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Abstract 
Cancer cells can manipulate immune cells and escape from the immune system response. Quantifying the molecular 

changes that occur when an immune cell is touching a tumor cell can increase our understanding of the underlying 

mechanisms. Recently, it became possible to perform such measurements in situ, for example using expansion sequencing, 

which enabled in situ sequencing of genes with super-resolution. We systematically examined whether individual immune 

cells from specific cell types express genes differently when in physical proximity to individual tumor cells. First, we 

demonstrated that a dense mapping of genes in situ can be utilized for the segmentation of cell bodies in 3D, thus improving 

our ability to detect likely touching cells. Next, we utilized three different computational approaches to detect the molecular 

changes that are triggered by proximity: differential expression analysis, tree-based machine learning classifiers, and matrix 

factorization analysis. This systematic analysis revealed tens of genes, in specific cell types, whose expression separates 

immune cells that are proximal to tumor cells from those that are not proximal, with a significant overlap between the 

different detection methods. Remarkably, an order of magnitude more genes are triggered by proximity to tumor cells in 

CD8 T cells compared to CD4 T cells, in line with the ability of CD8 T cells to directly bind Major Histocompatibility 

Complex (MHC) Class I on tumor cells. Thus, in situ sequencing of an individual biopsy can be used to detect genes likely 

involved in immune-tumor cell-cell interactions. The data used in this manuscript and the code of the InSituSeg, Machine 

learning, cNMF and Moran’s I methods are publicly available at DOI: 10.5281/zenodo.7497981. 

Introduction  
The communication of the cancer cells with different types of cells that surround them, and in particular immune cells, can 

inhibit or promote tumor proliferation (Nishida-Aoki and Gujral 2019). Therefore, the study of cellular interactions within 

tumor tissues is essential for understanding the disease progression and the potential for its treatment (Wang, Lei and Han 

2018). However, immune-tumor interactions in cancer tissue remain largely uncharacterized (Giladi et al. 2020). To obtain 

in depth characterization of immune-tumor cell-cell interactions, single cell quantification is needed. Alas, standard single-

cell genomic technologies can profile each cell separately but only after tissue dissociation, therefore losing all information 

on cell locations in general, and on cell-cell interactions in particular. Single cell sequencing protocols can be modified to 

characterize immune-tumor interactions, for example using PIC-seq (Giladi et al. 2020). However, since this method uses 

small aggregates of cells, it is not trivial to reconstruct single-cell information, i.e., accurately assign the sequenced genes 

in each aggregate to their cell of origin. 
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A direct quantification of cell-cell interactions between individual immune and tumor cells can be obtained via in situ 

approaches, which utilize imaging to assess the identity and location of expressed genes. Spatially-resolved transcriptomics 

using technologies such as Slide-Seq and Spatial Transcriptomics (ST), allow sequencing of RNA fragments, potentially 

from all genes, to be mapped to their spatial location in human tissues and biopsies (Ståhl et al. 2016; Rodriques et al. 

2019; Vickovic et al. 2019; Stickels et al. 2021). However, to date these technologies can’t allow the detection and 

quantification of single cells. This is mainly because the tissue is dissolved in the process, prohibiting the acquisition of 

cellular morphological features such as DAPI staining for the nucleus, and also because the resolution is not high enough 

for single cell analysis. Although there are computational attempts to reconstruct single-cell information from this data 

(Elosua-Bayes et al. 2021; Rao et al. 2021), and to integrate this data with single cell sequencing (Kleshchevnikov et al. 

2020; Longo et al. 2021; Cable et al. 2022), accurate assignment of genes to single cells is still a challenge. Technologies 

based on multiplexed fluorescent in situ hybridization (FISH) allow measuring tens and even hundreds of genes in situ with 

a single cell resolution. These technologies include MERFISH (Moffitt et al. 2016) as well as SeqFISH, STARmap, ISS, 

RNAscope, BOLORAMIS and more (Ke et al. 2013; Codeluppi et al. 2018; Wang et al. 2018; Eng et al. 2019; Liu et al. 

2021). A recent technology, termed expansion sequencing or ExSeq, allows in situ sequencing with super-resolution (Alon 

et al. 2021). Here we utilize an ExSeq measurement of 297 genes in a human breast cancer biopsy to perform a new kind 

of analysis – quantification of gene expression modifications in single interacting cells in situ. We identify physically 

touching cells with super-resolution, quantify immune-tumor cell-cell interactions, and determine how an immune cell is 

changing its gene expression profile when it is close to a tumor cell, and vice versa (Fig. 1).  
 
Figure 1. Overview of the detection of immune-tumor crosstalk genes. 

