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SUMMARY
Natural history and mechanisms for persistent cognitive symptoms (‘‘brain fog’’) following acute and often
mild COVID-19 are unknown. In a large prospective cohort of people who underwent testing a median of
9 months after acute COVID-19 in the New York City/New Jersey area, we found that cognitive dysfunction
is common; is not influenced by mood, fatigue, or sleepiness; and is correlated with MRI changes in very few
people. In a subgroup that underwent cerebrospinal fluid analysis, there are no changes related to Alz-
heimer’s disease or neurodegeneration. Single-cell gene expression analysis in the cerebrospinal fluid shows
findings consistent with monocyte recruitment, chemokine signaling, cellular stress, and suppressed inter-
feron response—especially in myeloid cells. Longitudinal analysis shows slow recovery accompanied by
key alterations in inflammatory genes and increased protein levels of CXCL8, CCL3L1, and sTREM2. These
findings suggest that the prognosis for brain fog following COVID-19 correlates with myeloid-related chemo-
kine and interferon-responsive genes.
INTRODUCTION

Memory loss, difficulties concentrating, and ‘‘brain fog’’ follo-

wing COVID-19 (cognitive post-acute sequelae of severe acute

respiratory syndrome coronavirus 2 [SARS-CoV-2] [PASC] infec-

tion) are common sources of morbidity and disability, but there

are few systematic studies on these subjective complaints’ neu-

ropsychological, imaging, biological, or prognostic correlates.

Findings from the UK Biobank among those with pre-COVID

MRI have shown cortical gray matter atrophy on MRI following

viral infection according to disease severity,1 and other smaller

post-COVID-19 series have reported changes in the deep gray

nuclei,2 brainstem,3 and white matter tracks.4 Mechanistic path-

ways proposed for these symptoms and findings—based on

case studies of people with acute SARS-CoV-2 infection and

neurological complications—include Alzheimer’s disease (AD)

pathology, direct viral neuro-invasion and viral persistence,5

para-/post-infectious inflammatory dysregulation6 including

autoimmunity,7 and blood-brain barrier disruption,8 as well as

psychological factors. However, it remains unclear if acute and

sometimes fatal brain involvement can be extrapolated to

explain prolonged cognitive symptoms in people whose initial

infection was mild and self-limited.

In the US, the New York City/New Jersey area was one of the

earliest regions impacted by the COVID-19 pandemic.We began

tracking people with self-reported PASC symptoms in late 2020
Cell Reports Medicine 5, 101561,
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and recruited them into a prospective registry for longitudinal

standardized clinical and cognitive tracking. Within, as well as

parallel to, this group, we recruited participants for detailed neu-

ropsychological, brain MRI, cerebrospinal fluid (CSF) AD bio-

markers, and CSF single-cell RNA sequencing (scRNA-seq)

analysis. CSF scRNA-seq is a relatively novel method, with the

largest series used to characterize pathologic conditions ranging

from 3 to 15 cases.9–11 Pooled analysis across multiple CSF and

parenchymal scRNA-seq studies confirmedCSFmyeloid cells to

have differentially expressed genes (DEGs) representative of

CNS and border tissue populations,10 but scRNA-seq analysis

can be limited by low numbers of collected cells, blood contam-

ination, and inappropriate comparison samples. Relevant to

SARS-CoV-2, CSF scRNA-seq7 is rare compared to in vitro12

or non-CSF13–15 profiling. Mouse models of mild SARS-CoV-2

infection also showed transient (CXCL5, interferon [IFN]-g, inter-

leukin [IL]-6), persistent (CCL7, CXCL2), or progressive (CCL11)

post-infectious elevation of CSF cytokine/chemokine, as well as

white matter microglial reactivity, even in the absence of neuro-

invasion.6 Here, we collected a modest volume of CSF (15–

20 mL) from people who are healthy (no confirmed COVID-19

infection, no PASC symptoms; n = 12) and who have cognitive

PASC (n = 16) to determine the gene expression profiles in 15

CSF cell types associated with cognitive PASC. Leveraging the

longitudinal nature of the parent study, we also sought gene

expression profiles associated with persistent cognitive PASC
May 21, 2024 ª 2024 The Authors. Published by Elsevier Inc. 1
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Figure 1. Clinical and MRI assessment of participants with PASC and cognitive complaints

(A) Participants with cognitive complaints were analyzed through exploratory factor analysis to determine intrinsic constructs underlying cognitive, mood (patient

health questionnaire-8, PHQ-8; generalized anxiety disorder-7, GAD-7), and fatigue outcomes (n = 136 participants). Two cognitive, one mood, one sleep, and

one general fatigue factor was identified, with responses to each questionnaire largely corresponding to the theoretical construct except for a common mood

factor shared by PHQ-8 and GAD-7.

(B–G) MRI fluid-attenuated inversion recovery (FLAIR) analysis (n = 60 participants) revealed isolated ovoid WMH (B and C), bilateral medial temporal WMHs (D‒
F), and pontine WMH (G).

(H) Memory factor scores (lower score associated with less pathology/dysfunction) were lower in people with ovoid WMH than people with bitemporal WMHs or

non-specific findings, including after adjusting for more typical periventricular WM (PVWM) or deep WM (DWM) changes according to Fazekas scores (p values

shown are from pair-wise comparisons in regression models). There were no differences in mixed cognitive or fatigue factor scores.
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vs. recovery from cognitive PASC to inform further phenotyping

and treatment strategies.

RESULTS

Between February 2021 and January 2023, 211 of 311 (68%)

registered patients at the Rutgers Post-COVID Recovery Clinic

reported a decline in thinking or memory. 124 of these patients

completed a validated brief cognitive assessment (BCA) consist-

ing of four tests,16 and 57% had an abnormal performance in at

least one test (62% for oral trail making test, 53% for letter-

guided fluency ["F"-only], 31% for reverse digit span, 13% for

delayed recall of six words; 46% had two or more abnormal

tests). We additionally recruited 12 participants with self-re-

ported post-COVID brain fog from the Rutgers Cognitive

Neurology Clinic or the community (136 in total), and we consid-

ered all those with abnormal performance on at least one objec-

tive test as having PASC with cognitive impairment (PASC-CI;

n = 79, Figure 1; Table S1). The remaining participants with

cognitive complaint but normal test scores (n = 57) are referred
2 Cell Reports Medicine 5, 101561, May 21, 2024
to as PASC with subjective cognitive concerns (PASC-SCC).

Extended neuropsychological testing in a subset (n = 19,

Table S2) actually showed the two groups to have similar cogni-

tive performances, except PASC-SCC participants did better on

letter-guided fluency but worse on tests performed last (word list

recall) than PASC-CI participants. Because PASC-CI partici-

pants had more readily detectable cognitive dysfunction on the

BCA, they were subsequently followed longitudinally for the nat-

ural history portion of the current study.

PASC-SCC and PASC-CI participants were very similar in age,

gender, and pre-COVID-19 co-morbidities to PASC patients

without any cognitive complaints. However, PASC-SCC and

PASC-CI were both associated with greater scores for fatigue,

sleepiness, depression, and anxiety than PASC participants

without cognitive complaints. Exploratory factor analysis across

the entire cohort identified five factors to load onto the individual

cognitive scores and item-level responses to the four non-cogni-

tive scales including the fatigue severity scale (FSS), a patient

health questionnaire (PHQ-8) for depression, generalized anxiety

scale 7-item (GAD-7) for anxiety, and the Epworth sleepiness
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scale (ESS; Figure 1; Table S3). Two factors loaded onto the

cognitive scores, with one (memory factor) loading only and

strongly onto delayed recall measures, while the other (mixed

cognitive factor) loaded onto mostly executive function tests

but also weakly onto one recall test. A common mood factor

loaded onto bothGAD-7 and PHQ-8, and one factor each loaded

to FSS and ESS questions. These unique factors accounting for

cognitive and non-cognitive functions thus support the notion of

a distinct cognitive phenotype in PASC independent of mood, fa-

tigue, or sleepiness.

