
Received: 13 December 2023; Accepted: 7 February 2024; Published: 23 February 2024; Corrected and Typeset: 13 April 2024
© The Author(s) 2024. Published by Oxford University Press on behalf of Nanjing Agricultural University. This is an Open Access article distributed under the
terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and
reproduction in any medium, provided the original work is properly cited.

Horticulture Research, 2024, 11: uhae046

https://doi.org/10.1093/hr/uhae046

Review Article

Emerging roles and mechanisms of lncRNAs in fruit and
vegetables
Xiuming Zhao‡, Fujun Li‡, Maratab Ali, Xiaoan Li, Xiaodong Fu, and Xinhua Zhang*

College of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, China
*Corresponding author. E-mail: zxh@sdut.edu.cn
‡These authors contributed equally.

Abstract

With the development of genome sequencing technologies, many long non-coding RNAs (lncRNAs) have been identified in fruit
and vegetables. lncRNAs are primarily transcribed and spliced by RNA polymerase II (Pol II) or plant-specific Pol IV/V, and exhibit
limited evolutionary conservation. lncRNAs intricately regulate various aspects of fruit and vegetables, including pigment accumulation,
reproductive tissue development, fruit ripening, and responses to biotic and abiotic stresses, through diverse mechanisms such as gene
expression modulation, interaction with hormones and transcription factors, microRNA regulation, and involvement in alternative
splicing. This review presents a comprehensive overview of lncRNA classification, basic characteristics, and, most importantly, recent
advances in understanding their functions and regulatory mechanisms.

Introduction
Fruit and vegetables are essential for a healthy diet as they provide
vital nutrients. At the molecular level, the growth, development,
and stress response of these plants are intricately regulated,
influencing characteristics such as color, flavor, and texture [1].
According to the central dogma of molecular biology, genetic
information is transcribed from DNA to RNA and then translated
into proteins [2]. Recent genome-wide and transcriptome analyses
have revealed that more than 50% of the Arabidopsis genome
is transcribed. However, only about 1.5% of these transcripts
undergo translation, and a significant portion are non-coding
RNAs (ncRNAs) that do not code for proteins [3]. Previously
considered as by-products of genomic transcription, ncRNAs have
gained attention in the fields of epigenetics and other scientific
disciplines. Extensive research has been conducted to explore the
involvement of ncRNAs in the growth, development, and stress
response of eukaryotes, providing a better understanding of their
functional characteristics and regulatory mechanisms [4]. Long
non-coding RNAs (lncRNAs) are a type of ncRNAs that are longer
than 200 nucleotides (nt). Most lncRNAs are shorter in length and
simpler in structure than protein-coding transcripts [5]. Some
lncRNAs may contain open reading frames (ORFs), that could
potentially encode short peptides of fewer than 100 amino acids,
although the exact functions of these peptides remain enigmatic
[6]. The first lncRNA, ENOD40, was discovered in 1993 [7], and
research in this field has advanced significantly with progress
in science and technology, including next-generation sequencing
(NGS), microarray, and comparative genomics. Recent studies
have uncovered various roles of lncRNAs in regulating the expres-
sion of protein-coding genes (PGs) at both transcriptional and

post-transcriptional levels, thereby influencing the growth, devel-
opment, and stress responses in fruit and vegetables. For instance,
ACoS-AS1 is involved in fruit coloration [8], fruit ripening-
related long intergenic RNA (FRILAIR) affects fruit maturation
[9], and lncRNA33732 is associated with fruit resistance [10]. In
the following sections, we summarize recent knowledge of the
formation, functional characteristics, and regulatory mechanisms
of lncRNAs in fruit and vegetables. Furthermore, we analyze the
current state of studies on the roles and mechanisms by which
lncRNAs mediate growth, development, and stress responses
in fruit and vegetables, and explore the potential applications
of these mechanisms in fruit and vegetable biotechnology and
genetic breeding. By analyzing the latest research progress on
lncRNAs in fruit and vegetables, our aim is to provide valuable
references for further research and practical application in
this field.

Formation and classification of lncRNAs
lncRNAs play a vital role within plant regulatory networks. They
are primarily transcribed and spliced by RNA polymerase II (Pol II)
and exhibit limited evolutionary conservation. Most lncRNAs
have 5′ caps and polyadenylation at the 3′ end, although some
lack poly-A tails [11]. Notably, in plants, a minority of lncRNAs
without poly-A tails are transcribed and spliced by plant-specific
Pol IV/V. These particular lncRNAs exhibit lower expression
levels and are characterized by high instability. LncRNAs
produced through Pol IV and Pol V transcription play a crucial
role in RNA-driven DNA methylation (RdDM), a complex and
unique regulatory mechanism that contributes to plant genome
stability [4].
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Figure 1. Biogenesis of lncRNAs. Four types of lncRNAs: intergenic lncRNAs (lincRNAs), sense lncRNAs, long non-coding antisense transcripts
(lncNATs), and intronic lncRNAs (incRNAs). TSS, transcription start site. Yellow, blue, and red represent intergenic, exon, and intron regions,
respectively. Black arrows denote the transcription direction and start site of the coding genes, whereas the red arrows represent the transcription
direction and start site of the lncRNAs.

Based on their transcription direction and position relative
to PGs, lncRNAs are classified into four types: intergenic lncR-
NAs (lincRNAs), long non-coding antisense transcripts (lncNATs),
sense lncRNAs, and intronic lncRNAs (incRNAs) (Fig. 1). lincRNAs
are mainly transcribed from regions located between two coding
genes, while lncNATs originate from the 3′ end of coding genes and
may overlap with coding gene exons. Conversely, sense lncRNAs
are transcribed from the 5′ end of the genome [12]. lincRNAs
predominate, followed by lncNATs. Sense lncRNAs, however, make
up only a small portion (Table 1).

Numerous lncRNAs have been identified in various fruit and
vegetables, exhibiting diverse characteristics and playing crucial
roles in fruit development and regulation (Fig. 2).

Basic characteristics of lncRNAs
lncRNAs found in fruit and vegetables are similar to mammalian
lncRNAs in terms of sequence characteristics, expression pat-
terns, and structural functions [36]. However, compared with the
well-established research on mammalian lncRNAs, the study of
lncRNA in fruit and vegetables is still in its early stages, par-

ticularly with regard to characteristic analysis, functional explo-
ration, and mechanism analysis. For example, while research on
mammalian lncRNAs has primarily focused on regulatory struc-
tural motifs, the analysis of lncRNA structural characteristics in
fruit and vegetables is beginning to explore the secondary and
tertiary structure levels [37]. Consequently, we have elucidated
the attributes of current fruit and vegetable lncRNAs, including
their abundance and size, structure and localization, as well as
evolution and decay.