First, the ExSeq images were segmented using InSituSeg. Next, cell typing 

was performed using the cell’s expression profiles, clustered after 

dimension reduction and displayed via Uniform Manifold Approximation 

and Projection (UMAP). Finally, crosstalk genes were detected using a 

differential expression, tree-based machine learning methods, and matrix 

factorization using cNMF (Kotliar et al. 2019). In the cNMF panel, Gene 

Expression Profile (GEP) can define cell type (blue=T cells, brown=tumor 

cells), or be proximity-related (yellow). In the schema, two GEPs represent 

cell types, and one GEP is triggered by proximity. The pie chart inside each 

cell describes its GEP usage. 

 

 
 

Materials and Methods 

Description of the datasets 

Biopsies were collected from patients at Dana Farber Cancer Institute and originally described in (Alon et al. 2021). The 

sample utilized in this study was of a liver metastasis of hormone receptor positive breast cancer. The region sequenced in 

situ with ExSeq was 1347 x 621 x 8 microns in size (before expansion). Full description of biopsy and the 297 interrogated 

genes is in the supplementary information. 
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Segmentation of cell bodies 

We developed a segmentation pipeline, termed InSituSeg, that takes advantage of the dense mapping of genes in situ for 

segmentation of cell bodies in 3D, using staining of cell nuclei and RNA locations (Fig. 2A). The steps of the segmentation 

pipeline (Fig. 2B) and its parameters (Table S2) are described in the supplementary information. 

Clustering segmented cells 

In order to identify and cluster the segmented cells according to their expression pattern, we utilized the R toolkit Seurat 

(Hao et al. 2021), and followed the analysis in (Alon et al. 2021). The procedure is described in the supplementary 

information. 

Detecting differentially expressed genes 

For any pair of cell clusters X and Y, cluster X was partitioned into two subsets: a subset of X cells that are proximal to Y 

cells, and a subset of X cells that are not proximal to Y cells. Comparisons were performed to observe differences in non-

tumor cell types when in proximity to tumor cell types, and vice versa. Gene expression change (fold change) and p-value 

per gene in each comparison were calculated using DESeq2 (Love, Huber and Anders 2014), and we proceeded with genes 

that had Benjamini-Hochberg false discovery rate (FDR) of 0.1. To further assess the statistical significance of the results, 

we used permutation analysis. To avoid errors that result from inaccurate boundaries detection of two adjacent cells, we 

filtered genes in two different ways: 1) We filtered upregulated genes detected in X cells if they are known cell markers 

for the Y cells (the known marker genes are listed in the Methods section ‘Description of the datasets’). 2) We filtered 

genes detected in X cells (i.e., induced in the subset of X cells that are proximal to Y cells compared to the subset of X 

cells which are not proximal) if they are highly differentially expressed in the Y cells (i.e., induced in the subset of Y cells 

that are proximal to X cells compared to the subset of Y cells which are not proximal). High degree of overlap exists 

between the two different filtering methods, full details are in supplementary information. 

Machine learning pipeline 

We applied machine learning tools to detect genes that their expressions separate, for cell type X, cells that are proximal to 

cell type Y versus non proximal cells. In contrast to the detection of differentially expressed genes described above, machine 

learning tools can detect genes that change their expression in concert due to the proximity between cells. Overall four 

machine learning classifiers were applied on the dataset: Decision Trees (Quinlan 1986), Random Forest  (Ho 2002), 

XGBoost (Chen and Guestrin 2016) and CatBoost (Dorogush, Ershov and Gulin 2018). To evaluate the performance of the 

classifiers, we first checked how sensitive the results are with respect to the initial (random) decision of which part of the 

dataset will serve as a train and which part will be the test. Then we compared the results obtained to the results of the same 

dataset, but with the class labels shuffled such that it should not contain biological meaning. To avoid errors that result 

from inaccurate boundaries detection of two adjacent cells, we filtered upregulated genes detected in X cells if they are 

known cell markers for the Y cells (the known marker genes are listed in the supplementary information, section 

‘Description of the datasets’). Full details are in supplementary information. 

cNMF analysis 

We implemented cNMF (Kotliar et al. 2019) analysis with the aim of detecting a battery of genes that change their 

expression together as a result of proximity between immune and tumor cells. Using this analysis we discovered gene 

signatures, namely gene expression programs (‘GEP), which define cell types as well as cell states. We examined whether 
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GEPs can be overexpressed or under expressed in a cell type as a result of physical distance from other cell types 

(‘proximity-related’ GEPs). Full details are in supplementary information. 

