 
current feature set. In contrast to previous research that applied 
JM distance to evaluate feature combinations [32,33], we utilized 
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this metric to measure the separability between pairs of man-
grove species using fixed samples and features.

Although latitudinal gradients along the narrow coast of 
China affect plant phenology, with varying temperatures, pre-
cipitation, and solar radiation, the time period can be inferred 
from at least 2 case areas. Considering the availability of man-
grove species maps involving K. obovata, the northern case area 
was set as the Zhangjiang Mangrove National Nature Reserve 
in Fujian Province, and the southern case area was assigned as 
the Maipo Nature Reserve in Hong Kong. The northern case 
area was mapped using UAV-based optical and LiDAR data 
[34], as well as medium-resolution Sentinel-2 time-series imag-
ery [19]. The southern case area integrated extremely detailed 
data sources, including multispectral imagery from a commer-
cial satellite from WorldView-3 and UAV-based hyperspectral 
and LiDAR data [35]. The result using WorldView-2 imagery 
and a deep-learning-based method was also referred to [36]. 
The resulting mangrove species maps were georeferenced and 
vectorized to acquire the intended pairs of K. obovata and the 
common co-occurrence of Avicennia marina and Aegiceras 
corniculatum.

Using randomly selected sample polygons, the JM distances 
between K. obovata and A. marina and between K. obovata and 
A. corniculatum were calculated for each scene of Sentinel-2 
imagery in 2020. The resulting JM distance time series showed 
different peaks and valleys in the northern and southern case 
areas. Considering the effects of clouds and shadows on optical 
imagery, we chose to perform a union operation to combine the 

peaks to augment the available Sentinel-2 imagery and finally 
determined the time period from 2020 April 13 to September 30. 
A median synthesis of these images during this time period was 
conducted to further reduce the impact of clouds and shadows.

Time period representing senescence season to eliminate 
salt marshes
The distribution of K. obovata partially overlapped with that of 
cold-tolerant salt marshes. Low-temperature stress drives this 
mangrove species to become dwarf shrubs, which are incon-
spicuous compared with flourishing salt marshes during the 
green-up season. Spartina alterniflora has invaded and rapidly 
expanded into dominant mangrove areas [37], which may also 
cause confusion between the 2 plant species in medium-
resolution imagery. Moreover, native salt marsh vegetation, such 
as Cyperus spp. and Phragmites spp., can also occur near man-
groves species [38]. To reduce interference from salt marshes, 
the time period between 2019 December 1 and 2020 March 1, 
when salt marshes were in dormancy, was chosen, and Sentinel-2 
imagery acquired during this time period was synthesized using 
a median quantile for later classification.

Classifying based on machine learning
Classification features
Classification features define the feature space for inferring the 
decision surfaces. For each synthesized image representing the 
time period, we derived 45 classification features (Table 1), 

Fig. 1.  Map of the study area (A). Pictures were taken during a field survey of (B) K. obovata at its natural northern limit and (C) an individual of K. obovata. The plots used the 
map with an approval number of GS(2024)0610 (D).
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including 10 image bands, 26 band ratios, and 9 typically used 
indices, as referenced in the literature [37,39,40].

We utilized the entire feature set for classification because 
feature selection methods tend to provide varied optimized fea-
ture sets, which is controversial for improving the classification 
accuracy. There is research advocating for improvement [41], 
while others argue that it does not typically enhance classifica-
tion accuracy [42], and others contend that the effect of feature 
selection is related to the classification scheme as well as regional 
characteristics [43]. The impact of the feature selection is dis-
cussed in Impacts of different feature selection methods.