Abundance and size
The transcription start sites and expression levels of lncRNAs
often correlate with their nearest PG. lncRNAs frequently exert
regulatory effects on neighboring genes, either in cis or trans mode,
playing crucial roles in plant growth and development [4]. In
contrast to PGs, lncRNAs tend to exhibit lower complexity in alter-
native splicing (AS), shorter lengths, and fewer exons and ORFs
[13, 35, 38]. Notably, lncRNAs identified in Fragaria vesca mainly
consist of lincRNAs and exonic lncNATs. Most lncRNAs are shorter
than 5000 bp, with a few intronic lncNATs and incRNAs being
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Figure 2. Functional diversity of lncRNA members in fruit and vegetables. The first row shows strawberries, radishes, mangoes, and peas; the second
row shows sea buckthorn, plum, cabbage, and cucumber; the third row shows blueberries, grapes, pomegranates, and melons; the fourth row shows
apple, pear, and mulberry; and the fifth row shows kiwi and tomato.

under 2500 bp in length [9]. Antisense lncRNAs in kiwifruit are
longer than other types of lncRNAs, while incRNAs are generally
shorter. A common feature of these lncRNAs is that ∼80% of
lncNATs are multi-exon transcripts, whereas 80% of lincRNAs and
incRNAs have only one exon [14]. Due to their widespread low
expression specificity, lncRNAs exhibit greater tissue-specific and
spatiotemporal expression patterns compared with PGs [6, 22]. For
instance, in strawberry, numerous lncRNAs show specific expres-
sion during particular developmental stages [9]. In lemon tissues,
including buds, fruit, peels, and leaves, differentially expressed
lncRNAs (DELs) were observed, with 48, 424, 65, and 11 DELs
identified in each tissue, respectively [19]. The number of DELs
during different developmental stages of sea buckthorn fruit was
reported to be much lower than that of mRNAs [21]. In addition,
lncRNAs also exhibit divergent characteristics. lncNATs have the
highest sequence conservation among lncRNAs, while lincRNAs
show the highest number of differentially expressed transcripts

in response to stress [6, 39]. The expression of lncNATs generally
correlates positively with that of their adjacent homologous PGs,
regardless of the transcriptional direction between lncNATs and
their neighboring genes. Such a correlation is crucial for the
expression of the adjacent PGs [40]. For example, 1059 of the 1411
lncRNAs responsive to cold stress in tomatoes were lincRNAs [29].

Structure and localization
It is well known that lncRNAs can form complicated secondary
and tertiary structures that are still not fully understood. These
structures play a crucial role in the interaction between lncRNAs
and other molecules, such as RNA, DNA, and proteins. In the
complex regulatory network of plants, the expression changes
of lncRNAs are extensively utilized to regulate gene expression
and coordinate phenotypic modifications. Fabbri et al. [41] have
identified two types of functional recognition sites for lncRNAs:
interaction modules that physically interact with RNA-binding
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proteins through base complementarity, and structural modules
located within the secondary and tertiary structures that facili-
tate interactions. Most lncRNAs contain both of these functional
elements.

In general, lncRNA distribution across chromosomes is rela-
tively even [24, 42]. However, there are exceptions to this char-
acteristic in certain species. For example, in sea buckthorn [21],
apple [27], and tomato [29] fruit, the distribution of lncRNAs in
chromosomes is non-uniform. In apples, lincRNAs exhibit a dense
distribution on chromosomes, while lncRNAs show the opposite
pattern. Sense lncRNAs are mainly found at both ends of the
chromosome, whereas lncNATs are primarily concentrated at one
end of the chromosome [23]. lncRNAs exhibit significant sequence
diversity but demonstrate strong conservation in their genomic
position [26, 42]. Unlike mRNAs, which need transport to the
cytoplasm for translation, lncRNAs can perform their functions
within the nucleus or be transported to other cellular organelles
following processing and modifications. The specific mechanisms
and expression patterns of lncRNAs within regulatory networks
vary significantly based on their subcellular localization. The
distribution of lncRNAs between the nucleus and cytoplasm is
unequal, with fewer lncRNAs in the cytoplasm. However, lncRNAs
in the cytoplasm are more stable compared with those in the
nucleus. The instability of nuclear lncRNAs arises from their
turnover, similar to transcription factors (TFs) in gene regulation.
This turnover leads to transcriptional changes in response to
environmental stimuli [43].

Evolution and decay
Compared with protein-encoding transcripts, lncRNAs are
characterized by lower synthesis efficiency, faster metabolism
and evolution rates, and decay patterns similar to those of
mRNAs [12]. The emergence or decline of lncRNAs in biological
systems can be attributed to genomic structural variations,
with transposons being a key factor in these variations [44].
Transposons are a special class of DNA sequences that can
appear at various genomic locations through transcription or
reverse transcription under the action of endonucleases. The
presence of transposons significantly contributes to genome
formation and evolution. In strawberries, a total of 14 552 lncRNAs
have been identified, with 59.2% derived from transposon
elements [45].

Role of lncRNAs in the growth,
development, and stress response of fruit
and vegetables
Role of lncRNAs in the growth and development
of fruit and vegetables
The significant role of lncRNAs in plant growth and development
has been extensively described in numerous reviews, encom-
passing plant growth differentiation, photomorphogenesis, leaf
morphology, and crop yield. Currently, extensive deep sequenc-
ing studies have identified a plethora of lncRNAs across vari-
ous developmental stages and tissues in fruit and vegetables.
These lncRNAs play crucial roles in diverse metabolic pathways
throughout the growth and development of fruit and vegeta-
bles. In this paper we primarily focus on the intricate metabolic
network regulated by lncRNAs during the growth and devel-
opment of fruit and vegetables, spanning topics such as pig-
ment accumulation, the development of reproductive tissue, and
fruit ripening.

Pigment accumulation
The accumulation of pigment and its resulting changes in color
are crucial characteristics in the ripening and development of
fruit and vegetables. These pigments serve as bioactive com-
pounds that reflect the unique nutritional and health attributes
of these horticultural products. Furthermore, pigment accumu-
lation is mostly influenced by the ripening stages. Monitoring
the changes in pigment content serves as a significant indica-
tor of fruit and vegetable development, profoundly influencing
post-harvest storage and management [46]. Previous studies have
shown that the lncNAT (ACoS-AS1) gene trans-splices the PSY1
gene, which codes for phytoene synthase (PSY), resulting in the
loss of PSY1 function. This genetic alteration subsequently results
in yellow coloration in tomatoes [8]. In two grape varieties, a total
of 25 699 lncRNAs were found in three stages of development.
These lncRNAs support a number of functions during grape devel-
opment, including photosynthesis, the development of cell walls,
and the formation of fruit color [47].