Quantifying the statistical significance of overlapping genes 

We assessed the statistical significance of the overlapping genes between any two detection methods (differential 

expression, machine learning and matrix factorization) with a bootstrapping approach (supplementary information). 

Moran’s I calculation 

We implemented Moran’s I calculation in the context of spatially-resolved transcriptomics. We compute a p-value for the 

spatial dependence of each gene by taking into account the locations of all the genes expressed in the tissue. P-values were 

estimated using bootstrapping. We also implemented Moran’s I on the level of cells from a given cell type. I.e., For each 

cell type we generate a p-value for the spatial dependence of the cells in the given type. Full details are in supplementary 

information. 

Results and Discussion 

3D segmentation of single cells bodies using in situ sequencing data 

With the aim to characterize immune-tumor cell-cell interactions, we utilized a spatial dataset of a core biopsy, 1347 x 621 

x 8 microns in size, taken from a patient with metastatic breast cancer infiltration into the liver, and sequenced in situ via 

targeted ExSeq (Alon et al. 2021). With targeted ExSeq, a set of genes is selected and then oligonucleotide padlock probes 

bearing barcodes for each selected gene are hybridized to specific transcripts. These padlock probes are amplified in situ 

to generate amplicons for subsequent readout through in situ sequencing of the barcodes. The resulting sequenced 

amplicons (termed reads) give the precise location of the transcripts in situ. In this biopsy, 297 genes were characterized in 

situ with super resolution (Table S1), due to 3.3x physical expansion of the tissue. The interrogated genes included gene 

markers for cell types and genes known or suspected to be associated with cancer tissues (Methods). 

We developed a pipeline for ascribing in situ sequencing reads to cell bodies, termed InSituSeg, which aids in pinpointing 

touching cells in 3D, even in a densely packed tumor tissue (Fig. S1-2). The main idea of InSituSeg is to utilize the dense 

mapping of genes in situ for the segmentation of cell bodies in 3D (Fig. 2). Segmentation of cells is typically performed 

using only nuclei staining, without using information about RNA location (Stringer et al. 2021; Hollandi et al. 2022). This 

procedure doesn’t maximize the number of sequencing reads assigned to cells, mainly because sequencing reads are often 

located in the cell soma outside the nucleus. In contrast to recent tools (Hu et al. 2021; Littman et al. 2021; Petukhov et al. 

2022), InSituSeg doesn’t use prior information about cell types, or even information about RNA identities (i.e., genes). 

Instead, it uses only imaging data resulting from a typical in situ sequencing experiment: DAPI staining and the locations 

of the sequenced RNA molecules (Fig. 2, Fig. S3-4 and Methods). InSituSeg is performed in 3D, which aids in separation 

of cells which seem to be overlapping when looking only at the x-y plane (Fig. S1); and therefore has advantage compared 

to 2D watershed-based segmentation which is performed on individual z-planes. Importantly, since cell type information 

is not used, InSituSeg can ascribe an atypical gene to a cell from a given cell type, and thus can possibly better represent 

the heterogeneity of individual cells. 
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Figure 2. Scheme of the InSituSeg pipeline. The 

pipeline utilizes dense mapping of genes in situ for 

segmentation of cell bodies, using pixel intensity 

thresholding of 3D images. The input is a DAPI stained 

image and the spatial locations of the mRNA molecules, 

and the output is a segmented 3D image with the mRNA 

assigned to each cell body. (A) Three cells are presented 

(columns). Ⅰ) After DAPI staining, the signal of the cell 

bodies is weaker compared to the strong nucleus staining of genomic DNA, but nevertheless can be clearly detected in the examined cells with pixel 

intensity thresholding (Ⅱ). Ⅲ) A clear overlap between the hues observed in the DAPI image and the sequenced RNA (red dots, the DAPI intensities are 

shown in red-blue for better visualization). This overlap further confirms that the hues correspond to cell bodies. (B) The segmentation pipeline is 

composed of six steps (Methods): Ⅰ) Illumination correction. Ⅱ) Detection of nuclei voxels. Ⅲ) Refinement of nuclei voxels. Ⅳ) Splitting of large nuclei. 

For example, the large putative nucleus marked by a yellow rectangle in (Ⅲ) is split in (Ⅳ) into two nuclei. Ⅴ) Detection of cell body voxels using 

watershed segmentation. Ⅵ) Assignment of mRNA molecules into cell bodies. 