MRI abnormalities are common in PASC-CI and PASC-
SCC
60 participants (48 PASC-CI, 12 PASC-SCC) underwent baseline

brainMRI analysis, and fivemajor patterns of whitematter hyper-

intensity (WMH) were identified (Table S4): none, peri-ventricular

WMH(s) (Fazekas scale 0–2) with or without deep subcortical

WMH(s) (Fazekas scale 0–2), isolated ovoid WMH (Figures 1B

and 1C), bilateral medial temporal WMHs (Figures 1D–1F), and

pontine WMH (Figure 1G). We found participants with ovoid

WMHs to have more preserved memory than those with bitem-

poral WMH (t = 2.785, p = 0.007) as well as those without any

of the COVID-type WMH (t = 2.405, p = 0.020, including after ad-

justing for peri-ventricular and deepWMH), but these differences

were quite small. Therefore, MRI findings alone were not suffi-

ciently predictive of cognitive or non-cognitive functions.

PASC-CI and PASC-SCC are molecularly distinct from
AD
30 PASC-CI or PASC-SCC participants underwent CSF collec-

tion, and levels of established CSF AD biomarkers—including

beta-amyloid 1-42 (Ab42), total t-Tau, and p-Tau181—were mea-

sured using an automated analyzer.17 PASC participants had

levels of biomarkers reflecting amyloid plaque (Ab42) and neuro-

fibrillary tangles (p-Tau181) indistinguishable from pre-pandemic

as well as post-2020 healthy control (HC; Figure 2A) partici-

pants.18 Levels of t-Tau implicated in neurodegeneration were

also normal in PASC (Figure 2B), and there was no difference be-

tween PASC-CI and PASC-SCC. In contrast, AD was associated

with characteristically reduced Ab42 levels and increased p-

Tau181 as well as t-Tau levels. Together, these findings strongly

propose that mechanisms underlying PASC-CI/PASC-SCC do

not implicate amyloid and tau metabolism.

CSF and blood cells show distinct gene expression
profiles
34 CSF samples (14 HCs, 15 PASC-CI, 5 PASC-SCC) were pro-

cessed for scRNA-seq (Table S5), and 28 samples (82%: 12HCs,

12 PASC-CI, 4 PASC-SCC) passed quality control for subse-

quent analysis. Most participants with PASC-CI (18/23) and

PASC-SCC (6/7) hadmild disease, which did not result in clinical

visits, and only one PASC-SCC participant was briefly hospital-

ized (but did not require intensive care or intubation). To better

characterize DEGs between CSF and peripheral mononuclear

cells, two participants with PASC and two with AD had simulta-

neous collection of CSF and blood for parallel scRNA-seq ana-

lyses (Data S1; Figure S1). Myeloid cells showed the greatest

CSF-peripheral differences with 2,530 DEGs (>2-fold change,
adjusted p value [p.adj] < 0.05; Data S1), while B (44) and CD8+

T (25) cells had the fewest. Known AD risk genes were among

the most preferentially expressed in CSF myeloid cells (APOE

at 4,3833, SPP1 at 1,2983, and TREM2 at 8563; Figure 2C).

Our workflow resulted in approximately twice as many cells

per individual (total of 61,282 cells in 28 people) as the largest

pervious CSF series (70,391 cells in 59 people9). This enrichment

enabled us to identify in greater resolution CSF T and myeloid

cell subtypes. CSF T cells (Ptprc, Cd3e) were classified into

CD8 (Cd8a/b, Ccl5, Plek), effector CD8 (Cd8a/b, Ccl5, Hopx),

natural killer (NK; Klrb1, Nkg7; low Cd8b, Cd3e), and helper cells

TH1 (ll12rb2, Anxa3, Tbx21, Ifngr1, Ccl4, Eomes), TH2 (Gata3,

Mrps26, Lima1, Spint2), and TH17/regulatory T (Treg; Foxp3,

Basp1, Tnfrsf8) using a combination of canonical gene markers

and SingleR classification to the Human Primary Cell Atlas.19–21

Each participant’s myeloid cells (median: 399.5, range: 43–

1,317) were classified by unsupervised clustering into seven

subpopulations (Figure S2), and comparison of standardized

gene expression with prior CSF single-cell and post-mortem

single-nuclei RNA-seq studies provided clues toward each

cluster’s composition (Figure 2D). Cells in clusters 1–3 showed

features of macrophages (MPs) and microglia, but we conse-

rvatively refer to these as CSF MPs, as we could not obtain

parenchymal microglia for a reference gene expression profile

during CSF collection. Cluster 1 (MP1) had high expression of

Spp1, Trem2, Apoe, P2ry12, and Tmem119, features shared

by homeostatic microglia. Compared to cluster 1, cluster 2

(MP2) had higher Spp1, P2ry12, Tmem119, Hexb, Slc2a5, and

Ms4a7 and relatively lower P2ry12, Tmem119, andCx3cr1. Clus-

ter 3 was characterized by IFN-responsive (IR) Isg15, Mx1, Ifit3,

and Ifit2, consistent with IR cells (IR-MPs) seen in mouse22 and

human23 brains. Clusters 4 and 5 were characterized by

enhanced Lyve1 expression associated with border-associated

macrophages (BAMs),24 with higher expression of Mrc1 (cluster

4) and Emp3 (cluster 5).25,26 Cluster 6 was characterized by

Cd1C, Fcer1A, and Clec10a, consistent with CD1C+ myeloid

dendritic cells (mDCs) previously identified in blood.10,27 Finally,

cluster 7’s enhanced expression of Fcn1, Vcan, and Ctss sug-

gests them as monocytes or monocyte-derived cells (mn) also

identified in post-mortem brain single-nuclei RNA-seq and

CSF.10,23

Comparison of collected cell numbers did not show a relation-

ship between PASC-CI/PASC-SCC with differential regulation of

any one cluster (Figure S2; Table S6). We thus next performed

pseudo-bulk and pathway analysis to identify genes and biolog-

ical processes associated with PASC-CI/PASC-SCC.

PASC-CI is associated with dysregulated CSF myeloid
and T cell gene expression
Because high-resolution DEG characterization is a strength but

also a potential limitation of scRNA-seq, we developed parallel

and complementary analytical strategies to generate molecular

insight into PASC-CI. We begin with pseudo-bulk analysis (sin-

gle-gene level), followed by a progressive gene set enrichment

analysis (GSEA)28 approach. For eachmajor phenotype compar-

ison, we first performed aGSEA using the smallest MSigDB gene

set (hallmark29) with permissive thresholds (genotype permuta-

tion) to identify overall patterns of change across different cell
Cell Reports Medicine 5, 101561, May 21, 2024 3
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Figure 2. CSF findings in PASC-CI/PASC-SCC

(A) PASC-CI/PASC-SCC participants (n = 30) had CSF Ab42 and p-Tau181 levels indistinguishable from healthy control (HC) participants (n = 38) recruited before

or after the pandemic began and quite different from patients with Alzheimer’s disease (AD; n = 48).

(B) Levels of amore general marker of neurodegeneration (t-Tau) are also similar between PASC-CI/PASC-SCC participants and HCs (lines represent median and

interquartile ranges).

