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Abstract

Long non-coding RNAs (lncRNAs) play essential roles in various biological processes, such as chromatin remodeling, post-transcriptional
regulation, and epigenetic modifications. Despite their critical functions in regulating plant growth, root development, and seed
dormancy, the identification of plant lncRNAs remains a challenge due to the scarcity of specific and extensively tested identification
methods. Most mainstream machine learning-based methods used for plant lncRNA identification were initially developed using
human or other animal datasets, and their accuracy and effectiveness in predicting plant lncRNAs have not been fully evaluated or
exploited. To overcome this limitation, we retrained several models, including CPAT, PLEK, and LncFinder, using plant datasets and
compared their performance with mainstream lncRNA prediction tools such as CPC2, CNCI, RNAplonc, and LncADeep. Retraining these
models significantly improved their performance, and two of the retrained models, LncFinder-plant and CPAT-plant, alongside their
ensemble, emerged as the most suitable tools for plant lncRNA identification. This underscores the importance of model retraining in
tackling the challenges associated with plant lncRNA identification. Finally, we developed a pipeline (Plant-LncPipe) that incorporates an
ensemble of the two best-performing models and covers the entire data analysis process, including reads mapping, transcript assembly,
lncRNA identification, classification, and origin, for the efficient identification of lncRNAs in plants. The pipeline, Plant-LncPipe, is
available at: https://github.com/xuechantian/Plant-LncRNA-pipline.

Introduction
Long non-coding RNAs (lncRNAs) are RNA molecules longer than
200 nucleotides in length and do not encode proteins. Although
they were initially thought to be transcriptional noise, recent
research has uncovered that lncRNAs play crucial roles in a
variety of biological processes, such as transcriptional regulation,
chromatin remodeling, and RNA splicing [1, 2]. In plants, lncRNAs
have been found to regulate plant growth and development,
chromatin modification, and responses to environmental stresses
[3, 4]. Consequently, the identification of lncRNAs in plants is vital
for unraveling the molecular mechanisms underlying numerous
biological processes. Although several lncRNA prediction meth-
ods currently exist, most of them were developed using human
or other animal datasets, making it challenging to accurately
identify lncRNAs in plants. Despite these challenges, two main
strategies have recently been employed to identify and anno-
tate lncRNAs in plant species. One strategy involves the use of
comparative genomics to identify conserved non-coding regions

[5]. Another strategy employs machine learning algorithms to
classify transcripts based on their sequence and structural fea-
tures, evidenced by the development of computational tools for
lncRNA identification, such as CPC2 [6], CNCI [7], CPAT [8], PLEK
[9], LncADeep [10], and LncFinder [11]. These tools utilize machine
learning algorithms based on features such as open reading frame
(ORF) length, codon usage bias, and support vector machine k-mer
frequencies to distinguish lncRNAs from protein-coding RNAs.
CPC2, CNCI, LncFinder, and PLEK use a support vector machine
(SVM) model to calculate the coding potential of transcripts, while
CPAT employs a logistic regression model to differentiate coding
and non-coding transcripts. LncADeep is a computational tool
that uses deep learning algorithms for lncRNA identification [10].

Nonetheless, most of these tools were trained using human
or other animal datasets, and the potential benefits of retrain-
ing with plant data have not been explored. While there are
specialized software tools for plant lncRNA identification, like
RNAplonc [12], PLncPRO [13], and CREMA [14], due to the limited
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Table 1. . Number of lncRNAs and mRNAs in the training set for model construction.

Dataset Species
lncRNA (GreeNC/PlanDB)

mRNA (Phytozome)
High confidence Validated

Training Arabidopsis thaliana 1697 149 1846
Cucumis sativus 1792 13 1805
Glycine max 1797 1 1798
Oryza sativa 1770 40 1810
Solanum lycopersicum 1800 19 1819
Populus trichocarpa 1784 18 1802

Table 2. Number of lncRNAs and mRNAs in the test set for model evaluation.