 

InSituSeg utilizes pixel intensity thresholding to reduce the strong nuclei staining of the DAPI and reveal residual DAPI 

staining in the cytosol (Fig. 2 and Methods). Residual DAPI staining in the cytosol was demonstrated before in the context 

of multiplexed FISH imaging, and was termed ‘cytoDAPI’ (Wang et al. 2021). This residual DNA staining can be a result 

of RNA staining (as suggested in (Wang et al. 2021)) or due to staining of rolonies (i.e., the padlocks which bind single 

molecule RNA, after phi29 amplification). Rolonies might be double stranded to some extent due to limited template 

switching of phi29  (Ducani, Bernardinelli and Högberg 2014). Residual DAPI staining might also be influenced by 

cytoplasmic DNA which is more prevalent in tumor cells (Anindya 2022). However, in our data tumor cells don’t have on 

average larger residual DAPI staining in the cytosol compared to other cell types (Fig. S5). Details about the parameters 

used by InSituSeg and the sensitivity to fine tuning them are provided (Methods and Fig. S6). 

 

To test the performance of InSituSeg, we: a) showed that it is in agreement with manual segmentation (Fig. S7A); b) tested 

it on a different core biopsy that was analyzed by expansion sequencing (Fig. S7B); c) demonstrated that it outperforms 

two recent neuronal network-based segmentation tools, ilastik (Berg et al. 2019) and Mesmer (Greenwald et al. 2022) (Fig. 

S7C). We note that in contrast to ilastik, Mesmer and other recent segmentation tools, InSituSeg is specifically designed 

for in situ sequencing image data, and therefore InSituSeg is not a general purpose segmentation tool; d) showed that 

InSituSeg is superior to using RNA sequencing data alone for grouping reads into cells, i.e. without using nuclei information 

(Fig. S7C and Methods); e) demonstrated that InSituSeg can be applied for in situ imaging data generated with MERFISH 

(Fig. S8); and finally, f) estimated that InSituSeg captures between 65 to 71% of the cell body area, as determined via 

cytosolic and membrane staining (Fig. S9). We further estimated that segmentation with InSituSeg can add 20% to the cell 

body volume, compared to nuclei segmentation alone (Fig. S9). 

Overall, the dataset of the core biopsy contained 1,146,615 spatially resolved sequenced reads from 297 genes. Manual 

segmentation of nuclei using the tool VAST (Berger, Seung and Lichtman 2018) resulted in 2,395 cells (reporting only 

cells with at least 100 reads per cell), and 771,904 reads were assigned to them (Alon et al. 2021). In contrast, using 

InSituSeg, 2,748 cells were detected, and 939,764 reads were assigned to them (again only cells containing at least 100 

reads are reported). Thus, InSituSeg gives a 15% and 22% increase in the number of segmented cells and the number of 

assigned reads, respectively (Fig. S10A), which can lead to better characterization of the molecular content of the cells. 
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Moreover, the detection of cell bodies with InSituSeg, combined with the super-resolution of ExSeq, allowed pinpointing 

touching cells in 3D below (Fig. 1 segmentation step and Fig. S1-2). 

We next performed expression clustering on the InSituSeg results and compared it to manual segmentation of nuclei (Alon 

et al. 2021) (Fig. S10B-C). The analysis was done using principal component analysis (PCA)-based expression clustering 

of Seurat (Hao et al. 2021), and displayed using the Uniform manifold approximation and projection (UMAP) 

representation (Becht et al. 2018) (Methods). Overall, in both approaches, the expression clustering revealed the expected 

mixture of cell types, including tumor, immune (T cell, B cell, and macrophage), and fibroblast cell clusters (Fig. S10B-

C). However, with InSituSeg the higher number of reads assigned to cells allowed us to classify an additional tumor 

subtype, marked by the gene EPCAM. Finally, the transcriptionally-defined cell clusters were mapped onto tissue context 

(Fig. S10D-E). 

Identification of genes involved in cell-cell interactions using differential expression 

We next utilized the ExSeq data, after processing with InSituSeg and expression clustering, to characterize immune-tumor 

cell-cell interactions in situ. Specifically, we aimed to detect genes in a given cell type that have different expressions as a 

result of proximity to another cell type. These genes can either be influenced by the proximity between the cells, or even 

influence the proximity to occur. We first utilized a differential expression approach (Methods): For any pair of cell clusters 

X and Y, cluster X was partitioned into two subsets: a subset of X cells that are proximal to Y cells (i), and a subset of X 

cells that are not proximal to Y cells (ii), and all differentially expressed genes between (i) and (ii) were detected using 

DeSeq2 (Love, Huber and Anders 2014). The resulting p-values were further validated using bootstrapping (Methods). 