Classification samples
1. Designing the classification scheme

The distribution of the training samples served as the founda-
tion for inferring a decision surface. In addition to the positive 
class K. obovata, the subclasses of the negative class should also 
be well-defined (Table 2). A. marina and A. corniculatum are 
mangrove species that typically co-occur with K. obovata; thus, 
they were emphasized by a large sample size. The emphasis was 

also applied to Sonneratia spp., which accounted for more than 
11% of the mangrove area. Bruguiera spp. and Rhizophora spp. 
were assigned slightly smaller sample sizes. Mangrove species 
with small areas or limited distributions, including Lumnitzera 
racemosa, Acrostichum aureum, Acanthus ilicifolius, Excoecaria 
agallocha, and Ceriops tagal, were merged into the other man-
grove subclasses. Outside the scope of mangrove species, non-
mangrove vegetation near water [44], as well as salt marshes, were 
also taken into consideration due to potential confusion during 
classification; the subclasses of water, tidal flat, buildup, and crop-
land were merged into other nonmangrove subclasses.

2. Collecting and augmenting training samples
The training samples were collected in reference to the result-

ing pictures in the literature [34,45–50] with a supplement of 
field surveys and mangrove expertise. Field surveys were con-
ducted between 2019 and 2023, encompassing areas such as 
Beihai in Guangxi Province, Gaoqiao in Guangdong Province, 
Fuding in Fujian Province, Hainan Province, and Shenzhen Bay. 
According to mangrove experts, K. obovata is the predominant 
mangrove species successfully introduced to a more northern 

Table 1. Features derived from each synthesized image representing the time period having higher separability with adjacent mangrove 
species or salt marshes. Note: SWIR indicates B11 and B12, and RE in an expression refers to B5, B6, and B7. The involved expressions were 
calculated using each band to obtain different results.

Types Expressions

Image bands B2, B3, B4, B5, B6, B7, B8A, B8, B11, B12

Band ratios B2/B4, B4/B2, B3/B4, B4/B3, B3/B8, B8/B3, B4/B5, B5/B4, B4/B8, B8/B4, B6/B5, B7/B4, B8/
B2, B8/B5, B8/B11, B11/B8, B8/B12, B12/B8, B5/B3, B6/B3, B7/B3, B8A/B3, B8A/B5, B11/B12, 
B12/B4, B12/B11

Index features NDVI =
B8− B4

B8+ B4
NIRv = B8 ∗

(

B8− B4

B8+ B4

)

NDRE =
B8−RE

B8+ RE

LSWI =
B8− SWIR

B8+ SWIR
EVI =

B8− B4

B8+ 6 ∗ B4− 7.5 ∗B2+ 1
PSRI =

B4− B2

B6

Table 2. The classification scheme in this research

Class Subclass Sample size Description

Positive class Kandelia obovata 1,000 Woody vegetation in the form of trees and sometimes in shrubs in 
an unsuitable climate

Negative class Avicennia marina 150 Typically co-occurred with the target

Aegiceras corniculatum 150 Typically co-occurred with the target

Sonneratia spp. 150 Widespread in mangroves

Bruguiera spp. 75 Sometimes co-occurred with the target

Rhizophora spp. 75 Sometimes co-occurred with the target

Other mangroves 100 Including Lumnitzera racemosa, Acrostichum aureum, Acanthus 
ilicifolius, Excoecaria agallocha, and Ceriops tagal

Nonmangrove vegetation 
near water

100 Referring woody vegetation in the edge of near water bodies and 
tend to be misclassified as mangroves

Salt marsh 100 Halophytic vegetation in the form of herbs, grasses, and low shrubs

Other nonmangroves 100 Including water, tidal flat, buildup, and cropland
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area than its natural northern limit. Regarding the time lag 
between the literature and the study period, we utilized visual 
checks and corrections based on Google Earth pictures to remove 
the changed or misclassified sample points.

The priori designed classification scheme and the collected 
training samples were put into the classification method to 
retrieve an initial classification result, which may have con-
tained substantial cognitive biases because this research was 
the first attempt to map K. obovata. We interpreted the classi-
fication results and collected false-positive pixels to further 
augment the training samples. The procedure was iterated until 
the classification result converged, with the help of visual judge-
ment. The final training samples consisted of 2,600 positive 
samples and 5,200 negative samples, which is consistent with 
the small proportion of K. obovata.

