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Abstract
From an evolutionary perspective,  fruit  abscission is  an intelligent regulatory mechanism by which fruit  trees adapt to their  environment and

ensure  offspring.  However,  from  an  agricultural  production  standpoint,  unwanted  fruit  abscission  can  cause  significant  loss  in  fruit  yield  and

economic value. Therefore, investigating the mechanisms of fruit abscission has always been an important focus in the field of plant research.

Acquiring a thorough comprehension of the underlying mechanisms responsible for fruit abscission is highly valuable for enhancing fruit crop

breeding and optimizing harvesting practices. In this review, we focus on fruit abscission, particularly discussing the nature of abscission cues

within the abscising fruit,  how these signals are generated and transmitted, and how the abscission zone cells perceive and respond to these

signals in woody fruit crops.
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 Introduction

The process of fruit abscission is crucial for the overall deve-
lopment of fruit crop species, both in terms of their vegetative
and  reproductive  growth.  This  process  has  been  a  subject  of
immense  interest  and  research  in  the  field  of  plant  biology,
spanning  from  historical  to  contemporary  times.  Many  woody
fruit  crop  species  produce  a  large  number  of  flowers,  which
may  be  an  adaptive  strategy  to  attract  pollinators  and  ensure
offspring.  However,  once  the  fruits  begin  to  set  and  develop,
excess  flowers  abscise  naturally[1].  Several  woody  fruit  crop
species undergo significant fruit  drop during a process known
as 'physiological  fruit  abscission'.  For  example,  citrus and litchi
experience fruit  drop at  different  stages  of  development,  with
less  than  1%  and  5%  of  the  fruits  reaching  full  maturity,
respectively[2−5]. Therefore, in the cultivation of litchi and citrus,
physical practices such as girdling, as well as the application of
synthetic  auxin  agents  such  as  2,4-D  (2,4-Dichlorophenoxy-
acetic  acid),  are  required  to  reduce  fruit  abscission.  In  other
woody fruit crop species like apple, thinning practices, such as
the  application  of  chemical  thinners  including  cytokinins  (6-
benzyladenine)  and ethylene generating chemicals,  are neces-
sary  to  achieve  commercially  acceptable  fruit  and  prevent  the
trees  from  entering  an  alternate  year  fruit  bearing  cycle[6].  In
general,  once  developmental  fruit  abscission  is  complete,  the
remaining fruits can continue to develop until maturity, unless
they  are  subjected  to  adverse  environmental  conditions  or
attacked by pathogens or pests, which may trigger new condi-
tional  abscission  events.  Fruits  can  also  undergo  preharvest
abscission  at  the  fully  mature  stage.  Among  fruit  trees,  apple,

litchi,  citrus,  and  peach  are  particularly  susceptible  to  prehar-
vest  fruit  drop.  To  address  this  issue,  plant  growth  regulators
are  commonly  used  as  a  preventive  measure[5,7−9].  It  is  worth
noting  that  fruit  drop  can  also  occur  during  postharvest
storage, posing a significant challenge to maintaining the qual-
ity of fruits after harvesting[10].

While plants have developed various efficient mechanisms to
facilitate  fruit  abscission,  these  can  present  significant  chal-
lenges  when  it  comes  to  the  commercial  cultivation  of  fruit
trees. Over the past few decades, significant progress has been
made in understanding the molecular basis of organ abscission
through  genetic  and  mutant  studies  conducted  on  model
plants  like Arabidopsis and  tomato.  These  studies  have  led  to
the identification of numerous molecular components that play
a  role  in  the  regulation  of  abscission[11].  However,  research  on
the  mechanisms  of  fruit  abscission  in  woody  fruit  trees  has
been relatively lagging. In this review, we will discuss the speci-
ficity  of  fruit  abscission  in  woody  fruit  trees,  combining  the
progress of organ abscission in non-woody fruit crops. We will
focus on what signals are involved in fruit abscission, how these
signals are generated and output, and how the abscission cues
are perceived and transmitted by the abscission zone cells.