(C and D) Paired CSF and peripheral blood mononuclear cell (PBMC) scRNA-seq showed distinct GE profiles according to biofluid source (C, n = 4 participants),

and unsupervised cluster analysis of CSF monocytes identified seven distinct groups corresponding to previously reported CSF macrophages, border-asso-

ciated macrophages (BAMs), and monocytes (D).

(E) GSEA identified EPM3+ BAMs and monocytes to be most affected in CSF, with p adj from GSEA shown.

(F) GSEA using conservative (dark) or liberal (light) thresholds showed biological processes over- (red) or under-represented (blue) in PASC-CI participants (n = 12

participants) relative to HCs (n = 12 participants) in multiple CSF myeloid cells but greater changes in PASC-CI than AD in monocytes, mDCs, and IR-MPs.

(G and H) In monocytes, PASC-CI (G) was more associated with infection-related and inflammatory processes than two similarly powered cohorts of AD (H).

(I) STRING analysis identified shared PASC-CI interaction networks involving chemokines/receptors and ATF3 stress response, as well as unique networks

including downregulated major histocompatibility complex (MHC) class II genes in TH17/Treg cells and complement cascade genes in effector CD8 cells. FDR

values reflect network enrichment.
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types. We then performed a GSEA using larger gene sets (C2

curated and C5 ontology) with more conservative thresholds

(phenotype permutation). To improve specificity, we included

26 cases of biomarker-confirmed AD in the mild CI (MCI) or

mild dementia stage recruited in parallel to HCs and PASC par-

ticipants. Genes associated with PASC-CI by GSEA in multiple

biological pathways (i.e., leading edge) were then examined for
4 Cell Reports Medicine 5, 101561, May 21, 2024
comparisons between HC and AD subgroups or between AD

subgroups. Finally, we cross-referenced DEGs with protein-pro-

tein interaction networks to identify putative intra- and intercel-

lular signaling cascades associated with PASC-CI.

Pseudo-bulk analysis found 97 (unadjusted p < 0.001) DEGs

between HCs and PASC-CI participants. Three DEGs had

p < 0.05 after false discovery rate (FDR) adjustments for multiple
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comparisons, and only Ch25h in the mDC cluster had a modest

magnitude change in PASC-CI participants (1.893) compared to

HCs (Data S2). Ch25h is an IFN-induced gene whose mean

myeloid expression in CSF is 168-fold of that in blood (Data

S1). Its level was upregulated after in vitro SARS-CoV-2 infection

and in patients with COVID-19,30 as well as when monocytes

were recruited into injured tissue.31 More importantly, CH25H—

through its product 25-hydroxycholesterol—has been directly

implicated in hippocampal dysfunction during inflammation

mediated by NMDA receptors.32 Five additional DEGs (Plek,

Gsn, Apoe, Srgn, and Tcf4, unadjusted p < 0.001) were previ-

ously identified as among the top 318 altered in CSF of people

with acute neurological complications from COVID-19.7

A low number of dysregulated genes after multiple compari-

son adjustments could have resulted from greater clinical/etio-

logic heterogeneity among PASC-CI participants than among

acute severe COVID-19 cases. GSEA using hallmark gene sets

associated PASC-CI with greater dysregulated gene sets in

myeloid cells than T cells (Figure 2E), which contrasts with the

more prominent CSF NK and T cell activation in acute neurolog-

ical complications of COVID-19.7 Three CSF myeloid cell

types—EMP3+ BAMs, monocytes, and mDCs—had the great-

est diversity and magnitude of altered processes, with monocy-

tes displaying enriched gene sets associated with inflammation

(tumor necrosis factor [TNF]-a, IL-2, transforming growth factor

b), ultraviolet exposure, and cell signaling (estrogen, KRAS) not

matched by other cell types. As internal replication, we analyzed

PASC-SCC (n = 4)—at a sample size smaller than PASC-CI but in

keeping with other single-cell studies—and found that it had a

similar but more muted profile to PASC-CI (Figures S3 and S4).

We note enhanced—not suppressed, as in multisystem in-

flammatory syndrome15—TNF-a signaling in PASC-CI and

PASC-SCC compared to HCs. Remarkably, we also observed

reduction of IFN-a-related genes in PASC-CI and PASC-SCC

participants compared to HCs (Figure S4), a pattern that was

previously observed in plasmacytoid DCs from severe COVID-

19.33 We additionally identified 150 genes that were altered

across multiple myeloid cell types at a FDR <0.05 (Data S2).

Dysregulated Ptger4 was observed in all PASC-CI CSF myeloid

subtypes, while genes involved in MP activation (Oas1, Nfkbiz,

Socs1), viral carcinogenesis/acetylation (Gtf2b, Hist1h2bd/

H2bc5), autophagy (Gaparap,Gabarapl1), neuron-relatedmicro-

glia (Tuba1a, Tuba1b), or multiple pathways (Jun, Rel, Pik3cd,

Actg1) were dysregulated in three or more CSF myeloid types.

To systematically contrast CSFmyeloid genes dysregulated in

PASC-CI with prior COVID-19-related MP scRNA-seq datasets,

we performed hierarchical clustering analysis of PASC-CI gene

rank scores for 123 genes previously identified to be dysregu-

lated in MP/myeloid cells from human34 and ferret35 bronchoal-

veolar lavage fluid (BALF), mouse brains following pulmonary

SARS-CoV-2 infection,6 hamster olfactory bulb following infec-

tion,36 and human peripheral blood.37 This gave rise to eight

gene clusters. Clusters 1 (Atf3, Ccl3, Cxcl8, Il1b) and 2 (Ccl4,

Dusp6, Ier2,Adrb1, Sgk1) were enriched in multiple CSFmyeloid

subtypes from PASC-CI, BALF M1 MPs from COVID-19 BALF,

and differentiated BALF M1 in ferret COVID-19 infection but

downregulated in chemokine-expressing MPs in mouse brains

7 days post-infection (Figure S5). These cells together demon-
strate a microglial phenotype (Atf3, Ccl3, Ccl4, Il1b) observed

in aged brains22 and humans. Clusters 3–5 had genes that

were differentially enriched in CSF myeloid subtypes from

PASC-CI (e.g., cluster 3 in IR-MP, clusters 4 and 5 in mDCs

and mn) but generally enriched across human specimens and

animal models. These three clusters had divergent dysregulation

of several injury-responsive microglial genes including those up-

regulated in demyelination-recruited microglia (cluster 3 genes

of Rsad2 and Cxcl10, cluster 4 genes of Ccl2, Ctsl, and Spp1)

or non-specifically downregulated in injury-responsive microglia

(cluster 5 genes of Apoe, Mx1, Ifi44, and Ifit3). Cluster 6 con-

tained genes involved in viral entry (Fcn1, Vcan, Clec4d, Oas2,

Cd300lf) downregulated in PASC-CI despite their general en-

richment in all other infectious and post-infectious samples,

while clusters 7 and 8 genes were more similar between HCs

and PASC-CI participants. Hence, while they shared some fea-

tures with acute or peri-infectious microglia/MPs, CSF cells in

PASC-CI showed aging, demyelination-related, injury-respon-

sive, and suppressed pro- as well as anti-viral phenotypes.