The priori designed classification scheme and training sam-
ple composition provided details of the starting position for 
the iteration and assisted in the reproduction of the research 
results. For the training sample composition after the iteration, 
an interpretation requires precise mangrove species distribu-
tion maps that are not currently available. This is beyond the 
scope of this study.

Classification method
The random forest (RF) algorithm was used to identify K. obovata 
using the provided features and training samples because of its 
wide application and high computational efficiency in land cover 
classification [51]. The Google Earth Engine served as the plat-
form for executing the RF classifier with the hosted Sentinel-2 
time-series images as the input. Adhering to Belgiu and Drăguţ 
[51], the number of decision trees was constrained to 500, 
whereas the number of input features randomly selected at each 

node was determined to be 7 using the randomForest package in 
the local R environment.

Deep learning methods were not selected because of the 
scarcity of training patches at the national scale. Compared 
with sample points, training patches require detailed boundaries 
to separate K. obovata from other land cover types, which is 
more challenging than determining the presence of K. obovata 
at a location point. The results of this research can provide 
boundaries to support the development of deep-learning-based 
identification of K. obovata.

Postprocessing the classification result  
of K. obovata
The classification result requires further correction through 
postprocessing, which is a typical procedure in studies map-
ping mangrove distribution [44]. Moreover, postprocessing is 
required because of the challenge in mapping mangrove spe-
cies, as these mangrove species share similar environmental 
characteristics [7,52].

The postprocessing consisted of 3 steps. First, northern man-
groves located nearby or beyond the natural northern limit were 
assigned as K. obovata to reduce omission errors, as these patches 
are always in small areas due to climate constraints and can 
hardly be identified through classification alone [53]. Second, 
the remaining patches were processed with reference to the adja-
cent large-area patches when they had lower uncertainty. Finally, 
the postprocessed results were reviewed in cooperation with 
mangrove experts to refine the mapping results further. The 
abovementioned postprocessing served as a guarantee for the 
validity of the produced map.

The workflow for mapping K. obovata based on dual-temporal 
Sentinel-2 imagery is shown in Fig. 2.

Fig. 2. Workflow for mapping K. obovata based on dual-temporal Sentinel-2 imagery.
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Evaluations
The generated K. obovata map was evaluated using a validation 
dataset. We collected 759 positive samples and an equal number 
of negative samples through independent random sampling 
(Fig. 3A; sampling was not limited to the study area to ensure 
a more comprehensive evaluation). These sample points were 
not used for classification. Based on the constructed confusion 
matrix, the overall accuracy (OA) was employed to evaluate 
the accuracy of the generated map, and the metrics of the pro-
ducer’s accuracy and user’s accuracy were also analyzed.

Qualitative comparisons were also performed using these 2 
case areas (Fig. 3B and C). In addition to the 2 studies used for 
calculating separability between K. obovata and its common co-
occurring mangrove species [19,35], we also acquired results 
using UAV-based optical and LiDAR data and the maximum 
likelihood classification method in the Zhangjiang Mangrove 
National Nature Reserve [34], as well as results obtained using 
commercial satellite imagery from WorldView-2 and a deep learn-
ing method [36]. These comparisons provide further detailed infor-
mation on the generated map.

Results
The generated map shows that K. obovata was widespread in 
the study area (Fig. 4). The statistics showed that the total area 
of K. obovata in China for 2020 was 1,199 ha, among which 
Fujian Province has the largest area of mangrove species, 

followed by Hong Kong and Guangdong provinces. This also 
indicates that, although K. obovata can occur in various regions, 
only a few of them become dominant species occupying the 
upper canopy.

Based on the independently collected evaluation sample 
points, the generated national-scale K. obovata map achieved 
an OA value of 88.5% (Table 3). Specific to the mangrove 
species, the accuracy of patches annotated as K. obovata in 
the thematic map was 98.2%. However, the misclassification 
of K. obovata as another land cover type is key to further 
improve the OA value in future research.