Test dataset Species
lncRNA mRNA

(Phytozome/Ensembl
Plants)CANTATAdb GreeNC PlncDB

Angiosperms

Ananas comosus 3000 3000 3000 9000
Amborella trichopoda 3000 3000 3000 9000
Arabidopsis thaliana 3000 3000 3000 9000
Brachypodium distachyon 3000 3000 3000 9000
Cucumis sativus 1929 1929 1929 5787
Glycine max 3000 3000 3000 9000
Manihot esculenta 2655 2655 2655 7965
Medicago truncatula 3000 3000 3000 9000
Musa acuminata 2988 2988 2988 8964
Oryza sativa 2600 2600 2600 7800
Populus trichocarpa 3000 3000 3000 9000
Solanum lycopersicum 3000 3000 3000 9000
Sorghum bicolor 2600 2600 2600 7800
Vitis vinifera 2974 2974 2974 8922
Zea mays 3000 3000 3000 9000

Algae

Chlamydomonas reinhardtii 619 619 0 1238
Coccomyxa subellipsoidea 668 668 0 1336
Micromonas pusilla 640 640 0 1280
Volvox carteri 1088 1088 0 2176

Bryophyte Physcomitrella patens 5000 5000 0 10 000

range of users used, their capacity to accurately identify the
majority of plant lncRNAs still requires further validation. As a
result, enhancing the accuracy and comprehensiveness of plant
lncRNA prediction and determining the most fitting plant lncRNA
prediction software necessitates further investigation. In addition,
retraining mainstream models and developing ensemble methods
are valuable to further improve plant lncRNA prediction.

In this study, we retrained the models of three widely used
lncRNA identification methods, LncFinder, CPAT, and PLEK,
with well-curated plant data and assessed their performance
against the original models. Furthermore, we compared the
retrained models with other popular lncRNA identification
methods, including CPC2, CNCI, LncADeep, and RNAplonc.
Based on the existing literature, RNAplonc outperforms other
plant lncRNA identification software [12], so we chose it as
the representative in our benchmarking. Our retrained models
exhibited significant improvements, and the retrained versions of
LncFinder and CPAT, LncFinder-plant and CPAT-plant, outperform
other computational tools in plant lncRNA prediction. Ultimately,
we implemented a pipeline (Plant-LncPipe) comprising these two
models to carry out all essential steps in lncRNA identification
and characterization.

Results
Retraining the CPAT, LncFinder, and PLEK models
for plant lncRNA identification
To enhance the quantity and accuracy of plant lncRNA iden-
tification, we retrained the models developed in LncFinder,
CPAT, and PLEK using six plant datasets (Table 1) and eval-
uated their classification performance on 20 plant species,
including 15 angiosperms, 4 algae, and 1 bryophyte (Table 2).
We employed sensitivity, specificity, accuracy, precision, F1-
score, and ROC–AUC metrics to assess the performance of
these models. The results for CPAT indicated that the retrained
model demonstrated significantly higher sensitivity, precision,
accuracy, and F1-score compared with the original human and
mouse models (Fig. 1A, Supplementary Data Tables S1 and S2).
Moreover, the enhanced performance of the retrained CPAT
model (CPAT-plant) is further underscored by the improved
area ROC (receiver operating characteristic) curve and AUC
(area under the curve) values in comparison with the original
model (Figs 1A and 2A, Supplementary Data Fig. S1). Further-
more, 10-fold cross-validation of CPAT-plant on the training data
demonstrates the robust optimization of CPAT for plant lncRNA
identification through retraining (Supplementary Data Table S3).
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Figure 1. Evaluation of retrained models using data sets from 20 plant species. A Performance comparison of the retrained model (CPAT-plant) and the
original models (CPAT-mouse and CPAT-human) of CPAT in terms of sensitivity, accuracy, precision, specificity, F1-score, and AUC. B Performance
comparison of the retrained model (LncFinder-plant) with the original models (LncFinder-mouse, LncFinder-human, and LncFinder-wheat) of
LncFinder in terms of sensitivity, accuracy, precision, specificity, F1-score, and AUC. C Performance comparison of the retrained model (PLEK-plant)
and the original model (PLEK-human) of PLEK in terms of sensitivity, accuracy, precision, specificity, F1-score, and AUC.

Our results also demonstrate that the retrained LncFinder
model (LncFinder-plant) outperforms the original models devel-
oped using mouse, wheat, and human training data. The
LncFinder-plant model exhibits higher sensitivity, precision,
accuracy, specificity, and F1-score on 20 test datasets when
compared with these original models (Fig. 1B, Supplemen-
tary Data Tables S4 and S5). The ROC curve and AUC value
of the LncFinder-plant model displayed enhanced performance
compared with the default models (LncFinder-human, LncFinder-

mouse, and LncFinder-wheat), suggesting a better trade-off
between sensitivity (true positive rate) and specificity (false
positive rate) (Figs 1B and 2B, Supplementary Data Fig. S2). The
results of the 10-fold cross-validation analysis further support
the superior classification performance of the LncFinder-
plant model (Supplementary Data Table S6). Especially on
algae, CPAT-plant and LncFinder were significantly higher in
accuracy, sensitivity, and F1 score than the default models
(Fig. 1A and B).
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Figure 2. ROC curves of the retrained and original models on datasets from 20 plant species. A ROC curves of the retrained CPAT-plant model and its
comparison with the original models for human and mouse. B ROC curves of the retrained LncFinder-plant model and comparison with the original
models for human, mouse, and wheat. C ROC curves of the retrained PLEK-plant model and its comparison with the original model for human.