Cell-cell proximity was estimated using the smallest Euclidean distance between the mRNA molecules in two adjacent 

cells, utilizing the InSituSeg cell body segmentation. We set a threshold of 3 microns (before expansion) for that distance, 

and validated the robustness of the results to changes in this parameter (Fig. S11-12). Taking advantage of the super-

resolution, which is a result of the physical expansion in ExSeq, we examined distances between cell bodies down to half 

a micron (Fig. S12), further increasing the likelihood that the cells are physically touching. The genes detected below as 

induced by proximity are consistent between the different distance cutoffs (Fig. S12, Table S3). The physical expansion of 

ExSeq also allows a large number of transcripts to be quantified together, since neighboring RNA molecules can be better 

resolved (Xia et al. 2019; Alon et al. 2021). We estimate that without expansion most amplified transcripts would not be 

resolved due to spatial overlap (Fig. S13 and Methods). The dramatic decrease in the number of amplified transcripts 

resolved would have been also manifested in a decrease in the proximity-induced genes that can be detected (Fig. S13E 

and Methods). 

We systematically examined all possible interactions between tumor (5 cell clusters, Fig. S10C) and non-tumor cell types 

(7 cell clusters, Fig. S10C), overall 108 comparisons (Methods). We accounted for multiple testing using a Benjamini-

Hochberg false discovery rate (FDR) of 0.1. The systematic search resulted in 11.8 genes, on average, detected as 

differentially expressed in the 108 comparisons performed (Fig. 3, Fig. S14 and Fig. S15). Note that with bootstrapping, 

which is utilized to compute the p-values (Methods), on average less than one gene was detected as proximity-induced. 

This is true for the original cutoff distance of 3 microns, as well as all the other cutoff distances down to 0.5 microns. An 

example of proximity-induced gene is the gene thymosin beta 4 X-Linked (TMSB4X), which is involved in the organization 

of the cytoskeleton, is overexpressed when CD3D-positive T cells are in proximity to tumor cells in general, compared to 
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CD3D-positive T cells which are not proximal (Fig. S14). This gene is also upregulated when T cells in general are proximal 

to EPCAM-positive tumor cells, when CD8A-positive T cells are proximal to tumor cells in general, and also when T cells 

in general are proximal to CD44-positive tumor cells (Fig. S14). Consequently, comparing all T cells that are proximal to 

tumor cells in general, to T cells that are not proximal, also reveals that this gene is overexpressed (Fig. 3A and S14). 

Interestingly, in the last few years, this gene was detected as upregulated in breast cancer, and it was suggested that its 

expression correlates with poor prognosis (Zhang et al. 2017; Morita and Hayashi 2018). The data presented here might 

point to the exact settings in which this gene is upregulated. 

 
 Figure 3. Example of genes identified as induced in T cells when 

proximal to tumor cells. Sequencing reads locations (red spots) of four 

induced genes are overlaid on the DAPI staining of the nuclei, as well as the 

segmentation of T cells (blue) and tumor cell types (yellow). The cell bodies 

were detected using InSituSeg, and the cell types were identified using 

clustering of the gene expression profiles. Only segmentations of T cells and 

tumor cells are presented. Genes upregulated in T cells due to proximity to 

tumor cells have more red spots when proximal to tumor cells (exemplars in 

full red arrows versus hollow red arrows). A) the gene Thymosin Beta 4 X-

Linked (TMSB4X) was detected by differential expression (DE), by matrix 

factorization (MF), and by machine learning (ML), when examining all T 

cells and all tumor cells. B) The gene Ribosomal Protein SA (RPSA) was 

detected by DE, by ML, and by MF, when examining all T cells and all tumor 

cells. C) the gene Complement Component 1, Q Subcomponent, A Chain 

(C1QA) was detected by DE when examining all T cells and all tumor cells. 

D) the gene Laminin Subunit Alpha 1 (LAMA1) was detected by DE and by 

ML, when examining the subtype T cell-CD3D and the subtype tumor-

EPCAM. Each panel shows a subset region from the biopsy, acquired with a 

40X objective, 100 x 100 microns in size (before expansion). Note that max projection is shown and therefore some cells seem to overlap, but they are 

clearly separated in 3D (Fig. S1). DE was performed with DeSeq2 (Love, Huber and Anders 2014), ML with CatBoost (Dorogush, Ershov and Gulin 

2018), and MF with cNMF (Kotliar et al. 2019). Permutation analysis was performed on all methods to assess statistical significance. 