Qualitative comparisons showed that the maps were gener-
ally consistent, although some differences were still present 
(Fig. 5). In the northern case area, the local map based on UAV 
captured more patches than the one using Sentinel-2 time-
series imagery, while the generated national-scale map may 
have misclassified some other mangrove species as K. obovata. 
In the southern area, Li et al. [35] provided a mixed class of K. 
obovata and A. ilicifolius in addition to the target mangrove 
species. Considering that A. ilicifolius is a spiny semiwoody 
evergreen shrub that lacks a height advantage [54], observa-
tions from satellites may primarily capture the dominant 
canopy signals of K. obovata. Consequently, the local map 
based on similar high-spatial-resolution imagery incorporated 
the mixed class into K. obovata. The generated national-scale 
map achieved consistent results in the case area, which had 
large patches of K. obovata.

Fig. 3. Distribution of independently collected sample points for evaluating the generate map (A). Qualitative comparisons were executed using (B) the northern case area 
and (C) the southern case area, with the background using true-color Google Earth images. The plots used the map with an approval number of GS(2024)0610.
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In summary, both quantitative and qualitative evaluations 
indicate that the generated map provides details on the national-
scale distribution of K. obovata. Therefore, the research achieved 
the objective to make the first attempt on mapping this man-
grove species at a national scale.

Discussion

Advantages of the approach
Mangroves are evergreen communities that thrive in harsh envi-
ronments characterized by tidal inundation and muddy anaero-
bic soils, leading to low intraclass separability. The latitudinal 
gradients along the coast of China result in changes in phenology 
[22], causing high interclass variability. Combined with the fact 
that harsh environments limit the acquisition of sufficient sam-
ples, classification of mangrove species is challenging.

In local areas, the application of UAVs to map mangrove 
species is gaining attention from researchers [11,34], as they 
can collect high-quality sample points by controlling the purity 

Fig. 4. The generated map of K. obovata in China for 2020. The details of its spatial distribution are shown in (A) to (C), and the area proportions for each provincial administrative 
region are in (D). The plots used the map with an approval number of GS(2024)0610.

Table 3. Confusion matrix of the generated K. obovata map in 
China for 2020

Reference

Kandelia 
obovata

Non-Kandelia 
obovata

User’s  
accuracy

Kandelia 
obovata

595 11 98.2%

Non-Kandelia 
obovata

164 748 82.0%

Producer’s 
accuracy

78.4% 98.6%

Overall 
accuracy

88.5%
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of selected image pixels [19] and improve the separability among 
mangrove species with diverse payloads [35]. However, UAVs 
have limitations in addressing latitudinal gradients that exhibit 
large latitudinal spans. In larger areas, satellite-derived infor-
mation for a given mangrove species, such as spectral bands 
and normalized difference vegetation index (NDVI) time series, 
is changing at different latitudes [20]. These variations lead to 
a loose decision surface that may include other land cover types 
in the target mangrove species during prediction.

The proposed approach attempted to utilize the change in 
separability caused by latitudinal gradients and explored the 
separability between K. obovata and its typically co-occurring 
mangrove species, A. marina and A. corniculatum (Table 4). 
For each pair of mangrove species, the northern case area had 
a larger separability than the southern case area in terms of J-M 
distance. The K. obovata and A. marina pairs were easier to 
distinguish than the other pairs in both case areas. The deter-
mined time period also contained image scenes with low sepa-
rability, due to differences in mangrove species pairs and the 
requirement for a large time span to reduce the effects of clouds 
and shadows on the optical imagery.

Determining a time period with high separability from the 
target and its typically co-occurring mangrove species requires 
a denser time series of optical images, as the number of available 
images is severely affected by clouds. The chosen time period 
in this study overlapped with rainy days in the tropical and 
subtropical monsoon climates. Sentinel-1 synthetic aperture 

radar imagery is worth further exploration because of its toler-
ance to cloud cover.