 Abscission cues within the abscising fruit

Similar  to  the  abscission  of  other  plant  organs,  fruit  abscis-
sion  typically  takes  place  at  distinct  regions  known  as  abscis-
sion  zones  (AZs).  These  AZs  begin  to  form  early  on,  alongside
the  development  of  lateral  organs  originating  from  the  shoot
apical  meristem.  Morphologically,  they  can  be  visually
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distinguished  from  the  surrounding  tissues.  Different  woody
fruit  crop  species  can  have  1,  2,  or  3  observed  AZ
locations[12−14].  For  example,  there  is  a  single  AZ  for  litchi  and
apple, and two and three AZs for citrus and olive to shed fruit,
respectively (Fig. 1)[15].

Once the AZ is formed, it acquires the ability to undergo cell
separation.  In  plants,  the  process  of  organ  abscission  can  be
categorized  into  four  distinct  stages,  including  the  differentia-
tion  and  formation  of  the  AZ,  the  perception  of  abscission
signals by AZ cells, the initiation and completion of cell separa-
tion  within  the  AZ,  and  the  formation  of  a  protective  layer  on
the parent side[16].  The AZ,  which consists  of  specialized tissue
containing cells that are specifically targeted for abscission, has
been a central  focus in numerous studies on organ abscission.
The development of AZ occurs early in the development of the
organ  that  will  eventually  undergo  abscission.  Several  impor-
tant genes have been identified as necessary for AZ formation
in  various  non-woody  plant  species.  The  transcription  factors
BOP1/2  have  been  identified  as  key  players  in  the  process  of
abscission  zone  (AZ)  formation  in Arabidopsis[17].  In  tomato,
three  MADS  domain  transcription  factors,  JOINTLESS  (J),
MACROCAYLYX  (MC),  SLMBP21,  and  the  ERF  transcription
factor  ERF52  have  been  implicated  in  AZ  formation[18−20].  AZ
development in rice involves the crucial involvement of several
transcription factors. These include the MYB transcription factor
SHA1,  the  BEL1-like  homeobox  transcription  factor  qSH1
located  on  chromosome  1,  and  the  APETALA2  transcription
factors  SHAT1 and SNB,  both of  which play  significant  roles  in
regulating  seed  shattering[21−24].  It  is  worth  noting  that  while
the ectopic expression of  the apple MdJb gene in a J-deficient
tomato mutant led to the restoration of functional pedicel AZs
and the pear PsJOINTLESS was suggested to be involved in AZ
development[25,26],  the  key  genes  regulating  AZ  development
in woody fruit crop species have not yet been identified. In the
past  few  decades,  with  the  help  of  model  plants  such  as
Arabidopsis and  tomato,  many  key  genes  involved  in  regu-
lating  organ  abscission  have  been  identified[11].  However,  the
mechanisms underlying the regulation of these key genes in AZ
is  still  not  clear,  and  little  is  known  about  the  abscission  cues
that  can  be  perceived  by  AZ  cells.  Moreover,  there  is  a  lack  of
consensus regarding the specific model of how abscission cues
are  generated  and  transmitted  from  the  organ  undergoing
abscission to the AZ in woody fruit crops.

Histologically,  AZ  cells  are  different  from  adjacent  cells,  as
they  are  smaller,  denser,  and  have  little  or  no  lignin
deposition[5].  The  AZ  can  function  as  an  independent  tissue
that,  upon  receiving  and  perceiving  abscission  cues,  initiates
the cell separation process to complete organ abscission. Thus,
the  separation  of  AZ  cells  is  remotely  controlled  by  abscission
cues  from  neighboring  cells.  But  what  are  these  signals  and
where do they come from? According to existing knowledge, it
is  understood  that  the  main  signals  responsible  for  initiating
the activation of the abscission zone originate from within the
organ  undergoing  abscission[27−30].  In  comparison  to  abscis-
sion  of Arabidopsis floral  organs,  and  rose  petals,  fruit  abscis-
sion in  woody plant  species  is  generally  more complex,  as  the
process  of  fruit  abscission  involves  changes  in  the  activity  of
different  tissues  of  the  fruit  itself  and  of  other  neighboring
organs such as, for example, the sepals or the pedicel that may
or may not contain the AZ[12,29,31−33].