Anthocyanins, secondary metabolites found in fruit and veg-
etables, serve multiple functions. They play an important role in
regulating photosynthesis, filtering UV rays, and greatly boosting
the antioxidant capacity of fruit and vegetables. Research findings
indicate that LNC1 and LNC2 function as endogenous target mim-
ics (eTMs) for miR156a and miR828a, respectively, thereby regulat-
ing the expression of TFs (SQUAMOSA promoter-binding protein-
like 9) SPL9 and MYB114. This regulatory mechanism impacts
the anthocyanin content in sea buckthorn fruit [21]. In mul-
berry, lncNAT (ABCB19AS), derived from ABC transporter B19
(ABCB19), induces cleavage by miR477 to promote anthocyanin
accumulation by regulating ABCB19 expression [48]. In apple,
a transcriptional cascade involving WRKY1–LNC499–ERF109 has
been identified. WRKY1 activates the transcription of LNC499 by
specifically binding to the W-box on the LNC499 promoter, leading
to the upregulation of ERF109. The ERF109 protein induces the
expression of genes related to anthocyanin production during
the early stage of apple coloring, thereby promoting anthocyanin
accumulation. This entire transcriptional cascade regulates the
anthocyanin content in apple fruit [49]. Moreover, MLNC3.2 and
MLNC4.6 function as eTMs of miR156, inhibiting the cleavage of
SPL2-like and SPL33 transcripts by miR156a during photoinduced
anthocyanin biosynthesis in apple. This involvement allows them
to participate in the anthocyanin synthesis pathway [24]. Addi-
tionally, the expression of LNC610 [50] and LINC15957 [51] has also
been reported to enhance anthocyanin accumulation in apple and
radish, respectively.

Carotenoids are crucial pigments found in plant leaves,
flowers, and fruit. They attract pollen and seed dispersers for
pollination and seed dispersal while also providing protection
against damage from bright light. In two differently colored
mature sea buckthorn fruits, 61 DELs have been identified, with
23 specifically expressed in red fruit and 22 in yellow fruit. These
DELs play a role in carotenoid biosynthesis by regulating target
genes in either cis or trans mechanisms [22]. Similarly, in Capsicum
annuum, 2505 lncRNAs were identified, with 1066 differentially
expressed during fruit development. Numerous potential PGs
targeted by these DELs with cis or trans action participate in
carotenoid biosynthesis [16].

Reproductive tissue development
Flowering marks the beginning of the reproductive phase in
plants, wherein the meristem located at the apex of the stem
undergoes a transformation, giving rise to anthers, pollen, and
other inflorescence meristems. The development of reproductive
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tissue in fruit and vegetables is crucial for their reproduction
and is regulated by various factors. Extensive research has been
conducted on the role of lncRNAs in the reproductive tissues of
fruit and vegetables. Sequencing of Solanum lycopersicum Heinz
1706 and Solanum pimpinellifolium LA1589 tomatoes has identified
tissue-specific lncRNAs, with 62% in Heinz 1706 and 44% in
LA1589 specifically expressed in reproductive tissues [52]. In
addition, Yang et al. [53] identified a total of 10 919 lncRNAs in
the leaves, flowers, and roots of tomatoes, which play vital roles
in regulating the formation of the flower intima. In cucumber,
3274 lncRNAs associated with sexual differentiation and fruit
development were identified, with 94 of them found to play a
role in reproductive and sexual differentiation processes [54].
In mulberry, 1133 lncRNAs were identified in various tissues,
with 106 of them exhibiting tissue-specific expression. Among
these, LNC_0132, LNC_0521, and LNC_0782 are located near
coding genes involved in flower development and exhibit specific
expression in flowers [55]. The formation of multiple pistils
in Prunus mume is associated with two lncRNAs, XR_514690.2
and TCON_00032517, and a total of 2572 lncRNAs involved in
flower development were identified [56]. Furthermore, lncRNAs
associated with both pollen and flower development have also
been identified in other horticultural crops, such as Brassica rapa
[57], F. vesca [42], and Poncirus trifoliata [58]. It is worth noting
that some fruit and vegetables require a period of sustained low
temperature, known as vernalization, to facilitate the emergence
of reproductive buds and the transition from vegetative growth
to reproductive growth. In Beta vulgaris, three lncRNAs (GL15X1,
AGL15X2, and CAULIFLOWER A) have been found to be associated
with the vernalization process [59]. Additionally, in Brassica
campestris, the lncRNA BcMF1, which is specific to pollen, plays a
critical role in ensuring efficient pollen germination and pollen
tube elongation. Suppression of BcMF1 expression results in
various abnormal phenotypes during pollen development, such
as delayed degradation of the tapetal layer, and extensive pollen
grain atrophy [60].

Fruit ripening
Fruit ripening is a genetically regulated, highly coordinated, and
irreversible process that represents a distinct stage in the life cycle
of higher plants [61]. It is characterized by a series of physiological,
biochemical, and sensory changes in the fruit, ultimately leading
to optimal fruit quality. In recent years, numerous lncRNAs have
been identified to participate in the ripening process across vari-
ous fruits, including tomato [32], kiwifruit [62], sea buckthorn [21],
melon [63], and peach [26]. In apple, specific lncRNAs expressed
during the early stages of fruit development and maturation
play a crucial role. They are involved in a multitude of biologi-
cal processes, including energy production and transformation,
and carbohydrate transport and metabolism, as well as post-
translational modification and protein conversion [64]. Similarly,
in melon, multiple lncRNAs with high expression abundance have
been identified at different maturation stages. Enrichment anal-
ysis has revealed their involvement in fruit growth, development,
and ripening through the mediation of auxin signal transduc-
tion, ethylene (ET) and sucrose biosynthesis and metabolism,
the abscisic acid (ABA) signaling pathway, and TF regulation
[63]. Furthermore, significant progress has been made in unrav-
eling the roles and regulatory mechanisms of certain lncRNAs
in the intricate process of fruit ripening. For instance, miR397
has been identified as a key regulator of strawberry ripening,
acting by cleaving lincRNA FRILAIR transcripts associated with
fruit ripening. Notably, overexpression of FRILAIR in strawberry