Impacts of different feature selection methods
Three types of methods have been summarized in the field 
of feature selection: filter, wrapper, and embedded methods 
[55,56]. Filter methods evaluate features based on certain cri-
teria, such as mutual information, and are thus independent 
of the classification algorithms. Wrapper methods rely on clas-
sification algorithms to judge the performance of potential 
feature combinations generated by diverse search strategies, 
such as genetic algorithms. Regarding the embedded methods, 
feature selection was integrated into the classification algo-
rithm training phase, such as the feature importance metric 
of a trained RF.

One typical feature selection method was randomly selected 
from each type, that is, the mutual-information-based method, 
genetic-algorithm-based method, and RF-based method, to 
retrieve optimized features. We normalized the derived mutual 
information value, the occurring frequency of a feature, and 
feature importance to a range of 0 to 100, and plotted the top 
15 features for comparison (Fig. 6). The rankings of the plotted 
features were quite different for each method. The first method 
supported that features derived from the time period having 
higher separability with adjacent mangrove species were more 
informative for classification. The second method emphasizes 
band ratios derived from near-infrared and short-wave infrared 

Fig. 5.  Comparison of the generated national-scale map with accessible local maps in selected case areas (A to F). The red polygon represents K. obovata, while the green is 
the mixed K. obovata and A. ilicifolius.
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bands, while the third method emphasizes the features derived 
from the red-edge and short-wave infrared bands.

The top 15 features selected by the different feature selection 
methods were applied to retrieve the classification results using 

the RF algorithm (Fig. 7). The results were generally consistent 
for large patches; however, the details varied with different fea-
ture combinations. Therefore, we used the entire feature set to 
against the variations resulting from feature optimizations.

Table 4. Separability between K. obovata and its typically co-occurred mangrove species of A. marina and A. corniculatum. Note: The north-
ern and southern case areas are denoted by N and S, respectively. The image scenes within the determined time period are shown in italics, 
and the highest J-M distance values for each row are in bold.

J-M distance

K. obovata 
versus  
A. marina

N Jan 14 Feb 18 Mar 22 Apr 13 May 13 Jun 17 Jul 12 Aug 24 Sep 20 Oct 18 Nov 22 Dec 22

1.73 1.58 0.91 1.83 1.39 1.96 1.98 1.91 1.80 1.59 1.70 1.73

S Jan 15 Feb 19 Mar 15 Apr 9 May 4 Jun 23 Jul 18 Aug 22 Sep 30 Oct 26 Nov 25 Dec 30

1.17 1.30 1.36 1.17 0.85 0.77 1.51 1.83 1.49 0.59 0.65 1.17

K. obovata 
versus  
A. cornicula- 
tum

N Jan 14 Feb 18 Mar 22 Apr 13 May 13 Jun 17 Jul 12 Aug 24 Sep 20 Oct 18 Nov 22 Dec 22

0.83 1.53 1.09 1.74 0.81 1.83 1.60 1.22 1.48 1.47 0.72 0.86

S Jan 15 Feb 19 Mar 15 Apr 9 May 4 Jun 23 Jul 18 Aug 22 Sep 30 Oct 26 Nov 25 Dec 30

1.26 0.80 0.75 0.62 1.08 1.20 1.36 0.87 1.31 0.51 1.19 0.78

Fig. 6. The top 15 features using different feature selection methods (A to C). Features derived from the time period having higher separability with adjacent mangrove species 
are denoted with a suffix of _h, while those derived from the time period representing senescence season are denoted with a suffix of _s.
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Limitations of the attempt to map national-scale  
K. obovata
As a first attempt to map K. obovata on a national scale, the 
resulting thematic map had some limitations. Compared with 
the results derived from high-spatial-resolution images [34–36] 
or those collected from UAV-based imagery [19], the results of 
this research may incorporate mixed samples with more than 
1 mangrove species, leading to some exaggerated patches, espe-
cially at the edges (Fig. 8E and J). However, these results were 
not always consistent at the edges (Fig. 8B, G, and I), causing 
difficulties in accurate evaluation. This exaggeration may also 
result from a lack of adversarial samples representing other nearby 
mangrove species. Tuning the training samples based on this 
study is worth further exploration.