Apple  is  considered  as  an  interesting  model  species  for
studying  early  fruit  abscission  under  endogenous  and/or
exogenous  stimuli.  The  apple  flowers  and  fruits  grow  in  a
cymose  inflorescence,  leading  to  a  central  'King'  fruit  and  less
developed lateral fruits. During the early fruiting stage, there is
a  notable  discrepancy  in  abscission  potential  between  the
lateral  fruits  and  the  'King'  fruit.  This  variation  arises  from  the
developmental  differences  observed  in  these  fruits[9].  Several
studies  have  revealed  the  major  physiological  and  molecular
events  that  lead  to  selective  abscission  of  lateral  fruits  in  the
cymose,  either  occurring  naturally  or  through  thinning
treatments[27−29,34].  Currently,  there  are  two  viewpoints  regar-
ding the nature of abscission cues and their generation sites in
apples.  One  viewpoint  suggests  that  abscission  cues  are  trig-
gered by an inhibition in polar auxin transport (PAT) in the fruit,
primarily  occurring  at  the  junction  between  the  pedicel  and
spur[35−37].  According  to  this  viewpoint,  also  called  primigenic
dominance  hypothesis  which  describes  that  the  earlier  deve-
loped sink organs inhibit the later developed ones. In detail, the
early  developed  fruits  (the  'King'  fruit)  always  export  more
auxin than the subordinate fruits  (the lateral  fruits)  and inhibit
the auxin polar export of the lateral fruits, therefore, the lateral
fruits  are  developmentally  inhibited  and  go  into  senescence
and fall off the tree[35−37]. The other viewpoint suggests that the
reduction or even depletion of PAT is due to insufficient carbo-
hydrate  supply  during  fruit  development.  This  leads  to
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Fig. 1    The number of AZ varies among different woody fruit crop species. Apple and litchi fruits exhibit a single AZ localized at the junction
region between the pedicel and peduncle. Citrus fruits possess two AZs localized at the junction between the fruit and pedicel (referred to as
AZ-C)  and  the  junction  between  the  pedicel  and  peduncle  (referred  to  as  AZ-A),  respectively.  Olive  fruits  display  three  AZs  localized  at  the
junction  between  the  fruit  and  pedicel,  the  junction  between  pedicel  and  peduncle,  and  the  junction  between  the  peduncle  and  rachis,
respectively.
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oxidative stress in the fruit, resulting in an increase in ethylene
content in the flesh,  which permeates into the embryo. As the
ethylene  receptors  in  the  outer  layer  of  the  embryo  cannot
bind  all  the  excess  ethylene,  the  supersaturated  ethylene
gradually  permeates  into  the  embryo,  causing  damage  and
triggering embryo death. This suggests that ethylene produced
in  the  fruit  is  an  abscission  cue  preceding  the  reduction  of
PAT[27−29].