GSEA using C2 (including gene sets altered in human or in vitro

SARS-CoV-2 infections) again showed EMP3+ BAMs, mDCs,

and monocytes to have the highest number of dysregulated

gene sets (Figure S6; Data S4 and S5). To maximize the speci-

ficity of this analysis, we performed parallel GSEAs in two AD

subgroups (n = 13 each compared with HCs). Compared to

PASC-CI, AD was associated with larger number of dysregu-

lated gene sets in two CSF MP cells (MP1 and MP2) but fewer

in monocytes and—to a more modest degree—mDCs (Fig-

ure 2F). Phenotype permutation using C2 only identified one

gene set related to SARS-CoV-2 infection, but the more permis-

sive genotype permutation showed leading edges of Cxcl2,

Cxcl8,Cxcl3, Ier3, and Tnfaip3 (99, 94, 82, and 51 edges), which,

on average, were seen in 7, 5, 13, and 3.5 edges in two similarly

powered AD subgroups. Many of these genes were upregulated

in acute COVID-19,38 and the top unique PASC-CI leading-edge

genes included other acute SARS-CoV-2 genes including Ccl3,

Ccl4, Gadd45a, Plaur, Sod2, and Cdkn1a.39–41

PASC-CI is associated with dysregulated network
involving Ccl3/Ccl4 and their repressor Atf3
Because our PASC-CI participants underwent CSF collection

many months (range: 3–18) after their initial SARS-CoV-2 infec-

tion, persistent DEGs resembling acute or subacute infection

were unexpected. These findings could have resulted from the

GSEA’s reliance on co-expressed genes with limited information

from expected autocrine/paracrine signaling among myeloid

cells. We thus next examined for the presence of interacting pro-

tein clusters in PASC-CI using STRING 12.0.42 STRING clus-

tering identified two network changes affecting multiple cell

types in PASC-CI but not in AD: chemokines/receptors with

hub genes of Cxcl8, Cxcl2, Cxcl3, Ccl3, Ccl4, and Ccl8 and en-

hanced host-pathogen interactions in human coronaviruses with

hub genes of Atf3, Jun, Fosb, Gadd45b, Egr1, and Map2k5

(Table S7). Chemokine/receptor gene networks in IR-MP cells

(FDR = 0.0023), mDCs (FDR = 0.0016), and mn cells (FDR =

0.0088) showed enrichment of chemoattractant genes Ccl3

and Ccl4 without accompanied enrichment in their receptors,

Ccr5 or Ccr8, consistent with recruitment of non-myeloid cells
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Figure 3. Factors associated with long-term PASC-CI prognosis

(A) Among 77 PASC-CI participants who consented to follow-up, recovery from PASC-CI was not associated with number of abnormal tests at baseline or

common COVID-19 risk factors such as asthma but was associated with a history of immunosuppression or non-dementing neurological disorder (p = 0.005 by

Kaplan-Meier survival analysis).

(legend continued on next page)
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in PASC-CI (Figure 2G). CSF MP2 cells showed similar patterns

of gene dysregulation but were not identified by STRING as be-

ing significant (Figure S7). Thus, while we did not detect in the

CSF a chemokine-secreting microglia subtype as was seen in

mice, multiple PASC-CI CSF MPs demonstrated the same che-

mokine-secreting phenotype with top genes of Ccl3, Ccl4,

and Atf3.

The other network commonly dysregulated in CSF myeloid

cells has among its hub genes Atf3 (Figure 2G). Transcription

factor ATF3 is known to repress Ccl3 and Ccl4 but also Ch25h

and Ifit2/Ifit3. The relative enrichment of Ccl3/Ccl4 network ge-

nes (IR-MPs, mn), their repressor network (MP1, MP2, EMP3+

BAMs), or both (mDCs) thus characterizes the functional state

of each cell type in PASC-CI. Extending STRING analysis to

T cells in our samples additionally showed suppressed major

histocompatibility complex II genes in effector CD8 cells and

repressed complement cascade genes in TH17/Treg cells. Alto-

gether, these profiles suggest that PASC-CI associates with acti-

vated chemokines and their regulatory pathways in CSFMPs but

suppress T cell functions.
Improvement from PASC-CI is slow and associated with
enriched chemokine/ribosomal network genes
63 PASC-CI participants had at least one longitudinal follow-up

(median: 9 months after the baseline testing, range: 3–23) with

the same short cognitive battery. Kaplan-Meier analysis esti-

mated 46% of the participants to have normal testing by

24 months following the initial infection, suggesting a very long

recuperation phase. The recovery curves did not differ according

to the number of abnormal tests or common COVID-19 risk fac-

tors, but we found virtually no recovery among people with a

common, pre-COVID neurological diagnosis (e.g., migraine,

seizure) or immunosuppressive therapy (e.g., methotrexate for

rheumatoid arthritis; Figure 3).

Among 12 PASC-CI participants who underwent baseline CSF

scRNA-seq analysis, five (42%) had symptomatic improvement

in follow-up. Pseudo-bulk analysis showed that, compared to

HCs, persistent PASC-CI (n = 7) was associated with higher

Ch25h and Haus2 in mDCs (log2(fold change) [log2(FC)] of 2.46

and 2.02, p.adj = 0.0003 and 0.0099), higher Srgn in MRC1+

BAMs (log2(FC) of 1.31, p.adj = 0.0036), and lower Ighg3 in

TH17 cells (log2(FC) of �0.46, p.adj = 4.7 3 10�9; Data S6).

Despite the greater level of IFN-stimulated Ch25h in those with

persistent PASC-CI, GSEA (hallmark gene sets, genotype per-

mutation) only showed enriched IFN-a and IFN-g gene sets in

improving PASC-CI but not in persistent PASC-CI (Figures 3D

and 3E). This was supported by the association of chemokine/re-

ceptor network enrichment in improving PASC-CI involving not

only repair-associated Cxcl2 and Cxcl8 but also homeostatic

chemokines Ccl20, Cxcl10, and Cxcl12,43 as well as their recep-
(B) GSEA (permissive thresholds, hallmark gene sets) linked improving PASC-C

persistent PASC-CI (n = 7 participants), but both PASC-CI groups sharedmultiple

(C) STRING analysis additionally identified improving PASC-CI to be enriched

translation/cytosolic ribosomal genes, compared to persistent PASC-CI. FDR va

(D) PCA of chemokine and chemokine receptor genes confirmed ligand-recepto

(E) Aptamer-based assays also confirmed CSF protein levels to differ accordin

normalized to HC levels, with p values from Mann-Whitney U tests).
tors Ccr6, Cxcr3, and Cxcr4 (FDR = 0.00012 in MP1 and 0.007 in

MRC1+ BAMs; Figures 3C; Table S8). GSEA and STRING addi-

tionally identified inflammatory/IFN signaling genes in Th1 cells

of improving PASC-CI, in keeping with their paracrine activation

viamicroglial chemokines (Figure 3D). By comparison, GSEA ac-

cording to time since COVID-19 (<1 year,R1 year) did not reveal

significantly altered pathways in myeloid or T cells. What’s more,

ribosomal genes (hub ofRpl35,Rpl37,Rpl38, andRpl7)were en-

riched in improving PASC-CI participants by both GSEA and

STRING but not in any of the six paired-AD comparisons (Table

S8). These housekeeping proteins are necessary for host mRNA

translation, but RNA viruses—including SARS-CoV-2—also uti-

lize them for viral protein translation.44 CSF MP enrichment in

pro-inflammatory chemokines and ribosomal machinery was

thus associated with better PASC-CI prognosis.
PASC-CI prognosis is associated with protective CSF
inflammatory protein profiles
Since a number of chemokines and their corresponding recep-

tors (Ccl20 and Ccr6; Cxcl10 and Cxcr3; Ccl3/Ccl4/Ccl8 and

Ccr5/Ccr8) were identified as differentially enriched according

to PASC-CI prognosis, we performed exploratory principal-

component analysis (PCA) to identify altered ligand-receptor re-

lationships in MP1 and Th1 cells (both identified by GSEA and

STRING). Whereas improving and persistent PASC-CI shared

some of the first PC consisting of MP1 Ccl2/Ccl3/Ccl4/Ccl8,

we observed two key differences: Ccl20 and its receptor Ccr6

loaded onto the same PC only in improving PASC-CI and Ccr5

loaded positively onto its ligand PC (Ccl3/Ccl4/Ccl8; feedfor-

ward) in improving PASC-CI but negatively (feedback) in persis-

tent PASC-CI (Figure 3D).