fruit leads to an accelerated ripening phenotype [9]. In addition,
the loss of function of several lncRNAs, including lncRNA1459
[65], lncRNA1840 [32], and lncRNA2155 [66], has been found to
inhibit ET production and lycopene accumulation, leading to
a ripening inhibition phenotype in tomato fruit. Moreover, the
expression of lncRNA314 was found to be significantly upreg-
ulated during the breaker and ripening stages of tomato fruit,
and correlation analysis has revealed its co-expression with the
adjacent ATP binding cassette (ABC) transporter gene. Interest-
ingly, its expression is restricted in a tomato ripening mutant [52].
In apple, three lncRNAs (TCON_00131720, TCON_00025525, and
TCON_00032426) have been identified as targets associated with
auxin/indole-3-acetic acid 32, SAUR-like auxin-responsive pro-
tein (SAUR36), and peroxidase A2-like, respectively. These lncR-
NAs are implicated in the regulation of apple fruit ripening [25].
Additionally, in the context of grape berry ripening, six lncRNAs
(TCONS 00221683, TCONS 00684459, TCONS 00022149, TCONS
00167247, TCONS 00258125, and TCONS 00261813) have been
pinpointed as key regulators [35]. It is worth noting that fruit aging
is closely linked to fruit quality and stress response, resulting in
significant changes in fruit color, texture, flavor, nutritional value,
and resistance. In pear fruit, a total of 3330 lncRNAs have been
identified with 2060 and 537 lncRNAs responsive to high- and low-
temperature conditions, respectively. Among these DELs, 82 and
24 have been associated with fruit senescence, and 33 lncRNAs
have been predicted to be involved in fruit senescence regulation
through the competing endogenous RNA (ceRNA) network under
varying temperature and pressure conditions. Moreover, the inter-
action between LNC_000249-miR172, LNC_000862-miR390a, and
LNC_002622-Novel_173 modulates the expression of pbro25174.1,
pbr031098.1, and pbro18118.1, respectively, thereby regulating the
accumulation of anti-aging compounds [28]. This demonstrates
the intricate web of lncRNA-mediated regulation in fruit ripening
and aging.

Other metabolic processes
Granulation, a post-harvest disorder in navel orange fruit, is
characterized by the spread of granulation from the fruit stem,
leading to reduced sugar and organic acid content in the juice sac
and sensory deterioration. In orange, Yao et al. [39] identified 486
lncRNAs involved in orange granulation through the regulation of
genes associated with cell wall metabolism and cellulose biosyn-
thesis, metabolism, and enzyme activity. Further analysis of the
differentially expressed genes (DEGs) during granulation revealed
their potential role in granulation through the regulation of cell
wall metabolism-associated genes. Bud endogenous dormancy, a
response to cyclical environmental changes, relies on gene expres-
sion regulation influenced by low temperature and a short pho-
toperiod for bud release. Failure to break endodormancy results
in unsuccessful flowering. In Pyrus pyrifolia, Pp-miRn182, derived
from lncRNA PpL-T31511, targets the type 2C protein phosphatase
1 (PP2C1) and participates in hydrogen cyanide-induced endodor-
mancy release via the PP2C–H2O2 pathway [67]. Browning is a
common phenomenon in fruit and vegetables during post-harvest
storage and fresh cutting, resulting in appearance loss, as well as
reduced storage duration, flavor, and nutritional value. Through
SMRT-seq and RNA-seq analyses of two browning varieties, a
total of 254 lncRNAs were identified. Notably, specific lncRNAs,
such as PB.15038, PB.156.1, PB.7534.1, and PB.8714.2, were found
to target coding genes associated with peroxidase (POD), polyphe-
nol oxidase (PPO), chalcone synthase (CHS), and cinnamoyl-CoA
reductase (CCR), respectively. Additionally, lncRNA PB.6461.1 and
PB.13941.1 target 4-coumarate:CoA ligase (4CL), which regulates
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enzymatic browning in sand pear flesh by targeting relevant
enzyme-coding genes [68]. Secondary metabolites significantly
contribute to the market value and overall quality of fruit and
vegetables, including vitamin C, citric acid, flavonoids, and stress-
responsive terpenoids. In four lemon tissues, 11 814 lncRNAs were
identified, with 632 lncRNAs showing a high correlation with 5810
mRNAs. Among them, 113 lncRNAs were involved in terpenoid
metabolism through associated mRNAs, while 29 lncRNAs played
a role in flavonoid metabolism pathways [19]. In the three ripen-
ing stages of the peach fruit, a total of 575 DELs were identified,
and enrichment analysis indicated their potential contribution
to the physiological and metabolic changes associated with fruit
ripening, particularly in flavonoid biosynthesis and aroma com-
pound accumulation [26].

Role of lncRNAs in the stress response of fruit
and vegetables
Biotic stress
Crops are susceptible to various biological stresses both before
and after harvest, which significantly impact their growth, devel-
opment, and overall quality. These stresses include pathogens,
insect pests, and parasitic organisms, resulting in considerable
losses in fruit and vegetable yield and quality. Pathogen infections
are a major cause of fruit and vegetable diseases, contribut-
ing significantly to spoilage. In response to pathogen infections,
fruit and vegetables undergo a dynamic molecular response to
enhance their immune capabilities. For instance, in tomato plants
a study identified 196 lncRNAs that respond to Phytophthora infes-
tans infection. Among them, 148 lncRNAs regulate the expres-
sion of 771 genes through 887 lncRNA–mRNA pairs, participat-
ing in the resistance reaction. Functional analysis demonstrated
that lncRNA42705 and lncRNA08700, acting as targets of miR159,
influence the expression of MYB and enhance tomato resistance
to P. infestans [69]. Additionally, lncRNA23468 and lncRNA08489
function as eTM regulatory nucleotide-binding site–leucine-rich
repeats (NBS-LRRs) for miR482b and miR482e-3p, respectively.
The expression of NBS-LRR is involved in tomato resistance to
P. infestans through the ROS clearance system. Another lncRNA,
lncRNA16397, which is an antisense transcript of the glutaredoxin
gene (GRX22), induces GRX21 expression, reduces ROS accumula-
tion, alleviates cell membrane damage, and enhances resistance
to P. infestans [70]. Furthermore, the expression of lncRNA33732
induces the activity of respiratory burst oxidase (RBOH), lead-
ing to the accumulation of H2O2 and enhancing tomato resis-
tance to P. infestans [10]. Wang et al. [71]identified 2056 lncR-
NAs (including 1767 lincRNAs and 289 lncNATs) in response to
tomato yellow leaf curl virus (TYLCV) infection and confirmed
the positive role of LNC0957 expression in tomato resistance to
TYLCV. Additionally, LNC1077 and LNC0195 participate in the
response of tomatoes to TYLCV infection as targets of miR399
and miR166, respectively [72]. Normal transcription of LNR1 con-
tributes to tomato resistance to TYLCV, while overexpression
inhibits TYLCV accumulation, and silencing LNR1 leads to a phe-
notype of TYLCV infection in tomato [73]. Zhou et al. [74]reported
that Bacillus subtilis SL18r triggers tomato resistance to Botrytis
cinerea by activating lncRNA MSTRG18363, which functions as a
decoy to suppress miR1918, resulting in the inhibition of its target
gene SlATL20, ultimately inducing systemic pathogen resistance.
In various melon varieties, 407 and 611 DELs are involved in
powdery mildew disease infection, and their regulation occurs
through stress response targeting [75]. In Brassica napus, 931 lncR-
NAs were identified as responsive to Sclerotinia sclerotiorum infec-
tion [76]. Furthermore, 464 lncRNAs exhibited differential expres-

