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Abstract

Two decades have passed since the strawberry (Fragaria x ananassa) disease caused by Macrophomina phaseolina, a necrotrophic soilborne
fungal pathogen, began surfacing in California, Florida, and elsewhere. This disease has since become one of the most common
causes of plant death and yield losses in strawberry. The Macrophomina problem emerged and expanded in the wake of the global
phase-out of soil fumigation with methyl bromide and appears to have been aggravated by an increase in climate change-associated
abiotic stresses. Here we show that sources of resistance to this pathogen are rare in gene banks and that the favorable alleles they
carry are phenotypically unobvious. The latter were exposed by transgressive segregation and selection in populations phenotyped
for resistance to Macrophomina under heat and drought stress. The genetic gains were immediate and dramatic. The frequency of
highly resistant individuals increased from 1% in selection cycle 0 to 74% in selection cycle 2. Using GWAS and survival analysis,
we found that phenotypic selection had increased the frequencies of favorable alleles among 10 loci associated with resistance and
that favorable alleles had to be accumulated among four or more of these loci for an individual to acquire resistance. An unexpectedly
straightforward solution to the Macrophomina disease resistance breeding problem emerged from our studies, which showed that highly
resistant cultivars can be developed by genomic selection per se or marker-assisted stacking of favorable alleles among a comparatively
small number of large-effect loci.

Introduction
The development of cultivars resistant to diseases caused by
necrotrophic fungal pathogens has been challenging in plants
because of the lifestyles and harsh infection strategies of the
pathogens and characteristically complex and quantitative
defense mechanisms of the hosts [1–11]. Studies in several
agriculturally important plants have shown that sources of
resistance to diseases caused by necrotrophs are uncommon
and inherently weak, that genetic variation for resistance tends
to be quantitative and limited, and that resistance phenotypes
tend to be ambiguous and marginally heritable [2, 6, 12–17]. With
these generalizations as a starting point, we initiated studies in
2015 to gain an understanding of the genetic basis of resistance
to the disease of strawberry (Fragaria x ananassa) caused by the
necrotrophic fungal pathogen Macrophomina phaseolina [18–21].
This widespread generalist pathogen causes plant death and
yield losses in strawberry and numerous other agriculturally
important plants, including soybean, groundnut, sunflower, and
sorghum [13, 14, 17, 22, 23]. Although universally identified as a

necrotroph, the occurrence of a latent life cycle phase suggests
that M. phaseolina might be hemibiotrophic [23–25]. This nuance
aside, the virulent stage is necrotrophic [23]. Our working
hypothesis, built on findings in other plants, was that resistance to
this pathogen was weak, quantitative, and genetically complex in
strawberry.

Macrophomina was identified as a serious but geographically
limited threat to production in strawberry in the decade before the
global phase-out of methyl bromide fumigation began in 2005 [26–
28]. This ozone-depleting substance had been widely used since
1960 as a soil fumigant in strawberry and other agriculturally
important plants to limit losses to diseases caused by soilborne
pathogens [29–33]. Macrophomina was virtually unknown as a
strawberry disease problem in California, Florida, and Spain
until initial reports began surfacing in 2004 [20, 34–36], but had
been reported earlier in Israel, Egypt, and elsewhere [27, 28]. This
disease has since become one of the most serious and widespread
causes of plant death and yield losses in strawberry, particularly
in warm climates [18, 19, 21, 28, 34, 36–39]. The escalating
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importance of Macrophomina-caused diseases in agriculturally
important plants appears to be strongly correlated with an
increase in abiotic stresses aggravated by climate change,
especially heat and drought stress [22, 23, 28, 40–44].

The rapid emergence of Macrophomina as a disease problem in
strawberry has meant that the search for breeding solutions, the
identification and utilization of sources of resistance in breed-
ing, and studies to elucidate the genetics of resistance have
been limited [28, 45, 46]. Nevertheless, a significant breakthrough
was reported in an earlier genetic study [46]. Nelson et al. [46]
identified three large-effect loci (MP1, MP2, and MP3) that were
associated with quantitative resistance to Macrophomina in straw-
berry. MP1 and MP2 were identified by quantitative trait locus
(QTL) mapping in elite × elite full-sib families, whereas MP3
was identified by QTL mapping in elite × exotic full-sib families.
The favorable MP3 allele was predicted to have been transmit-
ted by the exotic parent (FVC 11–58), an interspecific hybrid
between F. virginiana and F. chiloensis ecotypes [47]. Using area
under the disease progress curve (AUDPC) estimates, they showed
that symptom development could be slowed and that susceptibil-
ity could be decreased by stacking favorable MP1 and MP2 alleles.
Finally, they suggested that resistance to Macrophomina might
be further increased by stacking favorable alleles among the
three loci.

The studies described here were undertaken to accelerate the
development of strawberry cultivars resistant to Macrophomina,
develop deeper insights into the genetics of resistance to
Macrophomina, and identify genome-informed solutions to the
Macrophomina disease resistance breeding problem in strawberry
[15, 48]. Macrophomina has presumably been omnipresent in
soils for millennia without causing disease [23], at least not
frequently, and without posing a serious risk to strawberry
production. However, since gaining a foothold in California
and other parts of the world over the last 20 years [20, 27,
35], the development of Macrophomina resistant strawberry
cultivars has become imperative. Here we report findings
from an in-depth survey of genetic variation for resistance
to Macrophomina and from analyses of phenotypic selection
experiments that shed light on the genetics of resistance to
Macrophomina. Our studies were initiated by screening diverse
F. chiloensis, F. virginiana, and F. × ananassa genetic resources
(asexually propagated hybrid individuals) for resistance to
Macrophomina under high summer temperatures and induced
drought stress. We report significant breakthroughs in breeding
for resistance to Macrophomina that were facilitated by the
development of straightforward and effective phenotyping
protocols, the identification of multiple elite and exotic sources of
favorable alleles for enhancing resistance, extreme transgressive
segregation, the aggregation and accumulation of favorable
alleles from multiple sources of resistance into elite genetic
backgrounds, rapid genetic gains from phenotypic selection,
and the discovery of several loci that appear to have been
targeted by phenotypic selection for increased resistance to
Macrophomina. Our genetic studies were facilitated by using
a high-throughput genotyping array populated with single
nucleotide polymorphisms (SNPs) physically anchored to a
haplotype-phased octoploid reference genome developed for
the cultivar ‘Royal Royce’ (https://phytozome-next.jgi.doe.
gov/info/FxananassaRoyalRoyce_v1_0) [49]. Lastly, we propose
formulaic genome-informed solutions to the Macrophomina
disease resistance breeding problem in strawberry, in addition
to addressing open questions and discussing the limitations of
our study.

Results
Selection cycle zero: Assessing the frequency
and strength of resistance to Macrophomina in
strawberry
Our data suggests that resistance to Macrophomina is rare among
wild relatives, cultivars, and other individuals preserved in clonal
octoploid strawberry gene banks (Figs. 1-2; Supplemental Files S1-
S2). This conclusion was reached by screening artificially inoc-
ulated clonal replicates of a diverse collection of 853 genetic
resources (clonally preserved hybrid individuals and ecotypes)
for disease symptoms under high summer temperatures and
induced drought stress. These selection cycle 0 (C0) individuals
were the source of the elite and exotic parents selected for devel-
oping full-sib families for the selection cycle one (C1) popula-
tion (Supplemental File S3). The phenotypes reported herein for
the C0, C1, and cycle 2 (C2) populations were observed in the
precipitation-free months of June and July in Davis, CA when daily
maximum temperatures were in the 27◦C to 42◦C range (https://
www.weather.gov/wrh/climate). We discovered that differences
in resistance phenotypes were most effectively expressed and
differentiated when moderate drought stress was induced by
decreasing irrigation by 50% to 70%, enough to cause mild wilting
without leaf scorch in resistant hybrid checks (Fig. 4A).

When our study was initiated in 2015, there was a dearth
of information on sources of resistance to Macrophomina and
an absence of information on the genetics of resistance to this
pathogen in strawberry [19, 21, 37, 38, 46]. To rectify this and
build the foundation for the present study, we drew upon sev-
eral sources of information to select the widest possible array
of individuals preserved in clonal gene banks at the University
of California, Davis and USDA National Plant Germplasm Sys-
tem (https://www.ars.usda.gov/) (Supplemental File S1): genetic
relationships estimated from pedigree records (coancestry coeffi-
cients) and genome-wide single nucleotide polymorphism (SNP)
profiles; breeding program origin for F. × ananassa germplasm;
and phylogenetic and geographic origin for ecotypes of the wild
ancestors (F. chiloensis and F. viginiana) [50, 51]. Of the 853 octoploid
clonal genetic resources (C0 individuals) phenotyped in our study,
265 were acquired from the USDA collection, 588 were preserved
in the UC Davis collection, 778 were F. × ananassa, 39 were F.
chiloensis, and 36 were F. virginiana (Supplemental File S1).

Using bare-root clones artificially inoculated with the pathogen,
99% of the C0 individuals screened in our studies developed
moderate to severe disease symptoms with ordinal disease score
means (y) in the 2.0 to 5.0 range (Fig. 1-2; Supplemental File S1).
Eighty percent of these individuals developed severe symptoms
(4.0 ≤ y ≤ 5.0) and most were killed by the pathogen (y = 5.0). The
resistance score distributions in both screening experiments were
left-skewed with disease score medians of 5 and means of 4.4
in both locations (Fig. 2A–B). Symptomless individuals (y = 1)
were extremely rare in the C0 population (Supplemental File S1).
Less than one percent of the C0 individuals screened in either
location had disease score means in the highly resistant range
(1.00 ≤ y ≤ 1.75) (Supplemental File S1). The most resistant
individuals identified in these gene bank screening studies
were diverse and included F. chiloensis ecotypes (CA1386 and
KH94–6), F. virginiana ecotypes (RH30 and LH20–1), and early
and modern cultivars developed in Maryland (MDUS4987 and
MD683), the Pacific Northwest (‘Totem’ and ‘Tillikum’), and
California (58C045P002, 12143P001, ‘Tufts’, and ‘Warrior’) (Fig. 3;
Supplemental File S1).