In  the  field  of  woody  fruit  crops,  it  is  widely  acknowledged
that ethylene plays a crucial role in promoting the separation of
cells  in  the  abscission  zone.  On  the  other  hand,  the  hormone
auxin  has  been  found  to  inhibit  this  process[5,11,38].  Currently,
our  understanding of  the specific  tissues involved in hormone
synthesis and metabolism during fruit abscission is still limited.
Different regulatory patterns may exist in different woody fruit
crop  species.  For  example,  in  avocado,  it  has  been  found  that
the  ethylene  production  in  fruits  with  defective  seeds  is  7−10
times  higher  than that  in  fruits  with  normal  seeds,  suggesting
that  defective  seeds  may  be  a  source  of  increased  ethylene
production leading to fruit abscission[39].  Additionally, research
has indicated a potential link between the accumulation of ABA
in  abscising  avocado  fruit  and  seed  abortion[40].  In  the  case  of
mango, it  has been suggested that the perception of ethylene
by  receptors  in  the  pedicel,  along  with  limited  carbohydrate
supply  within  the  fruit  pericarp,  may contribute  to  the  natural
abscission  of  mango  fruitlets[41].  In  olive,  there  is  an  observed
correlation  between  an  increase  in  the  content  of  1-aminocy-
clopropane-1-carboxylic  acid  (an  ethylene  precursor)  in  the
mature  fruit  abscission  zone-C  (AZ-C)  and  a  decrease  in  the
force  required  for  fruit  detachment  from  the  tree[42].  Further-
more, in peach, when fruit abscission is induced, an increase in
ethylene production has been detected in the abscission zone
of  the  fruitlet,  as  well  as  in  the  proximal  and  distal  tissues
surrounding  the  abscission  zone,  indicating  that  both  the
abscission zone and its surrounding tissues can serve as sites of
ethylene  biosynthesis  during  fruit  abscission[43].  In  pear,  it  is
found  that  the  increase  in  abscission  can  be  due  to  ABA-
induced  carbohydrate  deficit[44].  In  the  case  of  persimmon,
there  is  a  proposed  mechanism  where  ethylene,  produced  by
the sepals,  is  believed to  diffuse  into  other  tissues  of  the  fruit.
This  ethylene  then  acts  as  a  secondary  signal,  triggering  the
production  of  more  ethylene  within  these  tissues  through  an
autocatalytic  process.  Consequently,  this  surge  in  ethylene
production  primarily  occurs  within  the  abscission  zone  of  the
fruit,  ultimately  resulting  in  the  detachment  of  fruitlets  and
other organs[45].

Carbohydrate  shortage-induced  increases  in  ethylene  and
ABA,  accompanied  by  reduced  IAA  and  perturbed  polar  auxin
transportation  (PAT),  in  fruits  have  been  considered  as  impor-
tant  factors  in  fruit  abscission  in  woody  fruit  crops[46−48].  In
Citrus, studies have shown that application of IAA after removal
of  young  fruits  can  inhibit  pedicel  abscission,  which  may  be
related to the inhibition of gene expression in ethylene synthe-
sis  and  signal  transduction  by  IAA  through  polar  transport  to
the  AZ,  thereby  inhibiting  the  transmission  of  abscission
cues[12].  The  technique  of  ringing  branches  is  commonly
employed  in  citrus  cultivation  to  enhance  fruit  yield.  Previous
studies  have  provided  evidence  that  ringing  significantly
decreases  the  rate  of  fruit  abscission.  This  effect  is  mainly
attributed  to  the  increased  availability  of  carbohydrates  to
developing  fruitlets  in  branches  that  have  been  ringed[49].

Recent  findings  further  suggest  that  the  mechanism  behind
this  process  involves  the  induction  of  auxin  export  from
fruitlets  and  its  subsequent  transport  to  the  AZ-C  where  it
inhibits  activation,  ensuring  a  continuous  supply  of  carbohy-
drates to the fruitlet and ultimately preventing abscission[50]. In
the  development  of  litchi  fruitlets,  it  is  consistently  observed
that abscission waves occur during overcast and rainy weather
conditions.  To  simulate  these  conditions,  artificial  shading  or
the  application  of  photosynthetic  inhibitors  has  been  used,
resulting in significant fruit abscission[51].  In a study conducted
by Yuan & Huang, it  was found that trunk-girdled trees during
full  bloom  exhibited  reduced  intensity  of  abscission  waves
compared  to  ungirdled  trees[52].  Furthermore,  when  litchi
fruitlets  were subjected to both girdling and defoliation,  there
was  a  significant  decrease  in  soluble  sugar  content  and  IAA
levels, while ethylene production was induced, leading to fruit-
let  abscission[33,53].  These  findings  suggest  that  carbohydrate
deficiency may serve as the initial trigger for abscission in litchi
fruitlets.  Similarly,  shade-induced  or  ABA-induced  carbohy-
drate deficiency has been observed to induce fruit abscission in
pear  trees[44].  Recent  findings  in  longan  also  suggest  that
carbohydrate  stress  reduces  the  levels  of  IAA  but  increases
ethylene  content  and  abscission  rate  in  the  fruitlets,  which
proposed  that  starved  fruitlets  release  abscission  cues  prima-
rily through weakened PAT rather than ethylene production[54].