We next assessed the performance of the retrained PLEK model
(PLEK-plant). Our findings revealed that, unlike CPAT-plant and
LncFinder-plant, the sensitivity of the retrained PLEK model
(PLEK-plant) decreased (Fig. 1C, Supplementary Data Tables S7
and S8). However, PLEK-plant exhibited enhanced specificity,
precision, and accuracy (Fig. 1C). Moreover, the higher AUC
value and better ROC of PLEK-plant also demonstrate that
the performance of the retrained model is superior to the
original (Figs 1C and 2C, Supplementary Data Fig. S3). Thus,
although the sensitivity of PLEK-plant was diminished rel-
ative to the original model, its enhanced performance in
other metrics suggests that the retrained model provides
a more balanced and reliable approach for plant lncRNA
identification.

Benchmarking lncRNA identification tools
We conducted a comparative analysis of the retrained models’
performance against CNCI, CPC2, LncADeep, and RNAplonc
using datasets from 20 plant species. Our results revealed
that LncFinder-plant displayed the highest levels of sensitivity,
accuracy, precision, F1-score, and AUC values, with CPAT-plant
ranking as the second best performer in these evaluation
metrics (Fig. 3A, Supplementary Data Tables S9–S11). Among
the 20 test datasets, LncFinder-plant exhibited the highest
performance on ROC curves, followed closely by CPAT-plant,
indicating their superior performance compared with other
software (Fig. 3B). Although the retrained model PLEK-plant
exhibited improvement in predicting lncRNA, its performance
was subpar compared with other methods (Figs 3 and 4), making
it less competitive compared with CPAT-plant and LncFinder-
plant. Despite its recent development and notable performance,
RNAplonc falls behind both CPAT-plant and LncFinder-plant in
terms of sensitivity, specificity, accuracy, F1-score, and ROC curve
and AUC values. (Figs 3 and 4, Supplementary Data Table S11).
While certain software tools display high specificity, such
as LncADeep and CPC2, their overall efficacy in accurately
identifying lncRNAs in plants is often limited due to lower scores
in other crucial metrics (Fig. 3, Supplementary Data Table S11).
Therefore, we recommend CPAT-plant and LncFinder-plant as
the most effective tools for detecting plant non-coding RNAs,
owing to their superior performance in various evaluation
metrics.

Reverse validation with animal data
To validate the suitability of the retrained plant models for CPAT
and LncFinder, we performed a reverse validation using animal
datasets (Homo sapiens, Mus musculus, and Drosophila melanogaster)
as negative controls (Supplementary Data Table S12). For the
CPAT model, we observed that the CPAT-plant model performed
poorly on animal datasets compared with the models trained
with mouse (CPAT-mouse) and human (CPAT-human) datasets
(Supplementary Data Table S12). For instance, the CPAT-mouse
model, when applied to mouse data, exhibits a sensitivity of
94.40%, a specificity of 97.71%, an accuracy of 96.04%, a precision
of 97.63%, and an F1 score of 95.99%. Conversely, the CPAT-plant
model shows comparatively lower performance metrics in plant
data, with a sensitivity of 91.88%, a specificity of 96.69%, an
accuracy of 94.27%, a precision of 96.52%, and an F1 score of
94.14% (Supplementary Data Table S12). Similar patterns were
observed for the D. melanogaster and H. sapiens datasets. Addition-
ally, the ROC curves and AUC values revealed that the original
models consistently outperform the CPAT-plant model across the
three animal datasets (Supplementary Data Fig. S4A, Supplemen-
tary Data Table S12), providing further evidence that the plant
dataset is not suitable for animal lncRNA prediction. Likewise,
LncFinder-plant also exhibited lower sensitivity, specificity, accu-
racy, precision, and F1-score for the animal datasets. For example,
in the mouse dataset, the original LncFinder model (LncFinder-
mouse) demonstrated higher sensitivity, specificity, accuracy,
precision, and F1-score values of 94.99%, 96.73%, 95.87%, 96.68%,
and 95.82% respectively, compared with the LncFinder-plant
model, which had values of 91.45%, 95.53%, 93.50%, 95.34%, and
93.35% (Supplementary Data Table S13). The ROC curves and
AUC values further supported the result that the retrained model,
LncFinder-plant, is suboptimal for animal datasets (Supplemen-
tary Data Fig. S4B, Supplementary Data Table S13). Therefore,
although these plant models demonstrate some effectiveness on
animal datasets, their performance is not as strong as the original
models that were specifically designed for animal data.