We used principal component analysis (PCA) of the genomic
relationship matrix (GRM) to visualize genetic relationships
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Figure 1. Symptoms of the crown rot disease of strawberry caused by Macrophomina phaseolina. The strawberry plants depicted here are selection cycle
one progeny observed August 30, 2022 in Salinas, CA. The ordinal scores applied to visual symptoms are shown below the photographic images, where
1 = highly resistant (symptomless) and 5 = highly susceptible (dead).
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Figure 2. Histograms for ordinal Macrophomina resistance scores among selection cycle 0, 1, and 2 individuals. (A-B) The data displayed for C0
populations are phenotypic means estimated from four clonal replicates per individual. (C-G) The data displayed for C1, C2, and C1R populations are
phenotypic observations of unreplicated seed-propagated individuals within full-sib families. (A) Histogram for 565 octoploid strawberry germplasm
accessions phenotyped in Davis, CA in the summer of 2016. (B) Histogram for 853 octoploid germplasm accessions phenotyped in Irvine, CA in the
summer of 2017. (C) Histogram for 2211 individuals within 17 C1 full-sib families phenotyped in Davis, CA in the summer of 2019. (D) Histogram for
1260 individuals within 25 C1R full-sib families phenotyped in Davis, CA in the summer of 2022. (E) Histogram for 960 individuals within 20 C1R
full-sib families phenotyped in Salinas, CA in the summer of 2022. (F) Histogram for 560 individual within 18 C2 full-sib families phenotyped in Davis,
CA in the summer of 2021. (G) Histogram for 441 individuals within 18 C2 full-sib families phenotyped in Salinas, CA in the summer of 2021.

among 584 C0 individuals that were genotyped with a 50 K Axiom
SNP array [49] and phenotyped for resistance to Macrophomina in
Davis and Irvine, CA (Fig. 3). This analysis reproduced the classic
V-shaped distribution and historical genetic groupings previously
reported for elite and exotic strawberry germplasm [51]. Broadly
speaking, exoticness increases as you trace a path from the upper
tip of the V where elite UC individuals are clustered, to the vertex

where early UC, non-UC, and heirloom cultivars are clustered, to
the lower tip of the V where F. virginiana and F. chiloensis ecotypes
are clustered. The darkness of the points displayed in the principal
score plot (Fig. 3) varies according to the estimated marginal
means (EMMs) for Macrophomina resistance score, where 1 = highly
resistant (dark blue) and 5 = highly susceptible (light blue). The
darkest points highlight the most resistant individuals identified
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Figure 3. V-shaped distribution of genetic relationships among 584
individuals in the cycle 0 population visualized by principal component
analysis of a genomic relationship matrix (GRM) estimated from 48 340
single nucleotide polymorphisms genotyped with a 50 K Axiom array.
Score for the first two principal components are shown. The far left
upper tip of the V is comprised of modern UC cultivars and hybrids,
whereas the far right lower tip of the V is comprised of Fragaria chiloensis
ecotypes (e.g., CA 1386 and KH 94–06) with F. virginiana ecotypes (e.g., RH
30) falling slightly upstream. The vertex of the V is comprised primarily
of early UC cultivars and hybrids (e.g., 58C045P002) and early and
modern non-UC cultivars (e.g. ‘Totem’). Estimated marginal means
(EMMs) for disease score, which ranged from highly resistant (1) to
highly susceptible (5), were estimated from four clonal
replicates/individual in two disease resistance screening studies (Davis,
CA in 2016 and Irvine, CA in 2017). The within and across location EMMs
for every individual are tabulated in Supplemental File S1

Table 1. Selection cycle 0, 1, 1R, and 2 population means (y) and
medians (ỹ) among n individuals phenotyped for resistance to
Macrophomina in different locations and years

Cycle Year Location n y ỹ

C0 2016 Davis 565 4.38 5
2017 Irvine 853 4.43 5

Across 565 4.41 5
C1 2019 Davis 2211 2.39 2
C1R 2022 Davis 1260 2.55 2

Salinas 960 2.92 3
Across 2220 2.71 3

C2 2021 Davis 560 1.34 1
Salinas 441 1.35 1
Across 1001 1.35 1

in our study (their EMMs are tabulated in Supplemental File S1).
Our PCA visualization shows that sources of resistance were
found across the domestication spectrum, from ecotypes of the
wild ancestors to modern UC cultivars found at opposite tips of
the V, e.g., from the F. chiloensis ecotype CA 1386 at one extreme to
the UC cultivar ‘Warrior’ at the other (Fig. 3). Sources of resistance
were more common among early UC and non-UC cultivars found

near the vertex of the V, from ‘Tufts’ in the upper arm to ‘Totem’ at
the vertex to 58C045P002 in the lower right arm (Fig. 3). Although
sources of resistance were more common among early UC and
other exotic germplasm resources (from ‘Tufts’ to the vertex to
CA 1386 in the V), several sources of resistance were identified
among elite UC individuals, e.g., 12C147P002, 12C143P001, and
‘Warrior’ (upper left tip of the V to the left of ‘Tufts’ in Fig. 3).
This was significant because those individuals supplied elite UC
individuals (recipients) for the introgression of novel favorable
alleles from exotic sources (donors).

Heritability of resistance to Macrophomina in
diverse strawberry Germplasm
The resistance phenotypes observed in the cycle 0 population
were predicted to be highly heritable; however, after inspecting
the underlying phenotypic observations, we concluded that our
heritability estimates for disease score might have been inflated
by the high frequency of susceptible individuals (4.0 ≤ y ≤ 5.0)
where replicate to replicate variation was minimal. Using the
phenotypic observations for the entire C0 population (1.0 ≤ y ≤
5.0), REML estimates of broad-sense heritability on a clone-mean
basis (Ĥ) were 0.45 in Davis, 0.69 in Irvine, and 0.55 across loca-
tions. When observations among individuals in the moderately
to highly resistant range (1.0 y ≤ 3.0; thin left tails of the C0
phenotypic distributions) were inspected, we discovered that the
between-location rank correlation for disease score was negative
(r̂ = −0.27; p ≤ 0.0001). Conversely, when estimated for the entire
C0 population, the between-location rank correlation for disease
score was positive (r̂ = 0.25; p = 0.004). Hence, we were not overly
confident in the accuracy of the resistance phenotypes observed
among C0 individuals and were skeptical of the strength and
reproducibility of the resistance phenotypes of the C0 founders
that we selected to develop the C1 population (Fig. 2A–B; Supple-
mental File S1). To highlight our apprehension and the practical
ramifications of this uncertainty, the most resistant individual in
Davis (98C153P003; y = 1.0) was killed in Irvine (y = 4.9), and only
one (CA 1501; y = 1.2) out of 560 individuals screened in both
locations (0.18%) had a resistance score below 2.0 (Supplemen-
tal File S1).

Selection cycle one: Transgressive segregation,
hopeful monsters, and breeding breakthroughs
Although the C0 phenotypic distributions for Macrophomina resis-
tance score were continuous (Fig. 2A–B; Table 1), their strongly
left-skewed shapes were characteristic of the negative exponen-
tial distributions that arise in survival or time-to-event analyses
[52, 53]. Such distributions are characteristic of those observed for
genetically complex threshold traits [5, 54–56]. We suspected that
the strongly left-skewed C0 phenotypic distributions were caused
by time-to-event phenotypic variation for resistance, a paucity
of favorable alleles, and non-linearity of the ordinal symptom
rating scale (Fig. 1). Such non-linearities are common in genetic
studies where large-scale visual phenotyping is necessary, large-
plot analyses of disease incidence and severity are impractical
and unnecessary, and high-throughput phenotyping alternatives
are limited, untested, or unproven [5, 57–61]. To increase the prob-
ability of selecting parents carrying novel favorable alleles and
cope with the uncertain accuracy of C0 resistance phenotypes, we
had to relax the truncation selection threshold among prospective
selection cycle 1 parents (Supplemental File S1). Sixteen C0 indi-
viduals were selected as parents to develop 17 full-sib families
for the selection cycle 1 (C1) population (Supplemental File S3).
These parents exhibited disease symptoms but were among the
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Figure 4. Symptoms and phenotypic distributions for selection cycle 1 and 2 full-sib families screened for resistance to Macrophomina in Davis, CA field
studies. (A) Selection cycle 1 and 2 full-sib families. The plants shown were observed in July 2018–19 (C1) and 2020–21 (C2). The most resistant full-sib
families were 18C889 in the C1 population and 20C390 in the C2 population. (B) Ordinal disease score distributions for 2211 individuals within 17
selection cycle 1 full-sib families observed in 2018–19. (C) Ordinal disease score distributions for 1001 individuals within 18 selection cycle 2 full-sib
families observed in 2020–21.

least susceptible individuals identified in one or both of our C0
screening studies, e.g. a single clonal replicate of ‘Totem’ was one
of a handful of survivors in our Irvine screening study (Fig. 2A–B;
Supplemental File S1).

The disease score distribution for the C1 population was
approximately bimodal with a disease score median of 2 and
mean of 2.4 (Fig. 2C; Table 1), in stark contrast to the left-skewed
distributions observed for the C0 population (Fig. 2A-B). The
transgressive segregation we observed was dramatic. Symptom-
less individuals (y = 1) were observed within every C1 full-sib
family (Fig. 4B). Strikingly, 57.0% of the individuals within the four
most resistant C1 full-sib families (18C889, 18C492, 18A913, and

18C862) and 91.4% of the individuals within the 18C889 full-sib
family were symptomless (Fig. 4B). This suggested that the favor-
able alleles transmitted by at least one parent were completely
dominant (d/a = 1) or that both parents transmitted additive to
completely dominant favorable alleles (0 ≤ d/a ≤ 1), where d/a is
the degree of dominance [62]. While novel complementary favor-
able alleles undoubtedly accounted for a significant fraction of
the transgressive phenotypic variation we observed in the C1 pop-
ulation, epistasis and other factors cannot be ruled out [63–65].

The phenotypic variation observed within and among C1 full-
sib families (Fig. 4B) and approximately bimodal C1 phenotypic
distribution (Fig. 2C) suggested that one or more large-effect loci
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segregated, a hypothesis explored by using genome-wide asso-
ciation study (GWAS) methods to search for genetic variants in
linkage disequilibrium (LD) with causal genes (see below). Lastly,
transgressive segregation in the C1 population and genetic gains
observed between selection cycles 0 and 1 suggested that our
artificial inoculation, field screening, and high-throughput phe-
notyping protocols identified sources of favorable alleles among
diverse gene bank accessions (selection cycle 0 individuals) that
were phenotypically unobvious (Supplemental File S1). Such alle-
les are often hidden in plain sight because of their scarcity and
small effects [63, 65, 66], and as we hypothesized, because they
are individually necessary but insufficient to confer resistance
to this pathogen. The symptomless C1 individuals we selected
were ‘hopeful monsters’ [66, 67]: newly created multilocus assem-
blages of favorable alleles that were aggregated by hybridizing
marginally resistant elite and exotic individuals (C0 parents) and
exposed by transgressive segregation among their offspring (C1
progeny).