In conclusion, existing studies suggest that the weakening or
depletion of PAT from the fruit to the AZ is a major form of fruit
abscission  cue  in  woody  fruit  crops.  Under  stress  conditions
such as carbohydrate shortage, fruits may release ethylene and
ABA, thereby weakening or stopping PAT from the fruit  to the
AZ  (Fig.  2).  However,  the  specific  tissues  involved  in  hormone
synthesis  and  metabolism  in  fruits,  as  well  as  the  key  regula-
tory genes, are far from understood.

 How do the abscission cells sense and receive
the abscission cues?

If  the  decrease  or  depletion  of  auxin  transport  towards  the
abscission  zone  is  considered  an  abscission  cue,  then  how  do
the abscission cells sense this change? How do these hormonal
changes  transform  into  molecular  events  that  trigger  the
abscission  process  in  woody  fruit  crops?  An  important  break-
through  in  understanding  the  activation  mechanism  of  organ
abscission in plants involves the identification of the abscission
mutant ida and  the  functionally  redundant  receptor  kinases
HAE and HAE-like2 in Arabidopsis[34,55−57]. In the ida mutant, the
majority of floral organs, including petals, sepals, and stamens,
remain  attached  during  pod  growth  and  maturation[55].  This
phenomenon  has  also  been  observed  in oilseed  rape[58].  The
IDA gene encodes a small protein with a conserved C-terminal
domain  that  can  bind  to  the  HAE  and  HSL2  receptors[55,59].
Genetic  studies  have  demonstrated  that  once  IDA  binds  to
HAE/HSL2,  HAE/HSL2  can  modulate  KNOTTED1-LIKE  HOME-
OBOX  (KNOX)  transcription  factors  through  a  mitogen-acti-
vated  protein  (MAP)  kinase  cascade[34,60,61].  Although  the
knat2/knat6 mutant  only  exhibits  a  weak  phenotype,  it  is
suggested  that  KNAT2  and  KNAT6,  together  with  other  tran-
scription factors,  induce the transcription of  cell  wall  remodel-
ing and degrading enzymes responsible for cell separation and
subsequent  organ  abscission.  Thus,  IDA-HAE/HSL2  signaling  is
considered  as  a  signal  inducer  for  the  final  organ
abscission[34,62−64].
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To date, IDA-like and HAE-like genes have been identified in
crop  species  and  highly  expressed  in  the  AZ,  including
tomato[65−67],  soybean[68],  yellow  lupine[69,70],  rose[71],  and
woody fruit crops oil palm[72], citrus[73], and litchi[74,75]. Research
has demonstrated that  synthetic  IDA peptides have the ability
to  induce  premature  abscission  of  floral  organs  in
Arabidopsis[76],  flower  separation  in  yellow  lupine[70,77],  leaf
abscission in  poplar  and mature  fruit  abscission in  oil  palm[78].
In addition, when IDA homologous genes from citrus (CitIDA3),
litchi  (LcIDL1),  and  rose  (RbIDL1 and RbIDL4)  are  ectopically
expressed in Arabidopsis, they can cause early flower abscission
and  rescue  the  abscission  defects  in ida[71,73,74].  Furthermore,
the transformation of the litchi LcHSL2 into Arabidopsis hae hsl2
mutants  can  reactivate  the  abscission  of  floral  organs[75].
Together,  this  evidence suggests  that  the function of  the IDA-
HAE/HSL2  signaling  module  is  conserved  in  many  species,
including woody fruit  crops.  However,  the  detailed  role  of  the
IDA-HAE/HSL2 signaling module in these woody fruit crops still
needs to be provided.