sion in clubroot-sensitive lines of rapeseed. Enrichment analysis
revealed that these lncRNAs participate in clubroot resistance
through interactions with pathogens, hormone signaling path-
ways, and primary and secondary metabolic pathways [77].

Abiotic stress
Fruit cracking

Fruit cracking is a serious physiological disorder that not only
renders fruit susceptible to pathogens and water loss but also
compromises its postharvest storage quality. Fruit cracking is
mostly caused by the disharmony between the storage environ-
ment and internal growth of the fruit, as well as the rupture
of the fruit epidermis or cuticle, and, more seriously, it affects
the pulp tissue, providing an entry point for diseases and pests,
thereby shortening the fruit’s storage life. In-depth sequencing
analysis of tomato fruit, both resistant and susceptible to
cracking, identified 21 048 lncRNA–mRNA targeting relationships.
Analysis of the lncRNA–mRNA regulatory network revealed that
specific lncRNAs coordinate the expression of related genes
in the hormone–redox cell wall module, thereby regulating
tomato fruit cracking. Notably, lncRNAs such as XLOC_033910,
XLOC_007053, and XLOC_008464 were found to play crucial roles
in this regulation [38]. Bagging is an effective measure to prevent
fruit cracking in pomegranate. Analysis of lncRNAs libraries from
cracked, uncracked, and bagged pomegranate fruits identified
3194 lncRNAs, with 42 and 35 DELs identified in the cracked
versus uncracked fruit group and cracked versus non-cracked
fruit after bagging group, respectively. These DELs are involved in
calcium ion binding, glycerophospholipid metabolism, flavonoid
biosynthesis, cell wall biogenesis, xylodextran metabolism,
hormone signaling, and starch and sucrose metabolism through
cis- or trans-regulated differential transcripts, thus influencing
the cracking of pomegranate fruit [27].

Nutritional stress

Phosphorus (Pi) is an essential nutrient for the growth and devel-
opment of fruit and vegetables. However, the utilization efficiency
of Pi in fruit and vegetables crops is very low, and the unab-
sorbed Pi will cause environmental pollution. Therefore, studying
the molecular regulatory mechanisms of fruit and vegetables
under Pi starvation conditions is of great significance to ensure
their growth, development, and yield. In tomato, a Pi starvation-
induced lncRNA TPSI1 has been identified at an early stage. TPSI1
shows rapid upregulation in roots and leaves under Pi starvation,
followed by a rapid decrease after Pi supplementation [78]. This
suggests lncRNA involvement in the early response to Pi starva-
tion. In addition, iron (Fe) is another essential nutrient for plant
growth. In apple, it has been found that Fe deficiency induces
the expression of lncRNA MSTRG.85814 in the roots, specifically
its splicing variant MSTRG.85814.11, which targets the mRNA of
SAUR32 and activates proton extrusion in response to Fe defi-
ciency [79].

Temperature stress

Low-temperature storage is an effective method to delay the
metabolic process of fruit and vegetables, preserving their
quality. However, some cold-sensitive produce, such as tomato,
banana, and mango, are susceptible to freezing damage at low
temperatures, resulting in a significant decline in their quality. In
tomato, 239 DELs were identified in response to low-temperature
stress, and functional analysis showed that these DELs mediated
the tomato fruit’s response to cold stress by influencing the
expression of enzymes related to redox reactions, cell wall
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degradation, membrane lipid catalase, cold and heat shock
proteins, energy metabolism, and salicylic acid (SA) and ABA
metabolism [29]. In mango, a total of 7610 lncRNAs were identified
in response to temperature changes. Notably, lnc26299 was found
to have the capability to interact with related cDNA 12B (RC12B),
a protein that exhibited significant upregulation in response to
cold stress [80]. Additionally, Lai et al. [62] found that lncRNAs
play an important regulatory role in the low-temperature storage
of kiwifruit by mediating the expression of genes related to
starch and sucrose metabolism and cell wall modification. High-
temperature stress can disrupt cellular homeostasis, hinder
the growth of fruit and vegetables, and reduce their stress
resistance. In cucumber, a total of 2085 lncRNAs have been
identified in the response to high-temperature stress. Among
these, TCON_00031790, TCON_00014332, TCON_00014717, and
TCON_00005674 interact with miR9748 through the plant
hormone signal transduction pathway in response to high-
temperature stress [81]. Furthermore, 10 001 lncRNAs in headless
Chinese cabbage were identified as responsive to temperature
changes [82].

Salt stress

Salinity is a crucial environmental factor that limits plant growth
and development. High salinity exerts detrimental effects on crop
productivity, impacting various physiological and biochemical
processes. To investigate the molecular mechanisms underlying
tomato salt tolerance, a high-throughput sequencing analysis
was conducted on both wild-type and cultivated tomatoes with
high salt tolerance. In tomato, the functions of salt-induced lncR-
NAs were reported by Li et al. [33], who found that the target
genes of these lncRNAs were closely related to some pathways,
such as phytohormone metabolism, photosynthesis, and pro-
tein/amino acid metabolism. These lncRNAs might respond to
the salt stress process by interacting with microRNAs (miRNAs),
and these interactions vary among different tomato varieties
depending on their salt stress resistance levels. In addition, Li et al.
[83] found that miRNA–lncRNA–mRNA networks play important
roles in regulating gene expression to modify growth, improve
photosynthesis, glycometabolism, and energy metabolism, adjust
plasma membrane permeability, regulate TF, and participate in
the phosphoinositol signaling system during adaptation to salt
stress in sugar beet. In salt-induced grape roots, a total of 1661
DELs were identified, which regulated the expression of 546,
771, and 608 mRNAs through cis-, trans- and miRNA-mediated
mechanisms, respectively. These DELs were involved in transcrip-
tional regulation, ubiquitin–proteasome pathways, multi-heavy
ion binding, and electron carrier activity [84].