Selection cycle two: Consolidation, validation,
and verification of genetic gains
The validity of the selection cycle 1 breeding breakthrough was
substantiated in selection cycle 2 where the frequency of sus-
ceptible individuals dropped precipitously (Fig. 2F–G & 4C). We
developed 18 selection cycle 2 (C2) full-sib families from crosses
among 17 symptomless individuals identified in the C1 popula-
tion (Supplemental File S3). C2 full-sib progeny were screened for
resistance to Macrophomina in Davis and Salinas, CA using artificial
inoculation protocols, screening methods, and study designs iden-
tical to those used in selection cycles 0 and 1 (Fig. 2F–G and 4C).
The phenotypic distributions for the C2 population were strongly
right-skewed with disease score medians of 1 (symptomless) in
both locations and means of 1.34 in Davis and 1.35 in Salinas
(Fig. 2F–G; Table 1).

The decrease in the disease score mean (increase in resis-
tance) between the C0 and C2 populations was highly significant
(4.41 − 1.35 = 3.06; p ≤ 0.0001; Table 1). Of 2203 C2 individuals
phenotyped in either location, 1094 were symptomless (49.7%)
and 1628 had disease scores ≤ 2.0 (73.9%), a complete reversal of
the distributions observed among C0 population individuals (Fig.
2.1A-B & F-G and 2C; Supplemental File S1). Strikingly, 100.0%
of the individuals observed in three of the C2 full-sib families
(20C377, 20C383, and 20C390) screened in Davis were symptom-
less (y = 1.0; Fig. 4C). Hence, phenotypic selection under heat and
drought stress inverted the highly skewed phenotypic distribu-
tions between the C0 founders and C2 descendants and created
a population with an exceptionally low frequency of susceptible
individuals (Fig. 2–4). The phenotypic changes observed between
selection cycles 0 and 2 further suggested that selection may have
targeted one or more large-effect loci.

Selection cycle 1 revisited: Training population
winners and losers and a deeper exploration of
genetic variation
We developed an independent population of full-sibs (hereafter
the C1R population) to sample favorable alleles from a wider
sample of prospective donors of novel favorable alleles, replicate
and verify the transgressive segregation observed in the C1 popu-
lation, and build a training population for genomic prediction of
Macrophomina resistance breeding values. This population was cre-
ated and analyzed because we suspected that phenotypic selec-
tion had profoundly altered allele frequencies and eliminated a
significant fraction of the ‘losers’ (susceptible individuals carrying

unfavorable alleles) necessary for accurate genomic prediction
[68–71]. As an aside, we originally planned to genotype the C1
population (Figs. 2C–4B); however, the DNA samples became a
casualty of the COVID pandemic [72–74]. Fortunately, the C1
individuals selected for creating the C1R and C2 populations were
preserved and genotyped for the analyses described here.

An unexpected and challenging aspect of our study was that
the C0 population had an overabundance of losers, whereas
the C2 population had an overabundance of winners (Fig. 2).
Using insights gained from phenotypic selection (Fig. 2 and 4)
and association genetic analyses of the C0 population (described
below), we developed 26 full-sib families among 18 parents that
were hypothesized to have a high probability of transmitting
novel favorable alleles, transgressively segregating, and producing
offspring with normal distributions spanning the entire pheno-
typic range (Supplemental File S3). That was precisely what we
observed among 2220 C1R individuals phenotyped in Davis and
Salinas (Fig. 5; Table 1).

The phenotypic distributions for the C1R population were
approximately normal with population medians of 2 and means
of 2.55 in Davis and 2.46 in Salinas (Fig. 2D-E; Table 1). They
differed slightly from the approximately bimodal C1 phenotypic
distribution and were more weakly right-skewed than the strongly
right-skewed C2 phenotypic distributions (Fig. 2C–G). These
findings confirmed our suspicion that C1R full-sib families
segregated for complementary favorable alleles among multiple
loci affecting resistance to Macrophomina (Fig. 2D-E and 5). The
phenotypic variation observed within and between C1 and C1R
full-sib families suggested that favorable alleles for resistance
to Macrophomina were ‘locked up’ or hidden in diverse elite and
exotic genetic resources and exposed by transgressive segregation
in the initial hybrid generations. Similar to what we observed
among C1 full-sib progeny (Fig. 4), the extreme transgressive
segregation observed among C1R full-sib progeny suggested
that the selected parents were heterozygous for one or more
causal loci and transmitted complementary favorable alleles and
that the favorable alleles transmitted by at least one parent
were dominant or that both parents transmitted additive or
incompletely dominant favorable alleles (Fig. 5).

Genomic selection as a solution to the
Macrophomina disease resistance breeding
problem
With the effectiveness of phenotypic selection for resistance
to Macrophomina firmly established (Fig. 4; Table 1), we turned
to the problem of assessing the effectiveness of genomic
selection, which has the potential to increase throughput and
breeding speed (Table 2; Fig. 6) [48]. These analyses were an
important element of our studies because selection must be
simultaneously applied for resistance to multiple diseases caused
by soil-borne pathogens [46, 75–79], a process that could be
accelerated and strengthened by phenotyping independent
samples of training population individuals (e.g., unreplicated
seed-propagated progeny) for resistance to different pathogens,
and cross-predicting breeding values for different diseases among
samples of training population individuals separately phenotyped
for individual diseases. The latter is necessary to avoid the
confounding effects of symptoms caused by two or more diseases
[5, 48]. To that end, we originally developed the C2 full-sib families
as a training population to initiate long-term genomic selection
with continual phenotypic retraining, which we envisioned would
be necessary to improve resistance to Macrophomina; however, the
realized genetic gains from phenotypic selection rendered our
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Figure 5. Symptoms observed among replicate selection cycle 1 (C1R) full-sib progeny screened for resistance to Macrophomina phaseolina in 2021–22
field studies in Davis and Salinas, CA. (A) Ordinal disease score distributions for 1260 individuals within 25 C1R full-sib families observed July 19, 2022
in Davis, CA. (B) Ordinal disease score distributions for 960 individuals within 20 C1R full-sib families observed October 24, 2022 in Salinas, CA.

original study design unnecessary and steered us towards the
formulaic breeding solutions that we explored (Fig. 6; Table 2).

GEBVs (Ĝ) and other statistics were estimated using standard
G-BLUP, in addition to G-BLUP variations where different subsets
of SNPs associated with 10 QTL for resistance to Macrophomina
(MP1-MP10) were used for foreground selection (Table 2). The
specific SNPs used for that purpose were identified by genome-
wide association studies in the C0, C1R, and C2 populations
(Fig. 7; Table 3). Their discovery, evidence of their validity, and the
rationale for their inclusion in foreground selection are discussed
in depth below.

The differences in narrow-sense heritability (ĥ2) and changes
in EMM x GEBV distributions across cycles of phenotypic selec-
tion produced several insights (Table 2). First, the phenotypic
differences we observed appeear to be moderately heritable. Our
estimates of narrow-sense heritability (ĥ2) differed across cycles
of selection and were lowest in the C1R population (Table 2). The
slightly improved signal-to-noise ratios in the C0 or C2 popu-
lations were partly attributed to larger numbers of individuals
at the phenotypic extremes (1 or 5), where replicate to replicate
variation was lower. As noted earlier, when a significant number
of individuals are dead (as in the C0 population) or symptomless
(as in the C2 population), heritability increases because of the
absence of phenotypic variation among these individuals.

Second, the correlations between phenotypic means (EMMs)
and GEBVs were strongly positive, which suggested that genomic

selection for resistance to Macrophomina should be as effective as
phenotypic selection (Fig. 6; Table 2).

Third, phenotypic selection drove GEBV means downward
and appears to have greatly increased the frequencies of
favorable alleles among several loci (Figs. 6–8). C2 individuals were
predicted to have accumulated favorable alleles that were hidden
and dispersed among C0 individuals (Fig. 6A and C). The complete
inversion of the GEBV distributions between the C0 and C2
populations implied that phenotypically invisible favorable alleles
transmitted by the parents of C1 full-sib families were effectively
extracted, exposed by transgressive segregation among C1 and
C1R hybrids (full-sib individuals), and further concentrated and
accumulated among C2 hybrids (Fig. 6; Supplemental File S3).
Interestingly, the lowest GEBVs in the C0 population were slightly
greater than 3, well above the highly resistant range (1.0 ≤
G ≤ 2.0); hence, none of the C0 genetic resources screened in
our study had GEBVs in the resistant range, which makes the
unforeseen genetic gains for resistance to Macrophomina even
more extraordinary (Figs. 2–4 and 6C).

The extremeness of the transgressive segregation observed
among C1, C1R, and C2 progeny was not predicted by the cycle 0
EMM x GEBV distribution (Fig. 6A). This highlights the importance
of perseverance in the face of extreme odds, the obvious necessity
of hybridization, recombination, and accurate identification of
transgressive multilocus genotypes, and the inherent difficulty of
identifying sources of favorable alleles for certain complex traits
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Table 2. Genomic selection predictive ability of Macrophomina resistance phenotypes estimated by cross-validation among individuals
within the C0, C1R, and C2 populations of strawberry. The standard analysis was done by applying genomic-BLUP (G-BLUP) to the
genomic relationship matrix (GRM) estimated from a genome-wide sample of 48 340 Axiom array genotyped SNPs. The other G-BLUP
analyses were done by using SNPs associated with different subsets of Macrophomina resistance loci (MP1 to MP10) to construct
foreground (F) GRMs and the residual genome-wide sample of SNPs to construct background (B) GRMs. Statistics are shown for
foreground G-BLUP analyses done using SNPs associated with MP1-MP4, MP1-MP6, MP1-MP8, and MP1-MP10 (a single SNP was used for
each locus included in the foreground). Genomic additive genetic variance (σ 2