These reverse validation results provide compelling evidence
that the plant-specific models, CPAT-plant and LncFinder-
plant, are more suitable for lncRNA identification in plant
datasets. Therefore, our study demonstrates the necessity for
specialized models tailored to specific species and emphasizes
the importance of using appropriate models for accurate lncRNA
identification.
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Figure 3. Performance evaluation of seven lncRNA identification tools in terms of sensitivity, accuracy, precision, specificity, F1-score, and AUC on
datasets from 20 plant species.

An ensemble approach further improves
performance of lncRNA prediction
Our results revealed that the retrained CPAT-plant and LncFinder-
plant models were the top two performers in accurately
predicting plant lncRNAs. Given that a single software may
not provide sufficient stringency for lncRNA identification,
we employed an ensemble approach incorporating both high-
performing models, CPAT-plant and LncFinder-plant, to identify
lncRNAs in plant species. The results demonstrated that the
ensemble method exhibited higher precision across all 20
transcript datasets, consistently showcasing lower error rates
(Supplementary Data Table S14). For example, the precision
of lncRNA identification increased from 93.58% and 92.15% to
94.20% when implementing the ensemble method (Supplemen-
tary Data Table S14), resulting in a decrease in error rates from
6.42% and 7.58% to 5.80% for Amborella trichopoda compared with
the utilization of CPAT-plant and LncFinder-plant individually
(Supplementary Data Table S14). Therefore, our study demon-
strated that employing an ensemble of CPAT-plant and LncFinder-
plant is an effective and accurate approach for identifying plant
lncRNAs. By reducing false positives of lncRNA identification, this
ensemble method can generate more reliable results.

Computational pipeline for lncRNA identification
and characterization
We developed a pipeline (Plant-LncPipe) for the identification and
characterization of plant lncRNAs by implementing key steps of
lncRNA analysis: transcriptome alignment and assembly; lncRNA

prediction; and lncRNA classification and origin (Fig. 5). We clas-
sified lncRNAs into six categories based on their genomic loca-
tions, e.g. intronic lncRNAs, intergenic lncRNAs, antisense exonic
lncRNAs, upstream lncRNAs, downstream lncRNAs, and bidirec-
tional lncRNAs (Fig. 5). In this pipeline, we defined upstream and
downstream lncRNAs as those located within 2000 bp of the tran-
scription start site and transcription termination site, respectively,
but this range can be adjusted as per specific research require-
ments, such as extending to 50 kb [15]. This pipeline facilitates
the easy classification of lncRNAs and provides insights into the
diversity of lncRNAs in the genome. Moreover, the pipeline enables
the analysis of intersections with transposable elements (TEs)
within lncRNAs. Such analysis may yield new insights into the
relationship between TEs and the origins of different categories
of lncRNAs, considering that TEs are a major contributor to plant
lncRNAs [16, 17].

Discussion
Machine-learning algorithms have played an essential role
in identifying and classifying lncRNAs from high-throughput
RNA sequencing datasets. Several software tools, such as CPAT,
LncFinder, CNCI, CPC2, and PLEK, have been developed for lncRNA
identification with distinct training features and datasets. CPAT
and PLEK were developed using logistic regression and SVM
algorithms, respectively. CPAT predicts lncRNAs based on four
features, i.e. maximum ORF length, ORF coverage, Fickett score,
and codon usage bias, while PLEK employs an improved k-mer fre-
quency distribution strategy to classify RNA sequences. LncFinder
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Figure 4. ROC curve of seven lncRNA identification methods on datasets from 20 plant species.

integrates features based on sequence intrinsic composition,
structural information, and physicochemical properties, and uses
an SVM algorithm for non-coding RNA identification. However,
it is worth noting that most tools are primarily developed
using human or other animal data for model retraining, while
there is a lack of models trained with plant data. Given the
differences in lncRNA features between plant and animal species
[18, 19], retraining these models using plant datasets is critical
to enhancing their accuracy and applicability in plant lncRNA
identification.