Although the mangrove map was used to define the extent 
of the study area, the thematic map was independent of the 
mangrove distribution map. For example, the identified man-
grove area in Zhejiang province was 66.3 ha with a dominance 
of K. obovata, while the thematic map only captured 28.6 ha 
of it. This is because small patches were not well reflected by 
Sentinel-2 imagery, and later postprocessing only partly cor-
rected the omission errors. Various factors can affect the appear-
ance of a mangrove species, such as density, height, and health 
status, leading to hesitation in repairing omission errors. This 
problem would be alleviated if the distributions of A. marina 
and A. corniculatum were available, since these 3 mangrove spe-
cies dominate the northern area.

Distribution patterns of K. obovata in China revealed 
by the generated map
On the basis of the generated map, the distribution patterns of 
K. obovata and its hot spots were analyzed using kernel density 
estimation (Fig. 9), which is a typical method for estimating 
the density of features within a bandwidth [57]. In addition to 
patch occurrence, area-weighted patch occurrence was ana-
lyzed to emphasize large K. obovata patches. The identified 
areas with a high distribution density were extracted, and 
K. obovata patches associated with those areas were mapped 
to show their actual distribution.

According to this analysis, 5 regions having a high density 
of patch occurrences with or without area weights were identi-
fied. Fujian province had the largest number of K. obovata 
patches (Fig. 9C), and its center was the Jiulong River Estuary 
for area-weighted patch occurrence (the identified patches in 
Luoyang River Estuary were fragmented; thus, the place became 
a center for patch occurrence). Shenzhen Bay has the largest 
area of K. obovata, including the Futian and Maipo Nature 
Reserves (Fig. 9D). The Tamsui River Estuary, characterized by 
a large population of K. obovata [58], was also identified using 
a thematic map (Fig. 9E). The Zhenhai Bay Reserve had more 
K. obovata patches (Fig. 9F), while its neighboring Yangjiang 
Port had larger areas of K. obovata, shifting the center for area-
weighted patch occurrence.

Compared with the mangrove species occurrence dataset 
[59], the generated map can provide more updated, detailed, 

Fig. 7. Identified patches of K. obovata using the selected top 15 features by different feature selection methods (A to F).

D
ow

nloaded from
 https://spj.science.org on A

pril 29, 2024

https://doi.org/10.34133/remotesensing.0143


Zhao et al. 2024 | https://doi.org/10.34133/remotesensing.0143 11

and precise information on this mangrove species. The analysis 
not only retrieved the typical distribution of K. obovata but 
also benefited the assessment of suitable habitats for mangrove 
restoration.

Implications for sustainable mangrove management
Mangroves in China are under strict management of govern-
ment. Since the 1990s, a series of laws and regulations have been 
formulated to protect mangroves and their habitats [60]. With 
the shift from the occupied area to its ecological restoration, 
there is an acute need for mangrove species distribution due to 
their varied characteristics in hydrological conditions, salinity 
tolerance, morphology, biomass, etc. After the Special Action 

Plan for Mangrove Protection and Restoration (2020–2025), 
the Technical Guide for Marine Ecological Restoration (Trial) 
was issued in 2021 [61], which emphasizes the use of native 
mangrove species including K. obovata. This study provides the 
first national-scale distribution of mangrove patches dominated 
by K. obovata and compensates field survey and experiment to 
determine the appropriate for planted seedlings and suitable 
planting sites along the coast.

Mangrove species are tightly linked to their health status, 
which serve as the foundation for sustainable mangrove man-
agement. Each mangrove species has specific diseases and pests, 
with damage often an exacerbated in large monographic patches 
[62]. For example, Diaspididae primarily infest the leaves of 

Fig. 8. Examples of inconsistent details for the 2 selected case areas (A to J). The mixed K. obovata and A. ilicifolius class in Li et al. [35] was merged into K. obovata in reference 
to Wan et al. [36].
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K. obovata during certain time periods. By integrating remote 
sensing and big data techniques, diseases and pests can be 
monitored, recorded, and predicted. Manual interventions, 
such as biological control, physical traps, and some chemical 
solutions, can prevent further degradation or mortality of certain 
mangrove species. Moreover, mangrove species have diverse 
morphology in roots, stems, and leaves, and stress monitoring 
should also be carried out for each species to account for spe-
cies-specific effects [63]. The mangrove species distribution data 
is necessary for monitoring the health of specific mangrove 
species.