G) and narrow-sense heritability (h2) were estimated for
the C0, C1R, and C2 populations. Genomic-estimated breeding values were estimated using either the whole-genome (standard),
foreground (F), background (B), and F and B GRMs combined. Correlations (r) between phenotypic means (Y) and GEBVs (Ĝ) were
estimated from 1000 cross-validation samples per analysis done using either the whole genome GRM or foreground and background
GRMs individually (F or B) or in combination (F + B), where 80% of the individuals were randomly sampled for each analysis,

r̂G = r
(
Ĝ, Y

)
is the correlation between Ĝ and Y from the standard analysis, Y are estimated marginal means (EMMs) for resistance

phenotypes, Ĝ was estimated from the whole-genome GRM, r̂F = r
(
ĜF, Y

)
, ĜF was estimated from a foreground GRM, r̂B = r

(
ĜB, Y

)
, ĜB

was estimated from a background GRM, r̂F+B = r
(
ĜF + ĜB, Y

)
, and ĜF + ĜB was estimated from combined foreground and

background GRMs

Standard MP1-MP4 MP1-MP6 MP1-MP8 MP1-MP10

Cycle Year Location σ̂ 2
G ĥ2 r̂G r̂F r̂B r̂F+B r̂F r̂B r̂F+B r̂F r̂B r̂F+B r̂F r̂B r̂F+B

C0 2016 Davis 0.45 0.67 0.35 0.37 0.11 0.40 0.38 0.15 0.40 0.37 0.15 0.40 0.39 0.15 0.42
2017 Irvine 0.39 0.47 0.63 0.53 0.25 0.58 0.57 0.16 0.58 0.66 0.14 0.60 0.59 0.29 0.60

Combined 0.21 0.44 0.39 0.46 0.14 0.48 0.45 0.14 0.46 0.45 0.11 0.46 0.48 0.12 0.48
C1R 2022 Davis 0.38 0.30 0.40 0.23 0.26 0.37 0.24 0.27 0.36 0.30 0.24 0.40 0.33 0.26 0.41

Salinas 0.36 0.17 0.33 0.23 0.22 0.31 0.29 0.19 0.34 0.31 0.19 0.36 0.31 0.20 0.37
Combined 0.25 0.22 0.31 0.21 0.23 0.32 0.23 0.24 0.33 0.30 0.22 0.36 0.30 0.21 0.36

C2 2021 Davis 0.32 0.35 0.47 0.42 0.48 0.55 0.37 0.44 0.50 0.40 0.50 0.55 0.42 0.49 0.55
Salinas 0.16 0.34 0.43 0.23 0.22 0.31 0.22 0.28 0.33 0.24 0.27 0.34 0.26 0.29 0.36
Combined 0.24 0.40 0.42 0.27 0.35 0.42 0.28 0.38 0.43 0.26 0.36 0.41 0.30 0.38 0.44
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Figure 6. Genomic estimated breeding values (GEBVs) and estimated marginal means (EMMs) for Macrophomina resistance score among individuals in
the C0 (A), C1R (B), and C2 (C) populations. GEBVs were estimated by genomic best-linear unbiased prediction (G-BLUP). The dashed lines identify the
population mean (x-axis) and GEBV mean (y-axis). The solid lines are predicted values from linear regression of GEBV onto resistance score. Statistics
are shown for: (A) 565 C0 individuals observed in the 2016 Davis and 2017 Irvine study; (B) 2220 C1R individuals observed in 2022 Davis and Salinas
studies; and (C) 1001 C2 individuals observed in 2021 Davis and Salinas studies.

(e.g., resistance to Macrophomina) in gene banks from the observed
phenotypes or genomic-estimated breeding values of accessions
alone, despite the power that can often be unlocked by genomic
prediction in gene banks [80, 81]. While we are proponents of such
approaches [77–79, 82], our retrospective analyses showed that
Macrophomina resistance breeding values could not be accurately
predicted from the training population phenotypes of diverse
gene bank accessions alone (Fig. 6). Our genomic prediction study
provides a cautionary tale about the effectiveness of genomic pre-
diction for mining gene banks for favorable alleles. The predictive
ability (r̂G) estimates for resistance to Macrophomina were dismal
when gene bank training population (C0) individuals were used to
predict the breeding values of C1R (r̂G = 0.15) and C2 (r̂G = 0.06)

individuals because of differences in population structure across
cycles of selection and biases associated with strong selection
within those populations, both of which are known to decrease
the accuracy of genomic predictions between genetically diver-
gent populations and breeds [83–86]. The reasons for the weak
between-selection cycle genomic predictions in our study only
became clear once we developed deeper insights into the genetics
of resistance and could assess what drove the realized genetic
gains from phenotypic selection (Table 1; Fig. 6).

Fourth, the breeding values of highly resistant individuals (y =
1) were predicted with excellent accuracy in the C2 popula-
tion (Fig. 6C). GEBV ranges were narrowest for the most resistant
classes (y = 1 and y = 2), fanned out as phenotypic means
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Figure 7. Manhattan plots displaying the statistical significance of SNPs associated with variation for resistance to Macrophomina observed among
full-sib progeny in the C0, C1R, and C2 populations. The x-axis displays the physical addresses for 48 833 SNPs ascertained in the ‘Royal Royce’
reference genome (FaRR1). Manhattan plots are shown for analyses of: (A) 389 genotyped C0 individuals phenotyped in Davis and Irvine; (B) 1185
genotyped C1R individuals phenotyped in Davis; (C) 957 genotyped C1R individuals phenotyped in Salinas (D) C1R individuals across locations
(n = 2, 142); (E) 552 genotyped C2 individuals phenotyped in Davis; and (F) C0, C1R, and C2 individuals combined (n = 3, 528). The dashed line
demarcates the false discovery rate threshold for p = 0.05.

for resistance score increased, and were widest for the highly
susceptible class (y = 5) in the C2 population (Fig. 6C). GEBVs of
resistant individuals were more accurately predicted than GEBVs
of susceptible individuals. The increase in noise among unse-
lected individuals falling above a stringent truncation selection
threshold (e.g., susceptible individuals with phenotypic means or
GEBVs ≥ 1.5) was inconsequential because accurately discrimi-
nating differences in susceptibility among unselected susceptible
individuals has no bearing on the identification of highly resistant
individuals (Fig. 6).

Lastly, the strongly right-skewed C2 distributions suggested
that the purposeful addition of susceptible individuals (losers) to
training populations could be essential for accurately predicting
the breeding values of unphenotyped individuals [69]. This is an
intriguing problem because individuals with symptoms (losers)
became increasingly rare as selection progressed in our study
(Fig. 6). We hypothesized that symptomless C2 individuals inher-
ited different complements of favorable alleles (Fig. 8), which
complicates genomic prediction because of the lack of phenotypic

differences among different symptomless genotypes in the resis-
tant tails of the phenotypic distributions. This threshold trait
selection problem is precisely why MAS-enabled favorable allele
stacking has significant merit (see below). We tested the hypothe-
sis that different favorable allele combinations are found in symp-
tomless individuals by searching the genomes of C0, C1R, and C2
individuals for genetic variants in linkage disequilibrium with loci
affecting resistance to Macrophomina, assessing the complements
of favorable alleles that they inherited, and estimating the prob-
ability of susceptibility using survival analysis (Fig. 7; Table 3).

Survival analysis, the winner’s curse, and
testable favorable allele stacking solutions to the
Macrophomina disease resistance breeding
problem

The highly skewed, mirror image shapes of the C0 and C2
phenotypic distributions, rapid genetic gains between selection
cycles 0 and 2, transgressive segregation in the C1, C1R, and C2
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Figure 8. (A) Frequencies of SNPs associated with favorable MP1 to MP10 alleles in the C0 and C2 populations. The SNPs used in this analysis are
identified in Table 3. (B) Frequencies of SNPs associated with favorable MP1 to MP10 alleles among highly resistant (y = 1) and highly susceptible
(y = 5) individuals in the C1R and C2 populations combined. (C) The probability of susceptibility to Macrophomina estimated by survival analysis of
individuals classified as resistant (1 ≤ y ≤ 2) or susceptible (2 < y ≤ 5) in the C1R and C2 populations. The independent variable was the number of
favorable among predicted by SNP in linkage disequilibrium with the MP1 to MP10 loci. The dependent variable was the ordinal disease score.

populations, and findings in a previous QTL mapping study [46]
suggested that one or more large-effect loci might be associated
with the phenotypic variation we observed for resistance to
Macrophomina in strawberry (Figs. 2–5). To explore this, GWAS
analyses were undertaken in the C0, C1R, and C2 populations
(Fig. 7; Table 3; Supplemental Fig. S1-S2; Supplemental File S4-
S6). Across populations, 3719 out of 4073 phenotyped individuals
were genotyped with an Axiom 50 K SNP array [49] (Supplemen-
tal File S5). The physical positions of the SNPs on that array were
ascertained by aligning SNP probe DNA sequences to the ‘Royal
Royce’ reference genome (FaRR1) (https://phytozome-next.jgi.
doe.gov/info/FxananassaRoyalRoyce_v1_0), which was annotated
using the updated and corrected chromosome nomenclature
described by Hardigan et al. [49] (Supplemental File S4).

We limited our GWAS analyses to SNPs with FaRR1 physical
addresses validated by extensive comparative genetic mapping
in octoploid populations (Supplemental File S4). This virtually
eliminated false-positives caused by in silico assignments of SNPs
to incorrect physical positions in the octoploid genome, most
frequently on homoeologous chromosomes [49, 51]. Finally and
importantly, we used the kinship matrix to correct for population
structure and the cycle of selection (C0, C1R, and C2) as an inde-
pendent variable (fixed effect) to correct for population strata,
which was significant because artificial selection for resistance
to Macrophomina profoundly altered allele frequencies and popu-
lation structure (Figs. 2–3) [87, 88]. These corrections eliminated
spurious population strata-associated genetic variants with sig-
nals exceeding the significance threshold, most of which were
singletons not supported by haploblocks of SNPs in LD with an
underlying causal locus.

GWAS identified genetic variants associated with 10 loci
affecting resistance to Macrophomina (Figs. 7–9; Table 3; Sup-
plemental Fig. S1-S2; Supplemental File S6). Three (MP1–MP3)
were previously identified in a Florida study, importantly where
the pathogen isolate, segregating populations, and screening
environment differed from ours [46]. The other seven (MP4–MP10)
were identified in the present study. The effects of seven of these

loci (MP2 and MP4–10) were selection cycle or location specific
(Fig. 7; Table 3). When GWAS was applied to phenotypes observed
across cycles of selection and locations, statistically significant
SNP associations were only identified for MP1, MP3, and MP9
(Fig. 7F and 9). MP9 was the only one of those three that was not
statistically significant in any of the selection cycle or location
specific analyses, but was significant in the across-population
analysis (Fig. 7A-E; Supplemental Fig. S1-S2). MP9 physically
mapped downstream of FW1, a Fusarium wilt resistance gene
found near the upper telomere on chromosome 2B (Fig. 9) [76,
77]. The genomic segment harboring FW1 and MP9 appears to be
inverted on homoeologous chromosome 2C (Fig. 9).