In this study, we achieved significant improvement in
predicting lncRNAs in plants by retraining models with plant
transcriptome datasets. Our results showed that the retrained
LncFinder-plant and CPAT-plant demonstrated significantly

better performance in multiple metrics compared with their
original versions. However, in the identification of plant lncRNAs
using the LncFinder-wheat model, we found that performance
was considerably subpar. This deficient performance of the
wheat model in identifying plant lncRNAs can likely be ascribed
to several specific causes. Primarily, the training dataset of
this model has a high frequency of homologous genes, where
‘homologous’ is defined in this context as having an identity
>80%. Specifically, amongst 4000 lncRNAs in the training set,
299 were homologous genes, and similarly, in the mRNA training
set, 641 out of 4000 genes displayed homology. The excessive
proportion of homologous genes may distort the model’s learning
mechanism by associating certain features typically found in
these genes with either lncRNAs or mRNAs. This could result in
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Figure 5. Workflow of the present study and the pipeline for lncRNA identification and characterization. The left panel illustrates our present
workflow. The right panel depicts the process of a computational pipeline, Plant-LncPipe, which provides an ensemble method of lncRNA
identification and key steps of lncRNA characterization.

an elevated rate of false positives or negatives, thereby reducing
the accuracy of the model’s predictive capabilities. Moreover,
the substantial presence of homologous genes in the training
data might induce overfitting during the training of the model.
Consequently, this overfitting would restrict the model’s capacity
to generalize effectively on novel data. Furthermore, the volume
of training sets harnessed for wheat is insufficient and a single
plant species may have affected its ability to adequately learn
and predict lncRNA, thereby affecting its overall performance.
A model trained on a comprehensive dataset encompassing
multiple plant species is more likely to capture a wider range of
lncRNA characteristics, thereby enhancing its ability to accurately
identify lncRNAs in diverse plants.

The retrained PLEK-plant exhibits lower sensitivity, despite
a noteworthy improvement in classification accuracy, precision,
and F1-score compared with the original human model. These
differences in performance improvement can be attributed to the
choice of identification features used by each software. Both CPAT
and LncFinder appear to have benefited from the model recon-
struction as their algorithms rely on features or sequence infor-
mation more closely related to the training dataset. CPAT employs
a logistic regression model based on four sequence features,
which could potentially be better adapted to the plant dataset
following reconstruction. Similarly, LncFinder utilizes multiple
sequence-derived features, which may have also led to improved
performance after adapting to the plant dataset. In contrast,
PLEK only employs a k-mer scheme for its classification. The
decreased sensitivity of PLEK may result from its k-mer strategy
being less sensitive to changes in the training dataset, rendering

it incapable of capturing more specific sequence features of plant
lncRNA.

We assessed the performance of the retrained models against
that of other commonly used lncRNA identification tools, such
as CNCI, CPC2, LncADeep, and RNAplonc. Our findings revealed
that the retrained LncFinder-plant and CPAT-plant outperform all
other lncRNA identification tools. This suggests that retraining
using plant-specific data can significantly enhance plant lncRNA
identification ability and accuracy. Furthermore, our results
demonstrated that an ensemble of CPAT-plant and LncFinder-
plant is a more effective approach for identifying lncRNAs
in plants. The combined approach can be used as a reliable
tool for identifying plant lncRNAs in a broad range of species
and could potentially contribute to the discovery of novel
lncRNAs. Additionally, we developed a pipeline (Plant-LncPipe)
for identifying and characterizing plant lncRNAs. By using this
pipeline, we can take advantage of the ensemble method (CPAT-
plant + LncFinder-plant) in plant lncRNA identification, thus
generating a more comprehensive understanding of the lncRNA
landscape in plants and its involvement in diverse biological
processes.

This study highlights the importance of model retraining. By
utilizing comprehensive data, our retrained models can more
accurately capture the intricacies of plant lncRNA identification,
resulting in enhanced accuracy and reliability. Secondly, the
development of a new model requires considerable resources,
whereas model retraining leverages the computational infras-
tructure of mature software, significantly reducing develop-
ment costs. Thirdly, retraining existing and mature lncRNA
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identification models ensures the preservation of prior knowl-
edge. Previously established models, such as those created with
CPAT and LncFinder, have undergone extensive testing, refine-
ment, and validation. By retraining these models, the foundation
of knowledge is augmented, enabling the development of an
enhanced model for plant species without disregarding the
accumulated expertise from previous developments. Researchers
who are already familiar with the original software can readily
adapt to the retrained models, thereby promoting widespread
adoption and utilization of these enhanced models. In conclusion,
this study contributes to the further advancement of more
efficient and accurate tools for plant lncRNA prediction and
characterization.