Drought stress

Drought is a significant abiotic stress that affects global crop
yield. It impacts various aspects of plant biology, including male
organ development, stomatal movement, morphological changes,
biosynthetic and antioxidant pathways, and respiratory path-
ways. Some lncRNAs have been implicated in plant responses
to drought stress. For instance, the TF CYCLING DOF FACTOR 1
(StCDF1), a central regulator of the circadian clock, has a natural
antisense transcript (StFLORE) with antiphasic gene expression
over the circadian cycle. StFLORE regulates water loss by affecting
stomatal growth and diurnal opening in Solanum tuberosum [85]. In
soybeans, an abiotic stress-related lncRNA, namely lncRNA77580,
was identified, and its overexpression enhanced drought toler-
ance [86]. Drought-responsive lncRNAs have also been identified
in various fruits and vegetables, including sugar beet [87], tomato

[88], Brassica juncea [89], and B. napus [90]. To unravel the regu-
latory mechanisms of lncRNAs in tomato under drought stress,
Eom et al. [91] conducted a comprehensive analysis of transcrip-
tome data from drought-treated tomato leaves, and identified
521 drought-responsive lncRNAs, which were found to target 92
miRNAs and 183 mRNAs, thereby regulating stimulus response
and signal transduction pathways. Notably, the drought-induced
lncRNA467 was found to potentially impact stomatal motility
by targeting Solyc11g011500, while lncRNA025 was observed to
enhance chloroplast energy balance in response to drought stress.

Molecular function of lncRNAs
LncRNAs and gene expression
Genes serve as the fundamental units governing the genetic char-
acteristics of living organisms. The regulation of gene expression,
including transcriptional control and protein translation modi-
fication, is crucial for the viability and phenotypic alterations
of plants. Extensive research has been conducted into the rela-
tionship between lncRNAs and gene expression. For example,
the knockout of lncRNA1459 in tomato fruit resulted in a large
number of DEGs and DELs, including genes involved in ET and
carotenoid biosynthesis, which exhibited significant downregu-
lation [65]. lncRNAs regulate gene expression primarily through
cis/trans mechanisms (Fig. 3A). The cis-regulatory effects of lncR-
NAs can be classified into three types: (i) the lncRNA transcript
itself modulates the expression of adjacent genes by its ability to
recruit regulatory factors to loci and/or regulate their function;
(ii) the transcription and/or splicing of the lncRNAs itself can
confer gene-regulatory functions that are independent of the
RNA transcript’s sequence; and (iii) the cis-regulation is solely
determined by DNA elements within the lncRNA promoter or gene
locus and is completely independent of the coding RNA or its
production. The trans-regulatory effects of lncRNAs can also be
classified into three types: (i) lncRNAs that regulate chromatin
states and gene expression in regions distant from their tran-
scription site; (ii) lncRNAs that influence nuclear structure and
organization; and (iii) lncRNAs that interact with and regulate the
behavior of proteins and/or other RNA molecules. By employing
predictive techniques to evaluate the correlation in mRNA expres-
sion between lncRNAs and their adjacent genes within the 100-
kb region both upstream and downstream, it becomes feasible
to effectively analyze the cis-regulatory target gene pairs asso-
ciated with the lncRNAs. Furthermore, identifying lncRNA trans-
regulatory relationships requires a larger sample size (exceed-
ing six samples), and co-expression analysis can predict trans-
regulatory target gene pairs that are not in close proximity to
the lncRNAs (beyond the 100-kb region) [38]. A large number of
lncRNAs have been identified in fruit and vegetables that can
regulate mRNA expression in a cis/trans manner. For example, in
Prunus persica, Zhou et al. [20] identified 575 lncRNAs that regulate
the expression of 7103 mRNAs through cis/trans mechanisms, with
an average of 12 target mRNAs per lncRNA. In apples, a novel
lncRNA, lncRNAPG1, was shown to be located in the promoter
region of polygalacturonase 1 (MdPG1) and inhibited the expression
of MdPG1 by cis action [92]. In a study by Zhang et al. [22] on sea
buckthorn fruit, a total of 2303 lncRNAs were identified as regu-
lators of gene expression in cis, while 2762 lncRNAs were found
to regulate gene expression in trans. Notably, certain lncRNAs,
such as XLOC_267510, XLOC_338163, and XLOC_169881, exhibited
both cis and trans regulatory roles. Similar regulatory mecha-
nisms of lncRNAs in gene expression have also been reported
in many other fruits and vegetables, including tomato [30], hot
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pepper [16], and Cucumis melo [63]. In recent years, numerous
reports have highlighted the impact of lncRNAs on fruit and
vegetable quality through gene expression regulation. However,
comprehensive studies on the mechanism of lncRNA-mediated
gene expression regulation, specifically in fruit and vegetables,
are lacking. Particularly, the influence of lncRNAs on chromatin
modification and nuclear modification in fruit and vegetables
remains unexplored. However, further experimental evidence is
required to demonstrate the cis/trans regulatory mechanisms of
lncRNAs in fruit and vegetables.