We recognize that the statistical support for some of these
loci was comparatively weak (only slightly greater than the false-
discovery rate threshold) and that the effects of some of these
loci could have been overestimated as a consequence of the ‘win-
ner’s curse’ [89–91]; however, allele frequency changes between
selection cycles 0 and 2 suggested that phenotypic selection
increased the frequencies of their favorable (+) alleles, hereafter
MP1+, MP2+, . . ., MP10+ (Fig. 8; Supplemental File S7). To empiri-
cally assess the likelihood that they were targeted by phenotypic
selection, we identified genetic variants (SNPs) associated with
favorable and unfavorable alleles, estimated allele frequencies of
MP1 to MP10-associated SNPs among C0 and C2 individuals and
among highly resistant (y = 1) and highly susceptible (y = 5) C1R
and C2 individuals, and estimated the probability of susceptibility
using survival or time-to-event analysis [52, 53], where favorable
allele count was the independent variable, disease susceptibility
was the dependent variable, and individuals were categorically
classified as resistant (1 ≤ y ≤ 2) or susceptible (2 < y ≤ 5) for esti-
mating the probability of survival (Fig. 8; Supplemental File S7).

We observed a statistically significant GWAS signal for a
locus on chromosome 2A in the C0 population in Davis, the
C1R population in Davis and Salinas, and across populations
(Figs. 7A–B and 9; Table 3; Supplemental Fig. S1-S2). We are
confident that this is the MP1 locus previously identified by
Nelson et al. [46]. The statistically significant MP1-associated SNP
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Figure 9. Genomic locations of Macrophomina resistance loci on chromosome 2 and 4 homoeologs in strawberry. The haploblocks predicted to harbor
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identified in the C0 population (AX-184504352) physically mapped
to chromosome 2A within 108 131 to 151 288 bp of the most
significant SNPs (AX-89819605 and AX-166511224) identified by
our GWAS reanalysis of AUDPC resistance phenotypes observed
in the Florida study (Supplemental File S3). SNPs common to both
studies were tiled on the 35 K and 50 K Axiom genotyping arrays
[46, 49, 92], which facilitated the integration of unique SNPs by
cross-referencing common SNPs (Supplementary Data S3).

The discovery of the MP1 locus in the C0 population, or any
other locus for that matter, was unexpected because of the
strongly left-skewed phenotypic distributions, where approxi-
mately 90% of the C0 individuals were dead or near death (Fig. 2A–
B). Using the most significant MP1-associated SNP identified in
the C0 population (AX-184504352), the frequency of the favorable
MP1 allele (MP1+) was estimated to have increased from 0.65 in
the C0 to 0.80 in the C2 population (Fig. 8A; Supplemental File S7).
The additive effect of the AX-184504352 SNP ranged from −0.32
to −0.57 across populations (Table 3). The degree-of-dominance

estimates for MP1-associated SNPs were in the incompletely
dominant range (0.25 ≤ d̂/â ≤ 0.57), apart from an over-dominant
estimate in the across-population analysis (d̂/â = 2.10), where
the phenotypic mean for the heterozygote (y+/− = 1.94) was
slightly less than the phenotypic mean for the favorable allele
homozygote (y+/+ = 2.48). The percentage of the phenotypic
variance explained (PVE) by MP1-associated SNPs ranged from
7.5–9.6% (Table 3). The PVE estimates reported in Table 3 were
from single locus analyses and are therefore non-additive. On the
strength of the discovery of this locus in multiple populations and
studies, we are confident that MP1 is an important determinant
of resistance to Macrophomina and warrants direct targeting by
marker-assisted selection (MAS). The favorable allele appears to
be present at a fairly high frequency among elite UC individuals,
which was nonobvious from the phenotypes observed in the C0
population (Fig. 2 and 6; Supplemental File S1).

We observed a statistically significant GWAS signal for a locus
on chromosome 4A in the C0 population (Fig. 7A and 9; Table 3;
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Supplemental Fig. S1-S2). We are confident that this is the MP2
locus previously identified by Nelson et al. [46]. The statisti-
cally significant MP2-associated SNP identified in the C0 pop-
ulation (AX-184619882) physically mapped to chromosome 4A
within 2 418 361 to 2 679 821 bp of the most significant SNPs (AX-
123361466 and AX-166505860) identified by our GWAS reanalysis
of AUDPC resistance phenotypes observed in the Florida study
(Fig. 7A; Table 3; Supplemental Fig. S1-S3). Although the statistical
significance of the MP2-associated SNP was lower than the MP1-
associated SNP in the C0 population across locations, consistent
with earlier findings [46], the respective additive effect and PVE
estimates for MP1 and MP2 were similar (â = −0.32 and −0.33 and
PVE = 8.9 and 7.1%). Using the most significant MP2-associated
SNP identified in our study (AX-184619882), the frequency of
the favorable MP2 allele (MP2+) was estimated to be 0.14 in the
C0 and 0.22 in the C2 population; hence, this allele appears
to be somewhat uncommon in diverse strawberry germplasm
(Fig. 8; Supplemental File S7). Although statistically significant
MP2-associated SNPs were not observed in the C1R or C2 popula-
tions or across populations, the frequency of the MP2+-associated
SNP allele increased between the C0 and C2 generations and was
greater among highly resistant (y = 1) than highly susceptible
(y = 5) individuals in the C1R and C2 populations (Fig. 8). Despite
the small PVE estimate for this locus in the combined analysis
(1.8%), the effect of MP2 has been observed in different popula-
tions and environments using different isolates of the pathogen.
On the strength of these observations we concluded that MP2
must be an important determinant of quantitative resistance to
Macrophomina.

We observed a statistically significant GWAS signal for a
locus on chromosome 4C in the C1R population phenotyped in
Davis and Salinas and across populations (Fig. 7B-D and F and 8;
Table 3; Supplemental Fig. S1-S2). We are confident that this is
the MP3 locus previously identified by Nelson et al. [46]. The
most significant MP3-associated SNP (AX-184438852) identified
in the C1R population physically mapped to a position 131 639 bp
distal to the most significant MP3-associated SNP (AX-184099604)
identified by our reanalysis of AUDPC resistance phenotypes
observed in the Florida study (Table 3; Supplemental Fig. S1-S3).
The latter analysis was done by using the physical addresses
of SNPs in the FaRR1 reference genome (Supplemental Fig. S3;
Supplemental File S4). MP2 and MP3 were found in sytenic
haploblocks on homoeologous chromosomes 4A and 4C; hence,
the genes encoded by these QTL could be homoeologous (Fig. 9).

Using MP3-associated SNPs as proxies, we found that the favor-
able MP3 allele was rare in diverse germplasm (f̂+ ranged from 0.01
to 0.05) and appears to have been targeted by phenotypic selection
for increased resistance to Macrophomina (Fig 8; Table 3; Supple-
mental File S7). The frequency of the favorable AX-184438852
allele increased from 0.05 in the C0 to 0.49 in the C2 population
(Fig. 8; Supplemental File S7). Similarly, the frequency of the AX-
184775246 allele increased from 0.01 in the C0 to 0.48 in the C2
population. Interestingly, we did not observe statistically signifi-
cant MP3-associated SNPs in the C0 population, perhaps because
of the rareness of the favorable allele among gene bank acces-
sions. We cannot rule out the possibility that multiple favorable
and unfavorable alleles segregated in our selected (C1, C1R, and
C2) populations because we introduced allelic variation from sev-
eral possible donors of favorable alleles for MP3 and the other loci
discovered in our study (Fig. 3; Supplemental File S1-S3). Our anal-
yses of pedigree records and MP3-associated SNP marker geno-
types suggests that Pacific Northwest cultivars (‘Totem’, ‘Tilikum’,
‘Linn’, and ‘Puget Reliance’) were sources of the favorable MP3

alleles that were targeted by phenotypic selection. MP3 explained
greater percentages of the phenotypic variation for resistance
than any of the other loci we identified, with estimates in the
18.5% to 22.4% range. The degree-of-dominance ranged from
nearly additive (d̂/â = 0.19) to slightly over-dominant (d̂/â = 1.32)
across populations and analyses. On the strength of these find-
ings, we concluded that MP3 is not only an important determinant
but necessary for strong resistance to Macrophomina, common in
Pacific Northwest germplasm, apparently common in F. chiloen-
sis ecotypes native to western North America, and apparently
uncommon in other germplasm resources.

Similar to MP2, the effects of MP4 to MP10 were mostly additive
or incompletely dominant, weakly statistically significant, and
selection cycle or location specific (Table 3; Fig. 7; Supplemen-
tal File S6; Supplemental Figure S1-S2). The strongest evidence
we have that they could be legitimate determinants of resistance
to Macrophomina were changes in the frequencies of SNPs in LD
with causal loci (Fig. 8; Supplemental File S7). The favorable allele
frequencies were greater for eight of the 10 loci in the C2 than the
C0 population (Fig. 8A). When MP1 to MP10-associated SNP allele
frequencies were estimated across the C1R and C2 populations,
we found that the favorable alleles were more frequent among
highly resistant (y = 1) than highly susceptible (y = 5) individuals
for every one of the 10 loci (Fig. 8). The allele frequency differences
between resistant and susceptible groups were least dramatic for
MP10 and most dramatic for MP3 and MP7–MP9. Our analyses
show that initial frequencies of the favorable alleles across diverse
germplasm resources (the C0 population) were widely different
and rapidly increased (Supplemental File S7). Our analyses further
show that resistance might be increased by driving certain favor-
able alleles to fixation because they were predicted to be additive
or incompletely dominant (Table 3).

Genomic selection weighted by large-effect loci
Once the large-effect loci were uncovered by GWAS, we explored
the effectiveness of genomic selection schemes using different
subsets of MP1 to MP10-associated SNPs for foreground selec-
tion with and without the inclusion of residual genome-wide
SNPs for background selection (Table 2; Fig. 6). Several conclu-
sions emerged from these analyses. First, applying foreground
selection to different subsets of SNPs in combination with residual
genome-wide residual SNPs fairly consistently yielded the great-
est predictive ability. Foreground-background genomic selection
was superior to standard G-BLUP in seven of the nine analyses
performed using the full complement of QTL-associated SNPs for
foreground selection (last column in Table 2).