To extend the above transcriptomic findings, we measured

levels of 121 inflammatory proteins related to IFN and TNF-a

pathways as well as the neurofilament light chain (NfL) in CSF

of HCs (n = 19) and participants with PASC-CI (n = 30) using a

custom CSF proteomic array (SomaLogic, Boulder, CO, USA;

Table S8). We first focused on 11 chemokines in the Ccl3/Ccl4

network (CCL2, CCL3, CCL5, CCL8, CCL15, CCL3L1, CXCL8,

CXCL9, CXCL13, CXCL14, TNF-a). Quite different from our

earlier and others’ work on acute neurological complications of

SARS-CoV-2,45,46 we found no group-level difference between

PASC-CI participants and HCs. We extended this analysis to

additional analytes assessed in mouse CSF 7 weeks following

pulmonary SARS-CoV-infection6 and also did not find differ-

ences between PASC-CI participants (n = 23) and HCs (n = 20)

in nine analytes (IL-2, IL-4, IL-5, IL-6, IL-10, IL-18, CXCL2,

CXCL10, VEGF). This can result from heterogeneity among

PASC-CI participants, mixed chemokine regulations among

cell types, or ligand uptake. We thus examined the same cyto-

kines according to PASC-CI prognosis and found better
I (n = 5 participants) to enriched IFN- and TNF-related genes compared to

biological processes not observed in HCs. Shown are p adj values fromGSEA.

in many chemokine and chemokine receptor genes, as well as viral mRNA

lues reflect network enrichment.

r gene relationships to differ according to PASC-CI prognosis.

g to PASC-CI prognosis (mean and SD are shown for protein concentrations
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PASC-CI prognosis to associate with higher CSF levels of

CXCL8 (p = 0.009) and CCL3L1 (p = 0.035) but lower levels of

CXCL14 (p = 0.025) and CCL3 (p = 0.079; Figure 3E). The pattern

of decreased CCL3 and increased CXCL8 observed in improving

PASC-CI shares some features with serum chemokine profiles of

moderate, but not severe, COVID-19 patients.37 We interpret

these differences in extracellular chemokine levels between

improving and persistent PASC-CI at a minimum as correlates

of distinct intracellular/intercellular chemokine-receptor gene re-

lationships and as preliminary evidence for a chemokine/cyto-

kine environment conducive to inflammation resolution.47

Because we have empirically demonstrated that CSF proteins

form composite but reproducible clusters across healthy aging

and AD,18 we further performed PCA to identify cluster-level

changes associated with PASC-CI and prognosis. Two PCs

were derived: PC1 with top loading from sTNFR1, sTNFR2,

and NfL (Figure 4A), consistent with our previous work in HCs

and patients with AD; PC2 with top loading from sTREM2 and

TNFRSF4 (both showing cross-loading) as well as TRAF4,

IFNL2, and the IL-6/IL-6sR complex (Figure 4B). PC2 (p =

0.017) and, to a lesser degree, PC1 (p = 0.075) scores were

higher in improving PASC-CI than persistent PASC-CI. Post

hoc analysis of the top loading proteins showed improving

PASC-CI to associate with greater bulk sTREM2 (p = 0.008)

levels and persistent PASC-CI to associate with greater IL-6/

IL-6sR complex levels (p = 0.020). Because sTREM2, sTNFR1,

and sTNFR2 are all markers of regulatory/feedback function in

neuroinflammation and their elevated levels are associated

with better prognosis in AD, their association with improving

PASC-CI in the setting of cellularCcl3/Ccl4 gene network enrich-

ment is most consistent with a regulated pro-inflammatory

process.

DISCUSSION

PASC has overtaken acute encephalitis, encephalopathy, and

stroke as the primary neurological complication of SARS-

CoV-2 infection. Similar to other RNA viruses,48–50 viral gene

products have been challenging to detect in the CNS of people

with acute as well as chronic neurological syndromes.45 A recent

study found positive CSF antibody titers in three out of 12 partic-

ipants with PASC,51 but only half of the group had abnormal

screening cognitive scores. Here, we report PASC-CI to have

cognitive deficits independent from depression and anxiety

symptoms, to be molecularly distinct from AD, and to associate

with dysregulated IFN- and chemokine-related genes a median

of 9 months following their initial COVID-19 infection. These

CSF cellular gene expression changes partially recapitulate mo-

lecular networks altered by SARS-CoV-2 in vitro, in humanBALF,

and in hamster and ferretmodels of acute infection. Yet, we iden-

tified key differences, including upregulated Ch25h consistent

with monocyte recruitment to injury, opposite profiles from

mouse microglia 7 days post-pulmonary SARS-CoV-2 infection,

moremodest and selective dysregulation in genes previously im-

plicated in demyelination and injury responses, and downre-

gulation of genes implicated in viral entry. We further identified

better PASC-CI prognosis to correlate with greater upregulation

of Ccl2/Ccl4/Cxcl8 and higher bulk CSF levels of CXCL8,
8 Cell Reports Medicine 5, 101561, May 21, 2024
CCL3L1, and sTREM2. These findings provide strong support

for the inflammatory basis of PASC-CI, highlight key network-

level gene/protein alterations linked to PASC-CI outcomes,

and provide a template of dysregulated pathways for animal

models of PASC-CI.

Several of the CSF cell types have been broadly observed in

prior human CSF or brain scRNA-seq work. Based on a larger

yet safe volume of CSF collection (consistent with national

studies such as the Alzheimer’s Disease Neuro-imaging Initiative

and Parkinson’s Progression Marker Initiative), we characterized

a greater number of cells and afforded the exclusion of samples

with low cell count or quality. The consistent phenotyping of CSF

cells using single-cell techniques is evolving, yet normalization of

gene expressions across sufficient CSFmyeloid cells allowed us

to match unsupervised clustering outcomes to biologically

meaningful cell types including CSF MPs, BAMs, mDCs, and

monocytes. In our experience, scRNA-seq has been more reli-

able than fluorescence-activated cell sorting to identify cellular

subgroups, and future simultaneous scRNA-seq with epitope

mapping52 may be necessary to confirm our clustering- and

knowledge-based subtyping. Consistent with the example we

presented, we anticipate only occasional correlation between

single-cell-level gene expression and bulk CSF protein levels.

While a sufficiently large cohort may begin to identify cell types

most responsible for these CSF proteins, these findings support

the complementary analysis of cell-specific DEGs and bulk CSF

protein levels to best inform disease mechanisms and biomarker

development.

An important observation here is that, compared to persistent

PASC-CI, PASC-CI with later recovery was associated not only

with greater activation of TNF-a and IFN-g responses but also

reduced or reversed relationships between a number of chemo-

kines and their receptors (e.g., Ccl20-Ccr6, Ccl3/4/8-Ccr5).