Identification of genes involved in cell-cell interactions using machine learning tools 

We then applied supervised machine learning tools to identify genes that their expression separates, for cell type X, cells 

that are proximal to cell type Y versus non proximal cells. We focused on Decision Tree (Quinlan 1986), a classifier with 

a high level of interpretability, and on algorithms that are based on Decision Trees with a low level of interpretability, 

including Random Forest (Ho 2002), XGBoost (Chen and Guestrin 2016) and CatBoost (Dorogush, Ershov and Gulin 

2018). We designed and applied a machine learning pipeline (Fig. S16 and Methods) on each one of the 108 comparisons 

between non-tumor cell types and tumor cell types as described above, using the same measure of physical proximity 

between cells (Methods and sensitivity test in Fig. S17). The data for each comparison, i.e., the gene expression of the cells 

that can either be in proximity or not-proximal to the different cell type, was randomly split into training and testing sets. 

The split was stratified so the relative distribution of the proximity vs not-proximal cells was retained. The testing set was 

not used during the training phase, and on the training set we applied the stratified k-fold cross validation strategy (Tan and 

Gilbert 2003). In most cases, the number of non-proximal cells was higher than proximal cells, therefore the dataset was 
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imbalanced and we utilized over-sampling methods to correct this effect (Methods). We ran multiple combinations of the 

classifiers' hyperparameters to find the best ones for each classification algorithm (‘best model’, Methods). For each 

comparison, we determined the classifier with the best performance (‘best classifier’), which was then applied to the test 

set. 

When detecting genes that classify cells as proximal and non-proximal, the results are expected to be more robust when the 

number of cells, both proximal and not-proximal, is high. On the other hand, when studying a biopsy from an individual 

patient using spatially-resolved transcriptomics, the overall number of cells studied is typically on the order of thousands 

(Fig. S10E) or tens of thousands. In addition, refining the cell types in the comparison, for example studying subtypes of T 

cells and subtypes of tumor cells, is expected to produce more specific results, but reduce the number of cells even further. 

Therefore, the number of cells fed to the classifier was not high overall (Tables S4-5). Specifically, in most comparisons, 

the number of proximal cells per cross validation fold was ~10-20 (or the number of non-proximal cells in cases when their 

number is lower than proximal cells, Tables S4-5), making the detection of proximity-induced genes challenging with 

machine learning tools. Therefore, we: a) quantified the sensitivity of the results with respect to the initial random split 

between train and test data (Methods); this sensitivity is expected to be high due to the small number of cells. b) performed 

an additional evaluation of the performance of the classifiers using non-biological realizations. These realizations were 

generated by using the same dataset, but with the cell labels (proximity or not-proximal) shuffled such that they should not 

contain biological meaning (Methods). For the best classifier, we generated 30 non-biological realizations for each 

comparison, and for each realization, the machine learning pipeline was re-run. We compared the results to 30 runs of the 

pipeline with the best classifier using the original (unshuffled) data, each run with a different initial random split between 

train and test data, and computed bootstrap p-values. We kept only the machine learning results that had Benjamini-

Hochberg false discovery rate (FDR) less than 1e-4. Finally, for comparisons that passed the aforementioned test, the best 

classifiers were applied to the complete dataset, i.e., without splitting into train and test (Methods). 

Interestingly, the CatBoost classification method was found to outperform the three other classification methods in all 108 

comparisons. Overall, only 60 out of the 108 comparisons resulted in classifications that were deemed significant with 

FDR<1e-4 (Tables S4-5). The top ten features (i.e. genes) that give rise to the significant classifications are presented in 

Fig. S18. The detected genes can either be upregulated or downregulated due to the proximity between cells from different 

types (Fig. S18). Note that errors that result from inaccurate boundaries detection of two adjacent cells, or mis-

segmentation, can lead to cases of false detection of proximity-induced genes. We filtered genes which were likely to be 

detected due to inaccurate boundaries detection using two approaches (see Methods). However, some cases of mis-

segmentation-based errors might still occur. For example, in Fig. S18 the gene Pecam1 (CD31) appears as proximity-

induced in B cells when close to tumor-ALDH1A3. While Pecam1 can be expressed in B cells, it is known to be expressed 

in endothelial cells, and therefore mis-segmentation of blood vessels might have contributed to this result. Likewise, while 

LYZ might be expressed in tumor cells in breast cancer (Vizoso et al. 2001), it is known to be expressed in immune cells, 

and therefore the detection of this gene as proximity-induced in Tumor-PGR when close to T cells (Fig. S18), might be due 

to mis-segmentation. 