Second, starting with four loci (MP1–MP4) and sequentially
targeting a larger number of foreground-selected loci negligi-
bly increased predictive ability (Table 2). The predictive ability
of the MP1–MP4 subset was nearly as great as the MP1–MP10
subset across cycles of selection and locations when foreground
only and foreground-background genomic selection were applied.
The effectiveness of the latter for predicting the breeding values
of resistant individuals in the C2 population was outstanding
(Fig. 6C). Nearly 100% of the GEBVs for individuals phenotypically
classified as resistant (1 ≤ y ≤ 2) were ≤ 2. Moreover, 100% of
the individuals from the left tail of the GEBV distribution were
symptomless and phenotypically classified as highly resistant
(y = 1). The effectiveness of applying genomic selection with
direct pressure on specific QTL is perfectly illustrated by the
dramatic changes observed amongst the C0, C1R, and C2 GEBV
× EMM distributions for the MP1–MP4 foreground-background
genomic selection scheme (Fig. 6).
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Third, genomic selection predictive ability was not dramati-
cally different across cycles of selection or locations when fore-
ground selection was applied to the full complement of loci (MP1
through MP10 in the foreground) with residual genome-wide SNPs
in the background (Table 2). The predictive ability estimates from
cross-validation for that selection scheme across locations were
0.48 in the C0, 0.36 in the C1R, and 0.44 in the C2 population.

Lastly, genomic selection predictive ability was lower for the C2
population in Salinas than Davis and was greater for standard G-
BLUP than any of the foreground-background genomic selection
schemes in Salinas. The reverse was true for the C2 population
in Davis, where foreground and background selection combined
were superior to standard G-BLUP. The patterns observed in the
C2 population were especially important because C0 was an
unselected founder generation and C1 and C1R were initial hybrid
generations developed from selected founders (putative donors
of favorable alleles) (Supplemental File S3). The most conserva-
tive path forward would be to genotype segregating populations
with genome-wide DNA markers, which provides the flexibility of
exploring genomic selection schemes with and without incorpo-
rating large-effect loci as fixed effects. This could be particularly
important in populations where favorable allele frequencies and
compositions are rapidly changing [93–96]. Our results suggest,
however, that direct marker-assisted stacking of favorable MP1
to MP10 alleles, in some combination (Fig. 8), might ultimately
prove to be as effective as genomic selection with or without the
incorporation of large-effect loci (Fig. 6; Table 2).

Defense-related genes found in haploblocks
predicted to harbor Macrophomina resistance QTL
To identify and catalog defense-related genes in close proximity
to SNPs associated with the Macrophomina resistance QTL identi-
fied in our study, search windows in the ‘Royal Royce’ reference
genome (FaRR1) were defined by using a 2 × −log10(p-value)
decrease in the statistical significance of SNPs upstream and
downstream of the most significant SNPs identified by GWAS
(Table 3; Fig. 7, 9; Supplemental File S8; https://phytozome-next.
jgi.doe.gov/info/FxananassaRoyalRoyce_v1_0). This process was
repeated to define search windows for QTL identified in different
populations where the most significant SNP differed (MP1, MP3,
MP6, and MP10). Our search identified 965 genes across the 10
haploblocks, of which 205 had motifs or functions associated with
disease resistance in plants (Supplemental File S8). These were
lumped into qualitative (gene-for-gene) and broader quantitative
(polygenic) resistance groups [2, 4, 24, 25]. While classic disease
resistance (R) genes, e.g, genes with nucleotide binding site (NBS)
and leucine-rich repeat (LRR) or serine/threonine protein kinase
(S/TPK) domains, were cataloged for completeness (Supplemen-
tal File S8), they are presumably less likely candidates for the QTL
identified in our study than other classes of defense-related genes
[2, 97]. We identified 139 genes with defense-related functions
that could conceivably be involved in quantitative resistance to
plant diseases, especially but not limited to those caused by
necrotrophic pathogens [2, 4, 24, 25]. These included cupredoxin,
AP2 and GRAS family transcription factors, proteases in the sub-
tilase and papain-like cysteine peptidase classes, and others (see
Supplemental File S8 for details). Their functional annotations in
the ‘Royal Royce’ genome, best BLAST hits to Arabidopsis genes,
and physical positions of the most significant and haploblock-
boundary SNPs are tabulated in Supplement File S8.

The sheer number of candidate genes found in our search,
inherent biases associated with gene annotation ontology and
classification [98], and statistical uncertainty associated with the

physical locations and effects of the underlying QTL accentuate
the challenge ahead in studies undertaken to identify causal
genes and mutations underlying MP1–MP10 (Fig. 7 and 9). Their
identification obviously does not preclude effective predictive
breeding for resistance to this pathogen, but would empower
studies to resolve haplotypes and identify genetic variants for
more accurately predicting and tracking favorable and unfavor-
able alleles across populations. The merit of identifying genes
underlying some of these QTL seems minimal, especially without
extensive validation of their effects [99]. Macrophomina resistance
breeding values can be predicted with sufficient accuracy in
segregating populations with genome-wide information without
knowing the genes (Fig. 6; Table 2). The resolution of haplotypes
and identification of causal loci and mutations or highly pre-
dictive genetic variants in LD with the causal loci, however, has
significant merit [100, 101]. The two QTL that most obviously
warrant a search for the underlying causal genes and mutations
are MP1 and MP3. These QTL had the largest effects, have been
validated in multiple populations and environments, and are
predicted to be necessary for resistance (Table 3; Fig. 7) [46].

Discussion
The emergence of a quick and effective solution to the Macrophom-
ina disease resistance breeding problem seemed improbable after
our phenotypic screening of strawberry gene bank resources
turned up nothing that was unambiguously highly resistant
(Fig. 2A-B and 6; Supplemental File S1). We speculated that our
screening protocols had been overly harsh, and they may have
been; however, that harshness turned out to have been critical
for uncovering favorable alleles, accelerating genetic gains, and
unraveling the genetic mysteries that initially eluded us (Fig. 6;
Supplemental File S1). MP1, MP2, and MP3 had not yet been
discovered [46] and the rareness of resistant individuals in our
gene bank screening studies suggested that a straightforward
formulaic solution to the Macrophomina disease resistance
breeding problem was unlikely (Fig. 2A–B). While our initial
findings painted a bleak picture, they were not wholly unexpected
from the ‘black box’ genetic architecture commonly observed for
quantitative resistance to generalist necrotrophic pathogens like
Macrophomina [2, 4–6, 11, 17 ].

Our early pessimism was soon replaced by cautious optimism
before being erased altogether as the phenotypic distributions
shifted shape and inverted skewness across cycles of selection
(Fig. 2, 6). That early pessimism, which did not sway us from forg-
ing ahead with phenotypic selection, was influenced by findings
in soybean and other agriculturally important plants where the
genetics of resistance to Macrophomina was known to be complex
and does not appear to be conferred by qualitative (gene-for-
gene) resistance [2, 13, 14, 17, 102]. The resistance of straw-
berry to Macrophomina is not governed by gene-for-gene resistance
either, nor was that ever hypothesized; however, the discovery
of multiple large-effect loci was not hypothesized by us either
(Fig. 7; Table 3). We initially predicted that genetic variation for
resistance to this pathogen was limited, which implied that long-
term selection would be necessary to develop resistant cultivars
and that strong resistance might not be attainable [48]. We were
wrong on both counts (Table 1; Fig. 6).

Although the positive correlation between heat and drought
stress and disease development and severity has only been anec-
dotally established for Macrophomina in strawberry [18, 19, 34, 37,
38, 40], a cause–effect relationship seems plausible and has been
postulated for Macrophomina-caused diseases in other plants [23,
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103–107]. The strawberry Macrophomina problem coincidentally
surfaced in California, Florida, and elsewhere in the wake of the
methyl bromide phase-out and appears to have been aggravated
by an increase in heat and drought stress attributed to climate
change [20, 35, 38, 41, 108, 109]. The hypothesized impact of
climate change-associated abiotic stresses on the emergence of
this disease seems tenable because Macrophomina either never
surfaced or was uncommon and undetected in organic production
in California over the half century preceding the methyl bromide
phase-out in 2005 [20, 21, 35, 36]. The synergistic effects of climate
change and changes in fumigation practices are undoubtedly
responsible for the recency of the Marcrophomina disease problem
in strawberry. The incidence and severity of Macrophomina-caused
disease are bound to increase in strawberry as the incidence
and severity of heat and drought stress increase across the globe
[23, 103].

We found that phenotypic screening under heat and drought
stress was critical for identifying sources of favorable alleles,
decreasing the probability of false positives (plants declared to be
resistant that are not), accurately assessing the disease reactions
of cultivars, and identifying highly resistant individuals (Fig. 4 and
6). We contend that the disease reactions and resistance claims
made for cultivars phenotyped under non-stress conditions are
spurious and mislead farmers that depend on accurate informa-
tion for risk mitigation. False disease claims arise when suscep-
tible cultivars are reported to be symptomless or to have mild
symptoms under non-stress conditions where genetic differences
among cultivars cannot be uncovered or accurately estimated.
The importance of phenotyping reactions to this disease under
stress conditions cannot be overstated. Accurate phenotyping
and phenotypic selection under high summer temperatures and
induced drought stress were essential for driving the genetic gains
and discoveries reported in our study.

The resistance of strawberry to Macrophomina is genetically
complex, perplexing, and curiously predicable. On the one hand,
several large-effect loci appear to play a prominent role in the
reaction of strawberry to Macrophomina (Fig. 7; Table 3) [46], a
result predicted by transgressive segregation and genetic gains
from phenotypic selection (Figs. 2–4; Table 1). On the other hand,
the weak to moderate narrow-sense heritability of resistance
and the QTL quagmire uncovered by association studies created
considerable uncertainty and left many questions unanswered
(Fig. 7; Tables 2-3). How certain are we that the 10 loci we iden-
tified are valid and sufficient for solving the Macrophomina dis-
ease resistance breeding problem in strawberry? Even if these 10
loci are validated, is a 10-locus marker-assisted stacking strategy
practical, sensible, or necessary?

We propose here that stacking favorable alleles among five
or fewer loci should be sufficient for acquiring strong resistance
to this pathogen (Fig. 8). We discovered that the favorable alleles
needed for maximizing resistance had previously not been aggre-
gated and accumulated through hybridization, recombination,
and selection in strawberry cultivars, which makes perfect sense
when you consider that the first reports of this disease have only
emerged in the last 20 years, that breeding for resistance to this
pathogen has been underway for less than a decade, and that
insights into the genetics of resistance were virtually non-existent
when our studies were initiated in 2015 [18–21, 27, 35–38, 46].
Transgressive segregation, the driving force behind our genetic
gains [63–66], implied that elite and exotic donors of favorable
alleles (C0 parents of C1 and C1R progeny and C1 parents of
C2 progeny) were accurately identified and that those alleles
were rapidly accumulated (Figs. 2–4 and 6; Supplemental File S3)

without an understanding of or even a need to understand the
genetic architecture of resistance [5, 65].