Analysis according to PASC-CI prognosis also reduces

confound from co-existing mood disorders. We thus interpret

PASC-CI outcomes to involve more than different extents of

the same biological processes and to involve different auto-

crine/paracrine signaling. It is worth mentioning that we were

only able to identify certain myeloid and T cell subgroups in the

CSF, and our analysis could not account for parenchymal micro-

glial cells not detectable in the CSF or cells too few in number

(e.g., B cells) for scRNA-seq. A deeper characterization of

distinct chemokines’ and receptors’ contributions to CSF bulk

protein levels will require larger cohorts and more sophisticated

modeling, but our findings of altered CSF CXCL8, CXCL14,

CCL3L1, and CCL3 levels provides support for implicating this

network in PASC-CI. We also correlated PASC-CI prognosis

with CSF sTREM2 levels and, through PCA, sTNFR1/sTNFR2

levels, in keeping with previous observations in AD18,53—despite

PASC-CI’s many molecular distinctions from AD. A combination

of proteins specific to improving PASC-CI and more generalized

to better neurological outcomes may thus serve as potential bio-

markers for PASC-CI prognosis, although this warrants future

prospective testing.

A number of factors may account for DEG differences be-

tween PASC-CI CSF myeloid cells and other nervous tissue

sources for scRNA-seq. First, it remains unknown whether

persistent chemokine/cytokine alterations in the brain following
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Figure 4. CSF inflammatory proteomic profiles in PASC-CI according to prognosis

PCA in 118 CSF inflammatory proteins from 19 HCs to 30 PASC-SCC/PASC-CI (20 PASC-CI participants with long-term follow-up) participants identified two

PCs, which accounted for 99.6% of the variance. p values from ANOVA are shown.

(A) The top proteins in the first PC consisted of sTNFR1-related proteins (sTNFR1, sTNFR2) and a common marker of neurodegeneration (neurofilament light

chain, NfL).

(B) The top proteins in the second PC consisted of TRAF4, IFNL2, and IL-6/IL-6sR complex.

(C) Several proteins loaded onto both PCs, including sTREM2, TNFRSF4, and progranulin (GRN), while five (such as MX1) did not load onto either PC.

Shown are CSF PC scores or Z-transformed protein concentrations using HC participants’ mean and standard deviation (post hoc difference between HCs and

participants with improved PASC-CI for PC2, sTREM2, and progranulin and between HCs and participants with persistent PASC-CI for IL-6/sIL-6R and MX1).

Lines represent mean and standard deviations.
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SARS-CoV-2 clearance adequately model human PASC-CI.

Elevated Ch25h is consistent with continued monocyte recruit-

ment to injured tissue, and our CSF myeloid data share greater

similarities in key genes (Akt3, Ccl3, Ccl4, Dusp6) with MPs in

acute SARS-CoV-2 infection than with post-recovery changes.
Second, we note that many of the IR genes (Mx1, Ifi44, Ifi44l,

Isg15) previously implicated in SARS-CoV-2 viral containment

and clearance54,55 were downregulated in multiple myeloid cells

and especially in MRC1+ BAMs. Whereas IR genes are generally

known to be upregulated in acute infections, their expression
Cell Reports Medicine 5, 101561, May 21, 2024 9
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remains elevated in brains with HIV-associated neurocognitive

disorders.56 Their downregulation is thus noteworthy in the

context of a viral illness, especially since it is associated with

worse prognosis (Figure 3B). This downregulation has been

observed in post-mortem AD brains56 and in microglia from

chronically stressed mice.57 PASC-CI models may need to

consider incorporating both viral infection and chronic stress,

even though the prevalence for diagnosed mood disorders in

our PASC-CI cohort is low (Table S1). Lastly, parenchymal and

CSF-derivedmyeloid cells could demonstrate different DEG pat-

terns in PASC, even though significant parallels have been iden-

tified in other neurological conditions.10,58

Limitations of the study
At the cost of greater generalizability, we performed high-resolu-

tion cognitive and molecular characterization in a small, non-

random subset of people with PASC-CI with the following limita-

tions. PASC-CI remains difficult to characterize due to the

fatiguing nature of typical studies such as neuropsychological

testing and MRI, and recruitment from outpatient clinics and

communities may bias our results toward those with milder

PASC-CI. Findings here should thus be replicated in participants

determined to have PASC-CI in a population-based study such

as the ongoing New Jersey Population Health Cohort at our insti-

tution. We could not determine if someWMH changes were pre-

sent before or sustained during COVID-19, nor could we obtain

viral load information on people who had COVID-19 before com-

mercial RT-PCRwas available or who underwent antigen testing.

Wewere unable to fully confirm the identify of MP1,MP2, and IR-

MPs as microglia or dura/choroid plexus-related MPs. We could

not completely eliminate the possibility that some gene- or pro-

tein-level alterations were caused by another PASC syndrome

such as depression, even though analysis according to PASC-

CI prognosis largely identified the same pathways implicated in

PASC-CI. We also did not measure all protein products of dysre-

gulated genes including CCL4 and a proposed biomarker for

PASC-CI, CCL11,6 but our observation that CSF protein levels

were more influenced by PASC-CI prognosis than the presence

of CI suggests PASC-CI to have relatively less bulk protein alter-

ation than acute or post-acute neurological complications of

SARS-CoV-2. For these reasons, our findings should be viewed

as hypothesis generating. Due to the small sample size, we did

not analyze whether each brain MRI FLAIR pattern associated

with cell-specific DEGs or CSF bulk protein changes. Neverthe-

less, pseudo-bulk analysis identified a greater number of DEGs

after segregating PASC-CI according to long-term prognosis.

This observation lends further support to subtyping PASC-CI ac-

cording to longitudinal outcomes, as was done in early investiga-

tions of MCI, while the normal levels of CSF AD biomarkers and

NfL reported here should obviate further plasma studies on these

proteins in PASC.
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Study design and recruitment
A cross-sectional design was used for baseline demographic and clinical information, brain MRI, and CSF analyses, and a longitu-

dinal design was used to determine cognitive trajectory and reinfection. Between February 2021 and January 2023, patients evalu-

ated at the RPRC completed survey on demographic information (age, self-reported gender, self-reported race/ethnicity [Hispanic,

Black/African American, White, East Asian, South Asian, Other]), COVID-19 history (timing, symptoms, medical care), cognitive and

non-cognitive PASC symptoms, GAD-7, PHQ-8, FSS, and ESS. To protect participant anonymity, age reported in sample MRI find-

ings (Figure 1) was randomly adjusted to be within four years of actual age.

METHOD DETAILS

Case selection for PASC-CI
Because there is no universally accepted screening tool for milder forms of cognitive impairment,59 we developed a two-stage

approach to identify those with PASC andmeasurable cognitive dysfunction for longitudinal follow-up. In the first stage, consecutive

patients (n = 311) who registered at the RPRC were asked a single question to rate their thinking and memory compared to the pre-

vious year (‘‘Compared to last year, how would you rate your memory and thinking at the present time?’’) on a 5-point Likert scale60

from 1 (excellent) to 5 (poor) when re-infection was rare. This question was worded based on a single question found by the Aging,

Demographics, and Memory Study (related to the US Health and Retirement Study) to have similar performance as the Informant

Questionnaire on Cognitive Decline in the Elderly (IQCODE) in distinguishing between normal cognition and cognitive impairment

not dementia. Following the first study year, this question was re-worded (‘‘Compared to before you had COVID-19 .’’) as partic-

ipants began to have PASC symptoms for longer than a year.