lncRNAs and plant hormones
Plant hormones, including cytokinin, ABA, ET, brassinosteroid
(BR), jasmonic acid (JA), and SA, play a crucial role in coordinating
various life activities, such as the growth and development of
fruit and vegetable crops. These trace endogenous substances are
involved in intricate molecular regulatory networks, regulating
gene expression, enzyme activity reactions, and signal cascade
reactions, which also include the regulation of lncRNAs (Fig. 3B).
For example, 382 and 78 lncRNAs were identified in response to
ABA treatment in strawberries [45]. In kiwifruit, 78 lncRNAs were
identified in response to ABA treatment, and the upregulation
of these lncRNAs induced by ABA treatment led to increased
ET biosynthesis and fruit softening [13]. A new lncRNA, TCON
_00202033, has been found to be associated with SA-mediated
signaling pathways, playing a role in the innate immune response
of kiwifruit [15]. Similarly, lncRNAs also play a crucial regulatory
role in the synthesis and signal transduction of plant hormones,
thereby influencing the development, ripening, and stress
responses of fruit and vegetables. In tomato fruit, numerous
lncRNAs have been found to target genes associated with ET
signaling, such as auxin response factor, induction protein, F-
box proteins, ERFs, and MADS-box proteins [93]. Additionally,
some lncRNAs can modulate the response to salt stress by
controlling the synthesis and signaling pathways of ABA, BR, and
ET (Fig. 3B) [33]. In our previous study, we found that lncRNA4504
mediates methyl jasmonate-induced fruit resistance to gray mold
by upregulating the expression of genes associated with the
JA signaling pathway [94]. Additionally, in C. melo, LNC_002345
and LNC_000154 were found to potentially co-regulate with
multiple genes involved in auxin signal transduction and act
in the same pathways, while lncRNAs associated with fruit
ripening and the climacteric phase (LNC_000987, LNC_000693,
LNC_001323, LNC_003610, LNC_001263, and LNC_003380) may
participate in the regulation of ET biosynthesis and metabolism,
as well as the ABA signaling pathway [63]. In P. mume, the lncRNA
TCON_00032517 might contribute to the formation of multiple
pistils by inducing the expression of the cytokinin negative
regulator gene A-ARR [56]. In pear fruit, the lncRNA PpL-T31511
is involved in the regulation of bud dormancy by influencing the
expression of 2C protein phosphatase (PP2C), a crucial component
in the ABA signaling pathway [67]. In mango, Moh et al. [80]
identified a heat-responsive lncRNA, HRlnc11351, which plays
a role in mango development and stress response by targeting
3-ketoacyl-CoA thiolase 2, an enzyme involved in the β-oxidation
of fatty acids as well as ABA signal transduction. The above
findings indicate that the interaction between plant hormones
and lncRNAs establishes a versatile regulatory mechanism
that impacts the development and physiology of fruit and
vegetables. It is important to note that most of these regulatory
associations between lncRNAs and plant hormones have been
inferred through omics analysis combined with bioinformatics
predictions. Therefore, further investigation is necessary to

gain a comprehensive understanding of the precise roles and
regulatory mechanisms of lncRNAs in the biosynthesis and signal
transduction pathways of various plant hormones.

LncRNAs and transcription factors
TFs, similar to plant hormones, play a crucial role in regulating
various life processes, including the development, ripening, and
stress responses of fruit and vegetables. TFs recognize promoter
elements to orchestrate gene expression at the transcriptional
level. Notably, similar to PG, the transcription of lncRNAs also
relies on the recognition of their promoters by TFs (Fig. 3C). For
example, Yu et al. [66] identified 187 lncRNAs that were directly
targeted by TF ripening inhibitor (RIN), with each promoter con-
taining RIN binding sites. Cui et al. [10] also discovered 199 lncR-
NAs that significantly contribute to WRKY1-mediated resistance
to P. infestans, with 22 of their promoter regions containing WRKY1
recognition sites. Among these, lncRNA33732 was activated by
WRKY1 through specific interactions with the W-box element
in its promoter, leading to the induction of respiratory burst
oxidase expression and an increase in H2O2 accumulation in the
early defense reaction of tomato to P. infestans attack. On the
other hand, lncRNAs can also regulate the activities and func-
tions of TFs through various mechanisms, thereby controlling the
metabolic processes of fruit and vegetables (Fig. 3C). For exam-
ple, in tomato fruit, lncRNAZ078 targets ERFs, while lncRNAZ107
and lncRNAZ141 target MADS-box proteins and F-box proteins,
respectively, to participate in regulating ET metabolism [93]. Over-
expressing LINC15957 in Raphanus sativus leads to distinct expres-
sion patterns of several TFs, including MYB, bHLH, WD40, bZIP,
ERF, WRKY, and MATE [51]. In apple, WRKY1 activates the expres-
sion of LNC499 by targeting its promoter, which subsequently
regulates the expression of ERF109 through cis-regulation [95]. In
different development stages of grape, a total of 56 441 lncRNAs
were identified, and these lncRNAs were found to interact with
19 TF families, including AP2, ERF, bHLH, bZIP, C3HL, and ERF,
collectively contributing to the regulation of fruit development.
Additionally, alterations in lncRNA expression can also indirectly
influence the activity of TFs through mechanisms such as miRNA
regulation and other targets. For example, in tomato, several
lncRNAs, namely lncRNA42705/lncRNA08711, lncRNA39896, and
lncRNA11265/lncRNA15816, have the potential to function as
eTMs for miR159, miR166b, and miR164a-5p, respectively. This
interaction modulates the activities of MYB, HD-Zip, and NAC TFs,
consequently playing a role in tomato resistance to P. infestans [69].
In P. mume, the lncRNA TCON 00032517 modulates the expression
of AP2 TF through the regulation of its target gene, significantly
influencing flower development [56]. Based on the above findings,
it is clear that the interaction between lncRNAs and TFs is heavily
involved in the regulation of various aspects of fruit and vegetable
life processes.

lncRNAs and microRNA
Numerous studies have demonstrated that lncRNAs are involved
in the physiological processes and stress responses of fruit and
vegetables via interactions with miRNAs. miRNAs are short
ncRNAs consisting of 2124 nt that play crucial roles in post-
transcriptional regulation by inhibiting gene translation or
degrading target mRNAs. Through the regulation of miRNAs,
lncRNAs play a role in the metabolic regulation of fruit and
vegetables. Due to the presence of eTMs of mature miRNAs within
lncRNAs, lncRNAs act as ceRNAs to decoy mature miRNAs and
thereby suppress their expression (Fig. 3D). For example, tomato
lncRNA39026, lncRNA23468, and lncRNA08489 contain the eTMs
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Figure 3. Regulatory mechanisms of lncRNAs in fruit and vegetables. A lncRNAs regulate the expression of genes in cis or trans configuration. B Mutual
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of mature miR168a, miRNA482b, and miR482-3p, respectively, to
inhibit their expression, increasing the immunity of tomato to P.
infestans. In apple, two putative eTMs (MLNC3.2 and MLNC4.6)
have been identified for miRNA156a. These lncRNAs inhibit
miR156a from cleaving squamosa promoter-binding protein-like
(SPL) TFs SPL2-like and SPL3, which in turn control anthocyanin
biosynthesis under photoinduced conditions [24]. Different from
the mechanism mentioned above, certain lncRNAs, such as
tomato lncRNA15492, can inhibit the expression of mature
miR482a by binding with pre-miR482a, which is located on the