The differential expression approach and the machine learning classifiers are fundamentally different, so we didn’t expect 

a one-to-one agreement between the genes detected using both approaches. Nevertheless, many genes did overlap; 

comparing non-tumor cell types that are proximal to tumor cell types versus non-tumor cell types that are not proximal to 
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tumor cells, out of 436 genes detected using a differential expression, 61 genes were also detected using machine learning 

(Table S6). The overlap is even more profound when examining the other direction, i.e., tumor cell types that are proximal 

to non-tumor cell types, versus tumor cell types that are not proximal to non-tumor cells; out of 840 genes detected using 

a differential expression, 166 genes were also detected using machine learning (Table S6). Overall, in 56 out of the 108 

comparisons performed between all tumor and immune cell types, genes were detected as proximity-related using both the 

differential expression approach and machine learning. Importantly, the overlap between the detected genes was 

statistically significant (p-value<0.05, bootstrapping, Methods) in 37 out of these 56 comparisons (Table S6). This overlap 

between the approaches provides additional support for the validity of the findings. Examining the genes detected by both 

differential expression and machine learning, taking T cells for example, clearly show the overexpression of these genes 

when proximal to tumor cells (Fig. 4). 
 

Figure 4. Overexpression of a group of genes in T cells when proximal to tumor 

cells. 

Six genes were detected as induced by both differential expression and machine 

learning when T cells are proximal to tumor cells: RPSA, CD63, LYZ, TMSB4X, 

S100A14, LAMA1. A) Sequencing reads locations (red spots) of these genes are 

overlaid on the DAPI staining of the nuclei, as well as the segmentation of T cells 

in blue and tumor cell types in yellow. The cell bodies were detected using 

InSituSeg, and the cell types were identified using clustering of the gene expression 

profiles. Only segmentations of T cells and tumor cells are presented. Genes 

upregulated in T cells due to proximity to tumor cells have more red spots 

(overexpression) when proximal to tumor cells (exemplars in full red arrows versus 

hollow red arrows). B) The biopsy with DAPI staining. Each panel in (A) shows a 

max projection of a subset region from the biopsy (orange square in (B)), acquired 

with a 40X objective, 100 x 100 microns in size (before expansion). 

 
An example of a gene detected using both differential expression analysis and machine learning is Keratin 19 (KRT19). 

KRT19 was detected using differential expression analysis as upregulated in tumor cells proximal to T cells, compared to 

tumor cells not proximal to T cells (Fig. S14). This gene was also detected using machine learning as the highest 

classification feature for all tumor cells proximal to all T cells, versus tumor cells not proximal (Fig. S18). This gene is also 

the second highest classification feature for all tumor cells proximal to CD8A-positive T cells versus not proximal tumor 

cells, and the second highest classification feature for EGFR-positive tumor cells proximal to CD8A-positive T cells, versus 

not proximal EGFR-positive tumor cells (Fig. S18). KRT19 is known to be important for the structural integrity of epithelial 

cells, and is a marker gene for breast tumors (Saha et al. 2017). Our analysis pinpoints the settings in which this gene is 

upregulated, namely that this gene expression might be higher when tumor cells are proximal to T cells, and in particular 

to CD8A-positive T cells. 

Remarkably, a clear difference is observed between CD4 and CD8 T cells, in line with the ability of CD8 T cell to directly 

bind Major Histocompatibility Complex (MHC) Class I on tumor cells. 12 and 10 genes were detected as overexpressed 

when CD8-positive T cells are in proximity to tumor cells, using differential expression and machine learning analysis, 

respectively. In contrast, only 1 and 0 such genes were detected when CD4-positive T cells are in proximity to tumor cells, 

using differential expression and machine learning analysis, respectively (Table S6). Likewise, 38 and 10 genes were 

detected as overexpressed when tumor cells are in proximity to CD8-positive T cells, using differential expression and 
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machine learning analysis, respectively. In contrast, only 6 and 0 such genes were detected when tumor cells are in 

proximity to CD4-positive T cells, using differential expression and machine learning analysis, respectively (Table S6). 

Thus, while in CD8 T cells physical proximity to tumor cells trigger changes in gene expression in both the T cell and the 

tumor cell, in CD4 T cells the changes in genes expression might be more gradual with respect to the distances to tumor 

cells. 