Materials and methods
Data collection
For model retraining, we meticulously selected data from six plant
species: Arabidopsis thaliana, Cucumis sativus, Glycine max, Oryza
sativa, Populus trichocarpa, and Solanum lycopersicum (Table 1). The
lncRNA data were obtained from the GreeNC [20] and PlanDB
[21] databases. The mRNA data were collected from the Phyto-
zome [22] database. To evaluate the performance of our retrained
models, we utilized an expanded test set of lncRNAs from 20
plant species (Amborella trichopoda, Ananas comosus, A. thaliana,
Brachypodium distachyon, C. sativus, G. max, Manihot esculenta, Med-
icago truncatula, Musa acuminata, O. sativa, P. trichocarpa, S. lycop-
ersicum, Sorghum bicolor, Vitis vinifera, Zea mays, Chlamydomonas
reinhardtii, Coccomyxa subellipsoidea, Micromonas pusilla, Volvox car-
teri, and Physcomitrella patens) obtained from the CANTATAdb [23],
GreeNC, and PlanDB database, as well as mRNAs from the Phyto-
zome or Ensembl Plants [24] database (Table 2).

In order to avoid overfitting our training data, we removed
redundant sequences with >80% identity using CD-HIT-EST
(v4.8.1) [25]. In this context, lncRNAs were treated as the positive
set, while mRNAs served as the negative set.

Training and evaluation of lncRNA identification
tools
LncFinder, CPAT, and PLEK are commonly used software tools for
lncRNA identification, and they were originally developed using
human or other animal data for training. To improve the identifi-
cation performance of plant lncRNA, we retrained the models of
these tools using plant data sets and maintained their original
settings. The code and data used for model retraining can be
found at: https://github.com/xuechantian/lncRNA-Retraining.

Various metrics, including sensitivity, specificity, accuracy, pre-
cision, and the F1-score, were employed to evaluate the effec-
tiveness of the lncRNA identification tools. These metrics were
calculated using the following parameters: true positive (TP),
which refers to the correct classification of long non-coding tran-
scripts as LncRNA; true negative (TN), the correct classification
of coding transcripts as mRNA; false positive (FP), the incorrect
classification of coding transcripts as LncRNA; and false negative
(FN), the incorrect classification of long non-coding transcripts as
mRNA. Additionally, the ROC curve and the AUC were estimated
to evaluate the performance of different classification models:

Sensitivity = TP
TP + FN

Specificity = TN
FP + TN

Accuracy = TP + TN
TP + FP + TN + FN

Precision = TP
TP + FP

F1 − score = 2 × Precision × Sensitivity
Precision + Sensitivity

A pipeline for lncRNA identification and
characterization
We developed an lncRNA identification and characteriza-
tion pipeline, Plant-LncPipe, to facilitate the discovery and
characterization of novel plant lncRNAs (Fig. 5). Our Plant-
LncPipe comprises three main modules for distinct tasks: (1)
transcriptome alignment and transcriptome assembly; (2) lncRNA
identification; and (3) lncRNA origin and classification. In module
1, RNA sequencing reads were mapped to the reference genome
using HISAT2 [26], followed by transcript assembly with StringTie
[27]. In module 2, a three-step approach was employed to identify
lncRNAs in this pipeline. First, transcripts shorter than 200 bp
and overlapping with known mRNAs were filtered out using the
FEELnc_filter.pl module (—monoex = −1 and -s 200) of FEELnc
[28]. Second, the protein coding potential of the remaining
candidates was evaluated by an ensemble of the top two well-
performing models, LncFinder-plant, and CPAT-plant. Lastly, the
candidates were aligned to the UniProt protein database [29] using
Diamond v2.0.2.140 [30] for further confirmation. Transcripts
with alignment identity scores >80 and e-values <1e−05 were
classified as potential coding transcripts and subsequently
excluded from the predicted lncRNA set. Overall, this three-step
approach provides a robust and reliable method for identifying
lncRNAs from RNA sequencing reads with a high level of accuracy.
In module 3, the identified lncRNAs were classified based on
their genomic position using the FEELnc_classifier.pl module of
FEELnc. The resulting categorized lncRNAs were then analyzed to
determine their origin, specifically whether they arise from TEs.
To identify TE-derived lncRNAs, the lncRNAs were intersected
with TE annotations using the BEDTools program [31].
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