In the second stage, patients who endorsed a score of 3 or more were contacted by trained neuropsychometricians by telephone

(to maintain social distancing) to complete a validated brief cognitive assessment (BCA).16 This consisted of four tests based on the

Philadelphia Brief Assessment of Cognition: auditory verbal learning and delayed recall of six words, maximum reverse digit span,

letter-guided fluency (F only), and oral trail making test. A performance at or below a Z score of�1.5was considered abnormal. 211 of

311 (59%) patients endorsed their memory to be less than excellent or good, and 124 (59%) patients completed the BCA. 71 (57%) of

those completing the BCA had abnormal performance in at least one test, and were combined with 8 of 12 participants from non-

RPRC sources who also had at least one abnormal BCA score to form the PASC-CI subgroup. Remaining participants with cognitive

complaint but normal test scores (n = 57) formed the PASC-SCC subgroup. 11 of 57 (19%) patients with normal BCA and 48 of 79

(61%) patients with abnormal BCA completed brain MRI analysis.

Participants for CSF analysis all underwent a structured interview with a board-certified neurologist (WTH) as part of their study

visits related to initial COVID-19 symptoms, subjective cognitive symptoms, and other neurological symptoms. 19 underwent

detailed neurological examination without significant findings.MRI was performed following a protocol modified from the Alzheimer’s

Disease Neuroimaging Initiative to includeMP-RAGE, T2, FLAIR, andGRE (or SWI for research-only scans) sequences to evaluate for

gross structural abnormality, white matter hyperintensities (WMHs), and hemorrhage.61,62

PASC-CI participantswere included if they hadno cognitive complaints prior toCOVID-19; hadconfirmed (RT-PCR, antigen testing)

COVID-19 or upper respiratory illness after exposure to peoplewith confirmedCOVID-19; no other condition known to cause cognitive

symptoms (e.g., prior traumatic injury, stroke, brain tumor except incidental meningioma, neurodevelopmental disorder, schizo-

phrenia, alcoholic dementia, Parkinson’s disease, HIV). Participants were excluded if they were hospitalized in the ICU during their

initial COVID-19 to rule out potential complications from prolonged hypoxia, cardiovascular instability, or secondary infection/sepsis.

Participantswere additionally evaluated for on-going cognitive side effects of sedatingmedications (e.g., narcotic, benzodiazepine) or

syndromic insomnia known to cause deficits on neuropsychological testing.63 Participants were not excluded if they had incidental

discovery of periventricular or deep WMH during the evaluation, unless they were extensive (Fazekas 3 for diffuse confluent periven-

tricularWMHor largeconfluentdeepWMH); if theyhad long-standinganalgesic use (e.g., gabapentin) prior toCOVID-19withnocogni-

tive effects; if they had sub-syndromic insomnia including episodic initial, maintenance insomnia, vivid dreaming, or unrestful sleep.

After alternate causes for cognitive impairment have been ruled out, older (50+) patients with PASC-CI and PASC-SCC were

offered the option of undergoing CSF analysis to rule out young-onset AD using established CSF biomarkers. Those undergoing

the procedure were invited to have their CSF samples processed for single-cell analysis (see below). Other patients and community

volunteers with persistent cognitive symptoms following COVID-19were also recruited to undergo research CSF collection. CSFwas

collected using a 24G atraumatic Sprotte needle in themorning (between 9a.m. and noon) into polypropylene tubes without overnight

fasting requirement. After CSF collection, 20 mL of whole blood was collected into K2-EDTA tubes for separation into buffy coat and

plasma. Buffy coat samples were sent to Center for Advanced Genomics (Philadelphia, PA) for genotyping. Four participants also

underwent paired PBMC single-cell analysis at the time of their CSF single-cell analysis.

For comparison of AD biomarker levels, de-identified age and gender-matched CSF samples from 33 participants with normal

cognition (14 recruited before and 19 recruited after March 2020) and 45 participants with MCI/AD unrelated to COVID-19 (all re-

cruited after March 2020) were also included. Pre-pandemic participants were recruited by the senior author (WTH) through Emory

University in the Atlanta area during 2010–2020 using protocols approved by the Emory University IRB. HC participants included

community-recruited older White and Black participants with normal cognition and clinical dementia rating61,64 or younger, non-car-

riers from families with known frontotemporal degeneration mutations with normal cognition and neuropsychological testing.
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Participants with AD were recruited from the Emory Cognitive Neurology Clinic, Emory AD Research Center, or community events in

the greater Atlanta area. All Emory participants underwent the same CSF collection and processing procedure as PASC-CI partic-

ipants, except CSF samples were not centrifuged to derive CSF cells for scRNASeq. Pandemic-era participants were recruited from

the Rutgers Cognitive Neurology Clinic, Rutgers Center for Healthy Aging, or community events in the NYC/NJ area using IRB-

approved protocols. Both Cognitive Neurology Clinics are tertiary referral centers experienced in the evaluation of neurodegenerative

disorders including AD, and both research centers (Emory AAD Research Center, Rutgers Center for Healthy Aging) are experienced

in recruiting healthy adults (18+) into longitudinal aging studies including CSF studies. All participants whowere pregnant, undergoing

active cancer treatments (immuno-, chemo-, or radiation therapy), untreated or unstable depression/anxiety/other psychiatric dis-

orders were excluded.

Single-cell preparation
To collect cellular component for single-cell transcriptome analysis, 15–20mL of CSF from each PASC (n = 29) andHC (n = 19) partic-

ipant was centrifuged at 600 g at room temperature for 10 min immediately after collection. The supernatant was carefully removed,

aliquoted, labeled, and frozen until biomarker analysis. The residual cellularity (pellet usually visible to the naked eye) was then re-

suspended in 500 mL Gibco RPMI 1640 Medium, Glutamax Supplement (Gibco; Cat # 61870–036) plus 10% FBS (Gibco; Cat #

A31605-01), spun again at 600g for 10 min in Eppendorf tube and resuspended in�60 mL using the same media. 43.2 mL of cell sus-

pensionwas loaded onto aNext GEMChipG (10xGenomics; Cat # 1000120, Pleasanton, CA). Single cells partitioning and barcoding

were performed using the Chromium single-cell controller (10x Genomics).

For PBMC cells, BD Vacutainer CPT tubes (BD BioSciences; Cat # 363760) were used. Whole blood was centrifuged at 1800 RCF

for 15min andmononuclear cells (whitish layer just under the plasma layer) were recovered andwashed 2x with PBS (CORNING; Cat

# 21-040-CV). Final pellet was resuspended in the same volume of RPMI-10% FBS as was the initial blood volume. Cells were

counted and 16000 were loaded onto the Next GEM Chip G. Libraries were prepared using Chromium Next GEM Single Cell 30 Re-
agent Kit (10x Genomics; PN-1000268) following manufacturers’ instructions.

Library quality check and single-cell sequencing
Quality check was performed on a DEDAE01443 instrument and an Agilent/2100 Bioanalyser. Libraries were sequenced using

NovaSeq PE150 at 48 G of raw data per sample (Novogene, Sacramento, CA). Raw reads were barcode deconvoluted and aligned

to the reference genome (GRCh38) via cellranger (v6.0.1). All subsequent processing was performed in a dockerized environment

using the Seurat package (v4.2.0) blinded to any upstream group metadata. All samples with primary cellranger errors indicating li-

brary prep failures, or with final filtered cells <500 were excluded from secondary analysis. Low quality cells (cells with percentage of

reads of mitochondrial origin >10%, with percentage of reads of ribosomal origin >45%, with <1000 features quantified, or with

>4000 features quantified) were filtered from the dataset, predicted multiplets were removed via DoubletFinder (v2.0.3). and read

counts were normalized using the scTransform method clustered according to nearest neighbors using 30 principal components,

and visualized via UMAP.