Identification of genes involved in cell-cell interactions using matrix factorization 

We then applied matrix factorization to identify a battery of genes that change their expression together as a result of 

proximity between immune and tumor cells (Fig. S19). We utilized cNMF (Kotliar et al. 2019) to discover gene signatures, 

termed Gene Expression Programs (GEP), which define cell types as well as cell states. Specifically, we examined whether 

GEPs can be proximity-related, i.e., can be overexpressed or under expressed in a cell type as a result of physical distance 

from other cell types. To do so we divided each non-tumor cell type into two subgroups: cells proximal to tumor cells 

versus cells that are not close to tumor cells (Methods). A similar analysis was performed in the other direction (i.e., tumor 

cells proximal or not proximal to immune cells). Then, for each GEP in each cell type, we compared the usage of that GEP 

in the proximal cells subgroup to the usage in the non-proximal subgroup, and computed statistical significance using 

permutation analysis (Methods). Importantly, this analysis revealed 6 GEP which are induced by proximity to tumor cells 

(Fig. S19, Table S7). Importantly, in one such proximity-related GEP, expressed in T cells, 8 out of the 15 genes in this 

GEP overlapped with the genes detected using differential expression (significant overlap, p-value<0.01, bootstrapping, 

Tables S6-7-8). In addition, 5 out of the 15 genes in this GEP overlapped with the genes detected using machine learning 

(significant overlap, p-value<0.01, bootstrapping, Tables S6-7-8). The overlaps found between these three computational 

approaches further support the possibility that the detected genes are indeed involved in cell-cell interactions between 

immune and tumor cell types (Fig. 3-4). Thus, the detected genes can potentially be markers for immune reactions toward 

tumor cells, or vice versa. 

 

Detection of proximity-induced genes as a function of the fraction of data utilized 

We explored the dependency of the number of proximity-induced genes on the fraction of the data used, and the number 

of adjacent non-tumor cells to tumor cells, via a scale-down analysis (Methods). This analysis revealed a linear trend 

between the fraction of the data utilized and the number of proximity-induced genes revealed in T cells (Fig. S20). 

Importantly, a linear trend is also observed between the number of proximity-induced genes in T cells and the number of 

adjacent T cells and tumor cells (Fig. S20). The linear trend is also evident in other non-tumor cell types (Fig. S21). This 

trend suggests that a rational design of experiments aimed at detecting proximity-induced genes is feasible, given the 

number of adjacent cells present in the studied biopsy. 

Detecting spatially-dependent genes and cell types 

We next examined if the genes detected as involved in cell-cell interactions tend to be spatially-dependent. For this, we 

implemented Moran’s I measurement for segmentation-free detection of spatially-dependent genes (Hao et al. 2021; Hu et 

al. 2021). Similarly to a recent implementation (Miller et al. 2021), we account for non-uniform cell distribution in the 

tissue. Our implementation detects specific genes that have higher spatial dependence, relative to other expressed genes, 
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by using the distribution of locations of all the genes in the tissue (Methods). For Moran’s I calculation we automatically 

select the grid (spatial bins) that produces the most robust results for the spatially-dependent genes (Methods).  

Overall, 169 genes were detected as spatially-dependent (FDR<0.01), out of the 297 genes interrogated. Note that the 

selection of genes in the ExSeq gene panel potentially explains the large fraction of spatially variable genes. Ranking the 

genes according to their p-value, arranged from the smallest to the largest, we examined the top detected genes and six of 

them are presented in Fig. S22: KIT, S100A8, SOX18, COBL, RPSA, and XBP1. RPSA, Ribosomal Protein SA, was 

detected as regulated by proximity between T cells and tumor cells in the differential expression analysis, the machine 

learning analysis, and the cNMF analysis (Fig. 3B, Fig. S14 and S18, Table S6). The expression of RPSA is increased in 

many cancers including breast, and clinical trials are ongoing to test if it can serve as a biomarker of tumor invasion in 

pancreatic ductal adenocarcinoma (clinical trials identifier (NCT number): NCT04575363). The spatial dependence of this 

gene (Fig. S22E), as well as the possible upregulation of this gene due to T cells and tumor cells proximity (Fig. S14 and 

S18), suggest that this gene might serve as a biomarker in breast cancer as well. However, given that most of the examined 

genes were detected as spatially-dependent, it is unlikely that the main cause for the spatial dependence is the involvement 

in cell-cell interactions. We note that the spatial dependence of the genes can’t be fully explained by uneven spatial 

distribution of cell types, since we detected genes that are spatially variable in spite (or in excess) of cell type spatial 

variability (Methods, Fig. S23 and Table. S9). Manual examination of the data did not reveal a clear link between the 

locations of genes that are spatially variable in excess of their cell type and the locations of the potentially interacting cell 

types (Fig. S24). Lastly, we also examined the spatial dependence of the cell types, revealing a clear difference between 

non-tumor cell types versus tumor cells (Fig. S25-26). Segmentation-free detection opens the door to the analysis of several 

genes and cell types that might be interacting in specific locations in the tissue. 

Data Deposition 

The data used in this manuscript and the code of the InSituSeg, Machine learning, cNMF and Moran’s I methods are 

publicly available at DOI: 10.5281/zenodo.7497981. Test data for running the code is also provided in the same deposit. 
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