Considering  that  membrane  receptor  proteins  are  core
signaling  molecules  that  perceive  changes  in  the  extracellular
environment  (such as  hormone level  changes),  it  makes  sense

that the IDA-HAE/HSL2 signaling module is likely to be the core
component  for  sensing  the  abscission  cue.  If  this  is  the  case,
then how does the IDA-HAE/HSL2 signaling module receive the
abscission  cue?  Continuous  flow  of  auxin  through  the  abscis-
sion  zone  can  prevent  ethylene  synthesis  and  sensitivity,
thereby inhibiting fruit abscission[79]. By promoting polar trans-
port  of  IAA  and  downregulating  the  expression  of  the CitIDA3
gene,  the  occurrence  of  preharvest  fruit  abscission  can  be
delayed  or  reduced[80].  Several  investigations  have  reported
that IDA homologous genes from various plant species, such as
tomato,  soybean,  oil  palm,  citrus,  tea,  rose,  and  yellow  lupine,
exhibit  activation  during  abscission  induced  by  ethylene.
Furthermore, the expression of these genes can be postponed
by  employing  an  ethylene  inhibitor[65,69,71−73,81].  During  fruit
abscission  in  litchi,  it  has  been  observed  that  LcIDL1  and
LcHSL2,  which  are  located  in  the  AZ,  are  also  induced  by
ethylene[74,75].  Recent  studies  further  demonstrated  that  low
light  intensity  associated  stress  induces  ethylene  synthesis,
which in turn increases the expression of the SlIDL6,  ultimately
promoting the abscission of tomato flowers[66].  The findings of
these  studies  provide  further  support  for  the  notion  that  the
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Fig.  2    A  proposed  model  outlining  the  generation,  transmission,  and  perception  of  abscission  cues  in  woody  fruit  crop  species.  Upon
abscission  induction  generally  by  carbohydrate  shortage  stress  (starvation),  the  ethylene  or  abscisic  acid  (ABA)  biosynthesis  occurs  within
different  parts  of  the  fruit,  depending  on  the  species.  For  example,  in  apple  fruitlets,  the  peel  and  flesh  are  responsible  for  the  synthesis  of
ethylene  and  ABA.  In  avocado  fruit,  it  is  the  seed,  and  in  persimmon  fruit,  it  is  the  sepal.  The  production  of  ethylene  and  ABA  within  the
abscising fruit weakens or halts the polar auxin transport (PAT) from the fruit to the abscission zone (AZ). However, the precise mechanisms by
which this occurs are currently unknown. When PAT is weakened or stopped across the AZ, it renders the AZ sensitive to ethylene or triggers
the biosynthesis of ethylene within the AZ. In addition, both the ABA and ethylene (ET) generated in the fruit may also be transported to the AZ
and participate in ethylene burst within the AZ. This ethylene production can be perceived by the IDA/IDL-HAE/HSL2 signaling pathway, likely
through  the  binding  of  transcription  factors  involved  in  ethylene  signaling.  Subsequently,  the  cell  separation  process  is  initiated  and  is
accomplished through the action of specific enzymes involved in the degradation of the cell wall, including cellulase (CEL), polygalacturonase
(PG), and xyloglucan endotransglucosylase/hydrolase (XTH). Symbols used in the diagram are explained in the legend.

 
Abscission cues in woody fruit crops

Page 4 of 8   Zhao et al. Fruit Research 2024, 4: e014



IDA-HAE/HSL2  signaling  pathway  is  ethylene-dependent  and
functions  downstream  of  ethylene  to  regulate  the  abscission
process  in  various  plant  species,  including  woody  fruit
crops[30,82]. Consistently, the ethylene-responsive element (ERE)
is  found  in  the  promoter  of  IDA-like  genes,  such  as NtIDL6 in
tobacco  and SlIDL1, SlIDL7,  and SlIDL4 in  tomato.  The  expres-
sion  of  these  genes  is  increased  following  AZ  activation[67,83],
implying that ethylene may directly regulate the IDA-HAE/HSL2
signaling  module  through  transcription  factors  in  its  signaling
pathway, thereby initiating the final abscission program (Fig. 2).