antisense sequence of lncRNA15492 [96]. Additionally, some
lncRNAs containing pre-miRNA sequences can act as miRNA
precursors, thereby promoting miRNA expression (Fig. 3D).
Currently, omics analysis has identified multiple lncRNAs that
can act as miRNA precursors and promote the production of
miRNAs in many horticultural crops, such as rape [76], melon [75],
and tomato [30], contributing to their development and stress
responses. On the other hand, the expression and function of
lncRNAs can be regulated through miRNA cleavage. Yang et al.
[73] found that a specific lncRNA named SlLNR is cleaved by
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small interfering RNAs (siRNAs) from TYLCV, resulting in the
inhibition of its expression. Additionally, the cleavage of lncRNAs
by miRNAs can trigger the generation of phased, secondary, siRNA
(phasiRNA) (Fig. 3D). For example, 25-nt viral small-interfering
RNAs derived from non-coding intergenic regions of tomato can
disrupt SlLNR1, leading to its silencing and rendering tomato
plants more susceptible to TYLCV infection. In mulberry, Gai
et al. [97] revealed that miR3954 targets LNC1, resulting in the
production of a 21-nt siRNA (si161579). This siRNA regulates the
expression of calmodulin-like 27 (MuCML27), conferring resistance
to pathogens as well as contributing to salt and drought stress
responses. Additionally, in tomato, a particular interaction model
between lncRNA15492 and miR482a was discovered by Jiang
et al. [96], who proposed that lncRNA15492 could inhibit the
expression of mature miR482a because pre-miR482a is located on
the antisense sequence of lncRNA15492, while mature miR482a
could also cleave lncRNA15492 to relieve the inhibition of pre-
miR482a, leading to an increase in the accumulation of mature
miR482a. This interaction between miR482a and lncRNA15492
affects the resistance of tomatoes to P. infestans by maintaining the
homeostasis of NBS-LRR. The above research results indicate that
lncRNAs can play important regulatory roles in the development
and stress response of fruit and vegetables through various
interactions with miRNAs.

lncRNAs and alternative splicing
Alternative splicing (AS) is prevalent in eukaryotic plants and
plays a crucial role in the complexity of the biological transcrip-
tome and proteome by modulating gene splicing sites, which
significantly contributes to the growth and development of fruit
and vegetables [98]. The diversity of lncRNAs is intrinsically linked
to AS, as different modes of AS can generate multiple lncRNA vari-
ants from the same genomic region (Fig. 3E). For instance, in pear,
a single gene can produce four lncRNA variants (LNC_000443,
LNC_000444, LNC_000445, and LNC_000446) through distinct AS
modes [28]. Similarly, during the early flowering stage in tomatoes,
16 995 AS events were identified in 72.55% of lncRNAs across
flowers, leaves, and roots [98]. Additionally, lncRNAs can regulate
gene expression by interacting with AS factors, impacting their
function. They can also form double-stranded complements with
pre-mRNA, thereby affecting the splicing of targeted pre-mRNA
molecules (Fig. 3E). Moreover, lncRNAs can affect target gene chro-
matin remodeling, which indirectly affects pre-mRNA AS. A com-
prehensive understanding of the regulatory interplay between
lncRNAs and AS can optimize their relationship, ultimately lead-
ing to improved fruit and vegetable quality. As an example, the
trans-splicing interaction between ACoS-AS1 and the PSY coding
gene PSY1 affects the functionality of PSY1, leading to the yellow
phenotype in tomato fruit. Conversely, CRISPR/Cas9 knockout of
ACoS-AS1 results in a red phenotype in tomato fruit [8].

Conclusions and perspective
The development of high-throughput sequencing technology has
greatly enhanced the ability to discover, predict, and identify
lncRNAs. Techniques such as paired-end strand-specific RNA
sequencing have continuously revealed a growing number of
lncRNAs expressed in fruit and vegetable crops [13, 19, 28].
However, there is an absence of substantial lncRNA data in plant
databases specifically related to fruit and vegetables, such as
LncPheDB, CANTATAdb, and PlncRNADB, which predominantly
focus on food crops. Currently, there is an urgent need to
develop a comprehensive collection of lncRNAs associated

with fruit and vegetables. This collection should resemble the
human lncRNA database, LncSEA, and facilitate the annotation
and concentration analysis of lncRNAs for the purpose of
analyzing their regulatory effects both upstream and downstream
[99]. In terms of lncRNA localization, tools like LncLocator,
iLoc-LncRNA, and RNALocate have been developed to predict
lncRNA subcellular localization. Traditional methods for lncRNA
localization verification, such as FISH, are rarely used in fruit
and vegetable analysis due to the particularities (such as plant
autofluorescence) of plant tissues and the limited applicability
of FISH technology. Instead, the karyoplasmic localization infor-
mation of lncRNAs is often determined through the separation
of nuclear and cytoplasmic RNA in fruit and vegetable tissues.
Subsequently, the regulatory relationship between lncRNAs and
miRNAs is further analyzed. Functional exploration of lncRNAs
in fruit and vegetable crops can be achieved by overexpression,
RNAi, and CRISPR/Cas9 genome editing techniques. However,
the limitations of these technologies confront uncertainties in
the functional analysis and mechanism exploration of fruit
and vegetable lncRNAs. Despite the development of prediction
methods for exploring the regulatory mechanisms of lncRNAs
in fruit and vegetables, such as CNN, IndRNN, PmliPred, DRPLPI,
and PLncWX, the confidence and applicability of the prediction
results are restricted by database limitations. Despite the fact that
our paper demonstrates that lncRNAs play a role in a variety of
biological processes in fruit and vegetable crops, such as pigment
accumulation, reproductive tissue development, fruit ripening,
and stress responses, research on lncRNAs in fruit and vegetable
crops is still in its early phase. In particular, little research has
been done on the precise regulatory mechanisms of lncRNAs
in fruit and vegetable crops. Research methods for lncRNAs
in animals and even in model plants like Arabidopsis thaliana
should be extended to lncRNAs in fruit and vegetable crops.
The incomplete biological information database of fruit and
vegetable lncRNAs, especially the lack of gene chip data, seriously
affects the function prediction and regulatory mechanism studies
of lncRNAs. The exploration of the function and mechanism
of lncRNAs in fruit and vegetables crops has just begun, and
rapid progress and development of technology will bring new
opportunities and breakthroughs for lncRNA research in fruit
and vegetable crops.
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