We drew parallels between the fabled and once controversial
‘hopeful monsters’ of evolutionary biology—which arise from
sudden, discontinuous genetic changes in hybrids—to the
extreme transgressive segregates that arose among hybrids
between elite cultivars and exotic donors of favorable alleles
in our study [65–67, 110]. The origin of novelty and sudden
appearance of previously unobserved phenotypes (hopeful
monsters) has not only been long accepted in plant breeding, but
essential, expected, and sought after [65]. Indeed, the creation and
identification of transgressive segregates carrying previously non-
existent or uncommon combinations of favorable alleles have
been the principal drivers of genetic gains from artificial selection
in domesticated plants [65]. The sudden, discontinuous genetic
changes we observed were more extreme than predicted from the
murky phenotypes of the founders (C0 parents) and appear to
have been driven by the segregation of multiple small- to large-
effect loci and the accumulation of favorable alleles among them
(Fig. 7-8).

The parents of our C1, C1R, and C2 populations were selected
before any of the loci described here had been identified (Table 3;
Fig. 7; Supplemental Files S1 and S3) [46]. The insights we gained
from analyses of allele frequency changes and variable effects
of those loci across cycles of selection later shed light on why
phenotypically obvious sources of resistance to Macrophomina
were found to be virtually non-existent in strawberry gene banks.
We discovered that a critical number of favorable alleles had to
be accumulated or ‘stacked’ before an individual acquired strong
resistance (Fig. 2-5 and 6-8; Supplemental File S1). The exact
number and combinations are not completely clear because resis-
tance appears to have been achieved by multiple combinations
of favorable alleles among loci with variable effects. Moreover,
the additive and dominance effects and degree-of-dominance of
the underlying loci still need to be carefully estimated in a more
balanced multilocus statistical genetic framework, which did not
exist in our rapidly evolving selected populations.

We did not originally envision or intentionally set out to solve
the Macrophomina disease resistance breeding problem by hunting
down QTL, a practice that more often than not has been futile,
especially when the QTL effects are population specific, statis-
tically weak, or overestimated [89–91, 93–95, 99, 111, 112]. How-
ever, as each cycle of selection unfolded, previously unidentified
QTL were exposed, and others reappeared and were validated by
transgressive segregation and allele frequency changes [63–66].
This was not an academic exercise where the discovered QTL
were destined to collect dust on a “library shelf” or irrationally
inflate expectations before eventually wallowing in a “trough of
disillusionment” [99, 111, 112]. To the contrary, we had already
achieved our breeding goal (strong resistance to Macrophomina)
by applying phenotypic selection before tackling genome-wide
searches for associations between resistance phenotypes and
causal loci that were designed to shed light on what might have
driven the rapid and dramatic genetic gains we observed (Fig. 6).
We present evidence that our selection experiments extracted
favorable alleles previously hidden in diverse elite and exotic
genetic resources, targeted multiple loci, profoundly changed the
frequencies of favorable alleles among those loci, and created
novel genotypes (highly resistant transgressive segregates) carry-
ing stacks of favorable alleles that were either previously non-
existent or exceedingly rare in strawberry (Fig. 8) [63–66].

The loci uncovered in our phenotypic selection studies, if noth-
ing else, created testable hypotheses about the complements
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of favorable alleles that are necessary and possibly sufficient
for acquiring strong resistance to Macrophomina in strawberry.
We hypothesize that MP1+, MP3+, and MP9+ are necessary for
resistance and that one or more additional favorable alleles could
be necessary for maximizing resistance. We are most confident
that resistance to this pathogen can be predictably and reliably
increased by stacking MP1+, MP3+, MP4+, MP5+, and MP9+ alleles.
We are less confident that the other five favorable alleles are
necessary for resistance or that they need to be directly targeted
by MAS to develop resistant cultivars (Table 3). We are well down
the path of validating the effects of these QTL in populations
developed for phenotypic and genomic selection. Our analyses
predict that genetic gains can be maximized by incorporating the
fixed effects of specific large-effect QTL in genomic predictions
[69]. The importance of individual QTL can be fluidly reassessed
by GWAS, survival analysis, and analyses of the effects of selection
on favorable allele frequencies, as was done in the present study
(Fig. 8). Moreover, the merits of targeting specific QTL can be con-
tinually reevaluated and updated as training populations evolve
[48, 69]. Despite the uncertainties and ambiguities associated with
some of the loci identified in our study, survival analysis [52,
53] using favorable allele counts suggested that resistance can
be predictably increased by stacking different combinations of
favorable alleles via marker-assisted selection (Fig. 8). Our study
laid the foundation for pressure testing that proposal, in addition
to showing that genomic selection per se is a viable solution to the
Macrophomina disease resistance breeding problem in strawberry.

Materials and methods
Plant Material & Propagation
The germplasm accessions (C0 population) phenotyped in our
study were 853 asexually propagated F.× ananassa, F. chiloensis, and
F. virginiana individuals preserved in the UC Davis (UCD) Straw-
berry Germplasm Collection (SGC) and United States Department
of Agriculture (USDA) National Plant Germplasm System (NPGS)
collections (https://www.ars.usda.gov/). We acquired ‘mother’
plants for 265 of these individuals from the USDA NPGS
National Clonal Germplasm Repository in Corvallis, Oregon
(https://www.ars.usda.gov/pacific-west-area/corvallis-or/). The
other 588 were among holdings in the UC Davis Strawberry
Germplasm Collection as of February 1, 2015. C0 individuals
were preserved and annually propagated from mother plant
stolons at the Wolkskill Experiment Orchard (WEO), Winters,
CA over the course of our studies. UCD and USDA identification
and plant introduction numbers, aliases, pedigrees, and passport
information for C0 population individuals (n = 853) are tabulated
in Supplemental File S1). The C0 population was comprised of 788
F. × ananassa cultivars and other hybrids, 39 F. chiloensis ecotypes,
and 36 F. virginiana ecotypes (Supplemental File S1). The daughter
plants (bare-root clones) of C0 individuals were produced from
mother plants grown at a low-elevation location (41 m; Winter, CA)
for the spring-planted 2016 study and a high-elevation location
(1284 m; Dorris, CA) for the fall-planted 2016 to 2017 study.

Several full-sib families were developed for the C1, C1R, and C2
populations phenotyped in our studies. The parents and full-sib
family identification numbers for these populations are tabulated
in Supplement File S3. The parents were grown in UCD green-
houses from early fall to late spring for manual emasculation of
female parents, hybridization, and full-sib family seed production.
Fruit harvested from female parent plants were macerated in
a pectinase solution (0.6 g/L) to separate seeds (achenes) from
receptacles. Seeds were scarified in a 36 N sulfuric acid solution

for 16 minutes, rinsed in water, dried on blotter paper, germinated
in kiln-dried artificial media (two parts vermiculite to one part
sand) at room temperature, transplanted into peat pellets, and
grown in a shade house in Winters, CA before being artificially
inoculated with the pathogen and transplanted to the field in late
October or early November of each year. Seedlings were grown in
the shadehouse for three to five months before transplanting. The
bare-root plants of check cultivars were produced in Doriss, CA as
described above for C0 germplasm accessions, inoculated with the
pathogen, and transplanted alongside C1, C1R, and C2 seedlings
in each location. We grew and phenotyped 2211 C1, 2220 C1R, and
1001 C2 individuals.

Pathogen Source Material & Inoculum
Preparation
The M. phaseolina isolate used for artificial inoculation of bare-
root plants and seedlings in our 2016 to 2020 studies (‘GL1310’)
was collected in 2007 from an infected strawberry plant in Orange
County, CA. The isolate used in our 2021 study (‘Mp11–12’) was
collected from an infected strawberry plant in Santa Barbara,
CA in 2011 [113, 114]. The fungus was grown on potato dextrose
agar (PDA) plates (60 × 15 mm) for 1 week in the dark at room
temperature. Small squares (1.5 × 1.5 mm) of PDA were cut from
those plates and replated on PDA plates (90 × 15 mm) amended
with tetracycline (50 mg/l). These were grown in the dark at
room temperature for 3–4 weeks. The PDA was blended with
sterile deionized (DI) water in a Waring Pro blender Model 51BL23
(Waring Commercial, Torrington, CT 06790). We added one liter
of water to the blended PDA material from seven to eight plates,
checked the spore concentrations with a haemocytometer, and
added more water as needed to reach a concentration of approx-
imately 7 × 106 sclerotia/ml. We produced appoximately 20 l of
inoculum for each study from 150 90 × 15 mm PDA plates.

Field studies and phenotyping
Our field experiments were conducted using identical pathogen
inoculation, planting, and phenotyping protocols across locations
and years. C0 population bare-root clones were planted March,
2016 at the UC Davis Plant Pathology Farm (Davis, CA) and Octo-
ber, 2016 at the UC Agricultural and Natural Resources South
Coast Research and Extension Center (Irvine, CA). C1 population
seedlings and check cultivars were planted November, 2018 at
the UC Davis Plant Pathology Farm. C1R population seedlings and
check cultivars were planted November, 2021 at the UC Davis
Plant Pathology Farm and Garcia Farm (Salinas, CA) in cooperation
with the USDA Agricultural Research Service Crop Improvement
and Protection Research (Salinas, CA). C2 population seedlings
and check cultivars were planted November, 2020 at the UC Davis
Plant Pathology Farm and Garcia Farm. The roots of seedlings and
bare-root plants were submersed in inoculum solution for 5 to
7 minutes. Before transplanting.

We initiated phenotyping in the precipitation-free months of
June and July in Davis, CA when daily temperatures were increas-
ing, drought stress could be induced by decreasing irrigation
by 50% or more, and disease symptoms began appearing. The
daily high temperatures were in the 27–42 -◦C range, whereas
the daily low temperatures were in the 8◦C to 17 ◦C range
over those months with zero to near zero precipitation (https://
www.weather.gov/wrh/climate). Ordinal scores from 1 to 5 were
assigned according to the severity of the symptoms, where 1,
highly resistant (symptomless) and 5, highly susceptible (dead), as
shown in Fig. 1 and described by Koike et al. [21]. Visual symptoms
were observed and ordinal scores were recorded once per week
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in the early cycles of selection (C0 and C1) and decreased to
every other week for the later cycles of selection (C1R and C2)
as we gained experience with symptom progression trends and
as the frequency of resistant individuals changed over cycles
of selection. We used the incidence and severity of symptoms
and phenotypic distributions of ordinal scores as guides for
terminating phenotyping. Statistical analyses were applied to
ordinal scores recorded on the last time point in July in each
study, apart from the C1R population study in Salinas, which was
phenotyped through October.