 Concluding remarks and future perspectives

In  the  past  few  decades,  research  on  model  plants,  particu-
larly  on Arabidopsis organ  abscission[11],  tomato  flower
abscission[18,20,66,84−88],  and  rose  petal  abscission[89−91],  has
successfully  identified  numerous  molecular  components  that
play crucial roles in the activation of organ abscission. However,
due to  the  immature  genetic  transformation system in  woody
fruit crop species, the study of functional genes and regulatory
mechanisms  of  fruit  abscission  in  woody  fruit  crops  lags
behind.  On  the  other  hand,  we  are  increasingly  recognizing
that  certain  elements  seem  to  be  common  characteristics  of
fruit  abscission  processes  in  woody  fruit  crops,  such  as  basi-
petal  polar  auxin transport,  ethylene biosynthesis  and percep-
tion.  Moreover,  the  abscission  zone,  being  a  specialized  tissue
responsible for integrating abscission cues, has garnered signifi-
cant attention in abscission studies. However, it is important to
note that  the abscission zone does not  operate in  isolation.  In
the study of fruit abscission in woody fruit crops, it is important
to consider  that  adjacent  tissues may play a  significant  role  as
sources of mobile signals that regulate the abscission process.

In  a  recent  review  conducted  by  Botton  &  Ruperti[30],  they
provide  a  comprehensive  overview  of  the  role  of  ethylene  in
both  the  AZ  and  the  abscising  organ,  shedding  light  on  the
potential  connections  between  different  stages  of  the  abscis-
sion process. In this review, our focus is on exploring the signals
involved  in  fruit  abscission  in  woody  fruit  crops,  their  genera-
tion  and  output,  and  how  the  AZ  cells  perceive  and  transmit
these abscission cues. We point out that one significant abscis-
sion cue in woody fruit crops is the weakening or depletion of
the  PAT  from  the  fruit  to  the  AZ.  This  process  is  usually  trig-
gered when the fruit experiences a shortage of carbohydrates,
leading to the release of ethylene and ABA. Our analysis of the
most  recently  published  papers  highlights  that  the  ethylene
signaling  in  the  AZ  activated  by  depletion  of  PAT  could  be
directly  sensed  by  the  IDA-HAE/HSL2  pathway,  thereby  initia-
ting the final abscission program.

Over the past few years, significant advancements have been
made  in  the  investigation  of  fruit  abscission  mechanisms
specifically  in  woody  fruit  crops[14,50,92−97].  As  an  example,  a
recent  study  shed  light  on  the  role  of  a  regulatory  module
comprising  LcDOF5.6  and  LcRbohD  in  the  regulation  of  reac-
tive oxygen species (ROS)-mediated fruitlet abscission in litchi.
This  finding provides valuable insights  into the control  of  ROS
homeostasis  within  the  abscission  zone,  offering  a  deeper
understanding  of  the  underlying  mechanisms[92].  However,
major research perspectives including understanding how fruit
produces  abscission  cues,  how  abscission  zone  cells  perceive
these  cues,  and  the  mechanisms  of  fruit  abscission  in  woody
fruit crops, are still to be addressed:

1.  Determining  where  ethylene  is  synthesized  in  abscising
fruit and how it is regulated.

2.  Understanding  how  ethylene  in  abscising  fruit  inhibits
polar auxin transport towards the abscission zone.

3.  Using  gene  editing  tools  such  as  CRISPR/Cas9  to  further
validate  the  conserved  role  of  the  IDA-HAE/HSL2  signaling
module in regulating fruit abscission.

4. Elucidating how the IDA-HAE/HSL2 pathway in the abscis-
sion  zone  senses  the  abscission  cue  and  whether  there  is  a
direct  connection  between  ethylene  signaling  and  the  activa-
tion of the IDA-HAE/HSL2 pathway.

5. Determining the downstream factors of the IDA-HAE/HSL2
signaling  module.  To  date,  the  involvement  of  KNOX  homolo-
gous  genes  in  tomato  and  litchi  has  been  reported  in  organ
abscission.  However,  it  remains  to  be  determined  whether
these  molecular  factors  are  conserved  across  different  fruit
abscission systems, necessitating further investigation.
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