Engaging local communities is the key to sustainable man-
grove management. Mangroves can provide resources such as 
honey and seafood, ecosystem services such as shoreline 

stabilization and carbon sequestration, as well as employment 
opportunities such as raising seedlings, planting, and patrolling 
mangroves. However, different mangrove species exhibit their 
characteristics. For instance, A. corniculatum is a good source 
of honey; Rhizophora stylosa has well-developed prop root to 
dissipate wave energy. Areas with concentrated distributions 
of a specific mangrove species can explore new ways to utilize 
them with high added value, such as ecological farming and 
ecotourism. Fragmented mangroves also contribute positively 
to local biodiversity, as ecosystem services respond nonlinearly 
to habitat size. Consequently, the K. obovata at its northern 
limit also holds significant values. The characteristics can be 
considered in natural resource accounting for mortgages. The 
transfer payments and the blue carbon trading market in China 

Fig. 9. Distribution patterns of K. obovata and its hot spots in China revealed by the generated map. The kernel density estimation is used to extract distribution patterns for 
(A) patch occurrence and (B) area-weighted patch occurrence, while the bandwidth is determined using a spatial variant of Silverman's rule of thumb. Dimensionless density 
values were represented using a color ramp (C to F). The plots used the map with an approval number of GS(2024)0610.
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can also bring additional revenue for local government [64]. 
Incorporating a detailed distribution of mangrove species can 
guarantee a reliable estimation of mangrove values. In 2021, a 
mangrove comanagement project was jointly launched by the 
Zhanjiang Mangrove National Nature Reserve Administration, 
the Society of Entrepreneurs and Ecology Foundation, and 
the Mangrove Foundation. This project attempts to incorporate 
local communities in decision-making and responsibility shar-
ing. Similar to existing projects, social, economic, and ecologi-
cal trade-offs worth further attentions for the implementation 
of sustainable mangrove management [65–67].

To solve the problem of limited generalizability of existing 
mangrove species mapping approaches along large latitudinal 
gradients, we took K. obovata in China as an example and pro-
posed an approach to determine the separability time period 
based on J-M distance to distinguish it from its typically adja-
cent mangrove species. Separability was further enhanced using 
senescence images to eliminate the neighboring salt marshes. 
The resulting map achieved an OA value of 88.5%, and a quali-
tative comparison showed that the generated map was generally 
consistent with those derived from the local-scale results. The 
statistics showed that the total area of K. obovata in China for 
2020 was 1,199 ha, and more than 92% of them were distrib-
uted in Fujian, Guangdong, Hong Kong, and Taiwan. Further 
analysis using kernel density estimation identified typical dis-
tribution areas of this mangrove species at the bay scale and 
found that Shenzhen Bay had the largest K. obovata area of 
336.5 ha that mainly distributed in the Futian and Maipo 
Nature Reserves.

To the best of our knowledge, this study is the first attempt 
to map the nationwide distribution of K. obovata, which has the 
largest latitudinal span and tolerance to low temperatures in 
China. We also conducted the first national-scale analysis of 
spatial distribution patterns and hot spots when local-scale stud-
ies could not supply such information. The proposed approach 
has the potential to be applied to other mangrove species along 
latitudinal gradients, as local studies were sufficient to support 
the calculation of the separability metric J-M distance. The gen-
erated map is indispensable for species-specific applications in 
mangrove ecology and management.

In the future, the focus will be on optimizing the training 
samples to incorporate more adversarial samples that represent 
other nearby mangrove species. Such optimization may result 
in a more precise and consistent mangrove species map for 
studying its distribution, biomass, carbon storage, and other 
related ecosystem services.
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