The soils are at our study locations were classified as Yolo loam
(Davis), San Emigdio fine sandy loam (Irvine), and Chualar loam
(Salinas) (https://websoilsurvey.sc.egov.usda.gov/). Strawberries
had not been grown on any of the fields selected for our studies.
The field used for the 2016 study in Davis was not fumigated.
The fields used for the 2016–17, 2018–19, 2020–21, and 2021–
22 studies in Davis with flat-fumigated approximately three
months before planting with Pic-Clor 60 (Cardinal Professional
Products, Woodland, CA) at a rate of 560.426 kg/ha. The fumigated
fields were sealed with a totally impermeable film tarp for at
least one week. The fields used for the 2020–21 and 2021–22
studies in Salinas were drip-fumigated with Triform 80 or Pic60
at a rate of 140.3 l/ha. Drip irrigation lines and black plastic
mulch were installed in each field before planting. Plant were
grown in 15.25 cm high single-row raised beds in Davis and
Irvine with 30.5 cm spacing between plants and 76.2 cm spacing
between beds center-to-center. Plants were grown in 30.5 cm high
two-row raised beds in Salinas with 40.6 cm spacing between
plants and 101.6 cm spacing between beds center-to-center. Our
field experiments were sub-surface drip-irrigated as needed to
maintain adequate soil moisture and injection fertilized through
the drip irrigation system. Approximately 169 to 198 kg/ha of
nitrogen was applied over the growing seasons.

We used randomized complete blocks (RCB) experiment
designs with four single-clone replicates (four complete blocks)
for the C0 population study. There were 576 entries/block (2304
experimental units) in the 2016 Davis study and 960 entries/block
(3840 experimental units) in the 2016–17 Irvine study. We used
augmented RCB experiment designs for the other studies with
unreplicated seedlings (full-sib progeny) and four single-clone
replicates per check cultivar. The number of check cultivars
ranged from four for C1R and C2 to 17 for C1. The number
of unreplicated seedlings per study were 2211 (C1 population
Davis), 1260 (C1R population Davis), 960 (C1R population Salinas),
560 (C2 population Davis), and 441 (C2 population Salinas). The
randomization plans for entries within blocks were generated
using design.rcbd() or design.dau() function in the R package
agricolae [115].

Statistical analyses
Linear mixed models (LMMs) were modeled and analysed using
lme4::lmer() [116]. Clone-based broad-sense heritability (H2) was
calculated as:

H2 = VG

VG + VR
h

where VG is the variance associated with the accession, VR is the
residual variance, and h is the harmonic mean of the number of
replicates per accession, calculated using pysch::harmonic.mean()
[117]. Cross-year broad-sense heritability was calculated as:

H2 = VG

VG + VG·T
t + VR

t·h

where VG·T is the variance associated with the genotype-by-
experiment interaction, and t is the number of experiments.
Family-based heritabilities were calculated as:

H2
F = VF

VF + VF·L
2 + VR

2·h

where VF is the variance associated with full-sib families, VF·L is
the variance associated with family-by-environment interaction
(across the Davis and Salinas locations tested), and h is the
harmonic mean of the number of individuals (full-sibs) in each
family.

Estimated-marginal means (EMMs) were calculated for repli-
cated clonal accessions using emmeans::emmeans(), correcting for
the effect of block in randomized complete block experiment
designs [118–120].

SNP genotyping
DNA was isolated from freshly emerged leaves from greenhouse
or field grown plants. Leaf tissue was placed into 1.1 ml tubes,
freeze-dried in a Benchtop Pro (VirTis SP Scientific, Stone Bridge,
NY), and ground using stainless steel beads in a Mini 1600
(SPEX Sample Prep, Metuchen, NJ). Genomic DNA (gDNA) was
extracted from powdered leaf samples using the E-Z 96 Plant
DNA Kit (Omega Bio-Tek, Norcross, GA, USA) according to the
manufacturer’s instructions. To enhance the quality of the
DNA and reduce polysaccharide carry through, the protocol
was modified with a Proteinase K treatment, a separate RNase
treatment, an additional spin, and heated incubation steps during
elution. DNA quantification was performed using Quantiflor dye
(Promega, Madison, WI) on a Synergy HTX (Biotek, Winooski, VT).

The individuals in our studies were genotyped with a 50 K
Axiom SNP array [49] on a GeneTitan HT Microarray System by
Affymetrix (Santa Clara, CA) using gDNA samples that passed
quality and quantity control standards. SNP genotypes were auto-
matically called using Affymetrix Axiom Analysis Suite software
(v1.1.1.66, Affymetrix, Santa Clara, CA). Samples with call rates
greater than 89% were analyzed. The genomic relationship matrix
(G) among individuals was estimated using the function ‘A.mat)’
in the R package ‘rrBLUP’ using a minor allele frequency cut-
off of 0.05 (min.MAP = 0.05) and a maximum missing data cut-
off of 0.5 (max.missing = 0.5) with imputation of missing data
(return.imputed = TRUE)’ [121].

Genome-wide association studies
We used the R package rrBLUP and the rrBLUP::GWAS() func-
tion for genome-wide association studies [121] using the
‘Royal Royce’ genome (FaRR1) as a physical reference (https://
phytozome-next.jgi.doe.gov/info/FxananassaRoyalRoyce_v1_0)
and 50 K Axiom array SNP genotypes as independent variables
[49]. SNP markers on the 50 K Axiom array were physi-
cally anchored to the FaRR1 genome (Supplemental File S4).
The physical positions of SNPs used in our nalyses were
validated by extensive genetic mapping. SNPs that geneti-
cally mapped to homoeologous chromosomes different from
those originally assigned were physically remapped by BLAST
searches to the correct chromosomes. We limited our GWAS
analyses to SNPs with chromosome (physical position) assign-
ments validated by genetic mapping (Supplemental File S4-S5).

GWAS was applied to the estimated marginal means for disease
score observed among C0, C1R, and C2 population individuals
within and across locations and across populations. The genomic
relationship matrix (G) estimated from 50 K Axiom array SNP
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marker genotypes was used to correct for population structure.
We used population as a fixed effect for the across-population
GWAS. The genomic inflation factors (λ) for analyses of C0, C1R,
and C2 populations ranged from 0.98–1.01, 0.91–0.96, and 0.96–
1.01, respectively, The genomic inflation factor for the across-
population analysis was 0.92. False discovery rate (FDR) thresh-
olds for p = 0.05 were calculated using the R package qvalue [121–
123]. The percent of the phenotypic variance explained (PVE%)
by the most significant QTL-associated SNPs were estimated the
semivariance method [124].

We searched annotations in the FaRR1 genome within hap-
lobocks flanking the most significant QTL-associated SNPs to
identify and catalog genes in close proximity to MP1-MP10. We
first defined peak regions using a 2-log drop strategy: for each
locus searching up- and down-stream from the peak SNP until
reaching a SNP with significance 2 × −log10(p-value) lower. To
account for potential over-stringency of this method, we extended
peak regions with +/− 250 kb buffer. For loci which were found
in multiple years this process was done for each instance. We
then extracted gene annotations in the FaRR1 genome in these
regions and for counting removed duplicates from loci discov-
ered more than once, resulting in the reported 965 genes within
MP1–MP10 significance intervals (https://doi.org/10.25338/B8TP7
G; Supplemental File S8).

To identify potentially homoeologous QTL regions, we first
inferred strawberry homeologs with the GENESPACE pipeline
[125], which uses a combination of protein sequence simi-
larity and gene synteny to infer homologs. The ‘Royal Royce’
genome assembly (https://phytozome-next.jgi.doe.gov/info/
FxananassaRoyalRoyce_v1_0) A, B, C, and D subgenomes were
separated and compared. The locations of GENESPACE-inferred
homeologs were then visualized using the graphics tools of JCVI
[126], with significant regions for each QTL identified via flanking
genes and visualized by blue bars.

GWAS was applied to previously published data from a study in
Florida [46] using the aforementioned R packages and statistical
methods. Genotypic and phenotypic data were extracted from
Supplemental Files S1-S3 of Nelson et al. [46]. We reanalyzed
their data using GWAS so that the physical positions of MP1, MP2,
and MP3-associated SNPs could be identified in FaRR1 genome
identified using SNP markers shared between the 35 K SNP array
used in their study [92, 127] and the 50 K SNP array used in our
study [49] (Supplemental File S4).

Genomic prediction analyses
Genomic prediction experiments were conducted using the som-
mer v4.3.1 R package with sommer::mmer() [128] within selection
cycle and within and among locations. Our CV strategy was 80/20
random CV where a random 20% of the phenotypic observations
(test) were withheld from the model and predicted using the
remaining 80% (train). We performed 100 iterations for each of
four models and recorded the predictive ability—the Pearson
correlation between GEBV and EMM in the testing set—for each
iteration. This approach resulted in a total of 45 experiments (5
models × 3 cycles × 3 between and among location combinations).

The first approach is standard G-BLUP, a linear mixed model
with a single random effect:

Y = μ+ ∼ N
(
0, GGσ 2

G

) + ∼ N
(
0, Iσ 2

R

)
(1)

where Y are the phenotypic resistance scores, μ is the population
mean, GG is the standard GRM calculated from all SNPs, σ 2

G is the
additive genomic variance, and σ 2

R is the residual variance.

The other three approaches incorporated foreground and back-
ground random effects associated with the significant loci discov-
ered by GWAS (F for foreground selection) and the remaining SNPs
(B for background selection):

Y = μ+ ∼ N
(
0, GFσ

2
GF

) + ∼ N
(
0, GBσ 2

GB

) + ∼ N
(
0, Iσ 2

R

)
(2)

where GF is the additive GRM calculated from the foreground
SNPs, i.e., MP1–4, MP1–6, MP1–8, and MP1–10, for approaches 2–
5 respectively, GB is the standard GRM calculated from remaining
background SNPs, specifically not MP1–4, MP1–6, MP1–8, or MP1–
10, σ 2

GF
is the additive genomic variance associated with the fore-

ground SNPs, σ 2
GB

is the additive genomic variance associated with
the background SNPs, and σ 2

R is the residual variance.
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