CSF AD biomarker analysis
CSF AD biomarkers were measured using the automated Lumipulse platform (Fujirebio Diagnostics, Malvern, PA) as previously

described.17 Our center achieves intermediate precision of 6.7%, 7.5%, and 6.1% for Ab42, t-Tau, and p-Tau181.

CSF inflammatory protein analysis
A custom CSF inflammatory protein array was developed using proteins associated with TNF-a, interferon, and other immunological

signaling pathways from the greater SomaLogic CSF panel (Table S9). CSF samples were frozen at�80�C at Rutgers until over-night

shipping on dry ice to SomaLogic. Because CSF protein levels were influenced by freeze-thawing cycles during internal pilots ex-

periments conducted by Rutgers and SomaLogic, samples were only thawed at time of analysis to minimize this effect.

QUANTITATION AND STATISTICAL ANALYSIS

Missing data
Among 136 patients screened for cognitive impairment, 9 hadmissing PHQ-8, and 7 of the 9 also hadmissing GAD-7, FSS, and ESS;

4 had missing initial COVID-19 symptoms. Patients with missing data were excluded from the baseline PCA and other association

analyses, but were included in the longitudinal outcome analysis.

Analysis of baseline characteristics
All demographic and clinical data were analyzed using IBM SPSS 28 (Aramonk, NY). For baseline comparisons, Student’s T-test or

analysis of covariance (ANOVA) were used for continuous variables, while Chi-squared tests were used for categorical variables. EFA

was used to identify intrinsic constructs underlying cognitive measures, PHQ-8, GAD-7, FSS, and ESS in a PASC cohort. Factor

loading >0.400 while omitting cases with missing data was further confirmed with imputed missing data using expectation maximi-

zation to reduce bias.65,66
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Survival analysis for PASC-CI
To determine factors associated with persistent or improving PASC-CI, we performed KM survival analysis according to number of

abnormal cognitive tests, presence of abnormal MRI finding, presence of key co-morbidities predisposing one to COVID-19 (dia-

betes, asthma, cardiovascular disease, cancer, immunocompromised state), history of non-dementing neurological disorders (head-

aches, epilepsy), and history of immunosuppressant treatment if present in greater than 10% of the overall PASC-CI group.

Identification and characterization of CSF cell types and subtypes
Unsupervised cluster analysis was performed to identify CSF cell groups, and DEGs associated with each cell cluster were examined

to identify T cells, myeloid cells, and B cells. Pseudobulk analysis was performed comparing myeloid cells in the CSF with PBMC-

derived myeloid cells to confirm a CSF myeloid phenotype. CSF T and myeloid cells each underwent further clustering analysis to

identify 6 and 7 subgroups. Markers associated with each T cell subgroup were examined to identify CD8, effector CD8, NK, TH1,

TH2, and TH17 cells. Because myeloid cells are less well characterized in the CSF, we first identified markers previously published

to associate with CSF and brain myeloid lineages (macrophages, BAM, mDC, monocytes) and standardized their corresponding

VST gene expression levels across all CSF samples. The relative expression of these published markers were then manually exam-

ined to derive the most probable myeloid cell lineage.

DEG analysis, GSEA, and STRING analysis
Group cross-comparisons for DEGs between PASC-CI (persistent as well as improved), PASC-SCC, and HC were performed via

pseudobulk analysis using DESeq2 (v1.36.0). Significant DEG thresholds were defined at p.adj <0.05. Genes dysregulated across

multiple myeloid subtypes were first identified by nominal p < 0.05 within each subtype, and probability of Type I error for co-occur-

rence in the given number of subtypes was calculated using binomial distribution and corrected for FDR using the Benjamini-

Hochberg procedure.

For GSEA between PASC-CI and HC, read counts underwent variance normalization transformation and were matched with Hall-

mark gene sets in GSEA (v4.3.2; Broad Institute) using permissive conditions (1,000 gene permutations, p < 0.001, q < 0.05) to derive

general pathways enriched – by absolute signal-to-noise ratio or |S2N| to balance sensitivity with specificity67 – in PASC-CI or HC. To

determine if PASC-CI involved human or in vitromodels of SARS-CoV-2 infection, GSEA using C2 was performed using more strin-

gent (phenotype permutation, p < 0.05, q < 0.25) criteria to identify cell types most specifically impacted by comparing the number of

altered pathways relative to two separate AD cohorts (n = 13 each) we collected and analyzed. After mDC and monocytes were

shown to undergo greater pathway alterations in PASC-CI than AD, GSEA using C2 with more permissive conditions was repeated

to identify leading edge DEGs. To determine biological processes linked to PASC-CI prognosis, GSEAwas performed using hallmark

gene sets with permissive thresholds first, but only stringent criteria (phenotype permutation) using C2 and C5 gene sets due to the

smaller subgroups. To empirically determine if leading gene sets would have arisen by chance from comparing two subgroups who

were indifferent from each other, we created four matching AD groups for six pairwise comparisons. Enrichment maps were visual-

ized, auto-annotated for clusters of similar biological themes, and then manually reviewed in Cytoscape as previously described.68

For comparison with prior SARS-CoV-2 infection scRNASeq datasets, top genes dysregulated in acute infection (human and ferret

BALF, human serum) and post-infectious nervous tissue (mouse brain, hamster olfactory bulb) were manually collated across

studies, and average S2N values (PASC-CI vs. HC) were used in hierarchical cluster analysis (squared Euclidean distance, Ward

method) to generate clusters characterized by genes sharing dysregulation patterns within or across myeloid subtypes.

To identify protein-interaction networks dysregulated in PASC-CI, genes ranked by |S2N| for each cell type were entered into

STRING using local network clusters only to avoid duplication of GSEA results.42 While the entire range of |S2N| values were used

for GSEA, we limited STRING analysis to genes with |S2N| R 0.0569 and enriched gene sets with 15 or more nodes. When multiple

pathways involving the same gene sets were identified by STRING as enriched, they were combined and represented by the median

enrichment score plus its associated number of matched genes. After identification of the Ccl3/Ccl4/Ccl8/Ccr5 network, normalized

gene counts for network nodes with non-zero count for at least 70% of cases were included in two PCA: one consisting of improving

PASC-CI and HC, and the other of persistent PASC-CI and HC. Four PCs were identified in each based on Eigenvalue (R1) and the

Scree plot shoulder rule.

CSF inflammatory protein analysis
MeasuredCSF levels of inflammatory proteins were analyzed through two approaches. In the first hypothesis-driven approach, levels

of 11 proteins involved in the CCL3/CCL4/CCL8 network (CCL2, CCL3, CCL5, CCL8, CCL15, CCL31L, CXCL8, CXCL9, CXCL13,

CXCL14, TNF; CCL4 not available) were examined according to PASC-CI prognosis via Mann-Whitney U tests, with a of 0.05 without

correction for multiple comparisons. In the second discovery-based approach, we followed our previous approach to determine CSF

protein PCs.18 Briefly, each individual CSF protein was examined to assess for normal distribution across the sample cohort using

Kolmogorov-Smirnov Test, and CSF proteins which did not have normal distribution were log10-transformed for PCA. Six proteins

(IFNa1, fractalkine, IL-17F, IFNU1, IL-31, YKL40) could not be normalized and were excluded from PCA (co-variance matrix, mini-

mum eigenvalue of 1, Varimax rotation). PC scores were generated and compared using analysis of variance across the three groups

(HC and two PASC-CI prognostic groups). Top loading proteins for each PC were identified and examined using ANOVA, along with

representative proteins which loaded onto both or neither PC.
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