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Abstract
The study of genetic variation is pivotal for understanding plant diversity and evolution. In recent years, remote sensing has played a significant

role in phylogeography, facilitating the exploration of intricate relationships among genetics, spectral behavior, and evolution. This review article

aims  to  present  a  comprehensive  compilation  of  literature  in  two  main  areas:  1)  investigating  the  potential  of  spectral  data  collected  using

remote  sensing  to  study  genetic  diversity,  and  2)  using  spectral  characteristics  to  investigate  functional  dynamics  associated  with  various

phylogeographic patterns and identify genetic bases of important agronomic traits. Remote sensing has proven effective in detecting genetic

variations  across  different  geographical  regions.  Additionally,  this  review examines  the limitations,  challenges,  and prospects  associated with

integrating remote sensing and phylogeography. In essence, phylogeographic studies offer theoretical insights into understanding the genetic

mechanisms  underlying  functional  variability  observed  in  remotely  sensed  spectral  data.  Leveraging  rapid  technological  advancements  in

remote sensing and data fusion approaches will  lead to new understanding of plant genetic diversity and the functional significance of plant

traits. This knowledge is invaluable for informing strategies for the management and conservation of natural resources.
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 Introduction

Phylogeographic  methods  provide  valuable  insights  into
how genetic patterns among populations relate to geographic
environments.  These  studies  highlight  how  the  historical
context of geographic adaptive radiation shapes genetic distri-
bution  patterns.  Genetic  variations  across  vast  geographic
regions serve as essential indicators for assessing the adaptabi-
lity of various genotypes[1,2]. By studying the genetic variations
and distributions across  large geographic scales,  scientists  can
gain  a  deeper  understanding  of  how  evolutionary  processes
influence  population  genetic  patterns  over  time.  Additionally,
phylogeographic  studies  provide  valuable  approaches  for
understanding  and  interpreting  genetic  variations  in  adaptive
phenotypic  traits,  shedding  light  on  the  evolutionary  mecha-
nisms  behind  functional  adaptations  to  diverse  environments.
Viewing this through a phylogeographic lens, it becomes clear
that genetic divergence plays a crucial role in regulating pheno-
typic  traits  to  facilitate  adaptation  across  various  geographic
sites and environmental conditions[3].

To  comprehensively  understand  the  dynamics  of  pheno-
typic  traits,  it  is  imperative  to  gather  genotypic  information
from  large  and  diverse  geographic  locations.  This  involves
conducting  population  genetics  and  phylogeographic  analy-
ses  using  gene  sequences,  genetic  markers,  and  genome
sequences,  as  exemplified  in  studies  by  Wiens  et  al.[4] &  Wang
et  al.[5].  With  the  rapid  advancements  in  genomic  sequencing
technology,  various  innovative  analytical  methods  leveraging
genomics  have  emerged.  These  include  genome-wide

association  studies  (GWAS)  and  genomic  selection  (GS).  These
methods aim to correlate DNA polymorphism data with pheno-
typic  traits,  enabling  the  identification  of  the  genetic  basis
underlying important phenotypic traits[6].

Spectral variability in optical remote sensing data may reveal
genetic diversity at distinct geographical sites characterized by
environmental  heterogeneity[7−9].  The  optical  properties  of
plants,  influenced  by  phenotypic  traits  such  as  biochemical
content, leaf and canopy structure, and physiological functions,
contribute to measurable spectral  variability.  Spectral  informa-
tion  proves  to  be  instrumental  in  accurately  estimating  geno-
type-specific phenotypic features. Consequently, spectral varia-
tion has the potential to capture genetic variations, particularly
related  to  plant  biochemical,  physiological,  and  structural
divergence.  Using  a  combination  of  tools,  including  visual
inspection, DNA molecular markers, and spectrometry[10,11], it is
possible to improve the efficiency for identifying genetic varia-
tion  in  plant  materials.  As  demonstrated  by  Bush  et  al.[12],
phylogeographic affinities, genetic loci of functional traits, and
spectral  properties  can  be  leveraged  to  parameterize  process-
based neutral and adaptive landscape genetics for biodiversity
research.

Manually  collecting  phenotypic  information  across  large
areas is time-consuming and susceptible to data quality issues
due  to  various  factors  during  the  data  collection  stages.
Remote  sensing  offers  an  efficient  alternative  for  gathering
phenotypic  data  on  plant  diversity  across  different  genetic
groups  in  a  short  time  frame.  This  approach  helps  to  reduce
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both  the  cost  and  time  required  for  phenotyping  while  main-
taining a high level of data accuracy and consistency[13].

By using remote sensing, researchers can swiftly collect data
and  identify  key  phenotypic  traits  associated  with  physiology
and  biochemistry.  This  enhances  our  understanding  of  plant
characteristics  and  their  genetic  variations.  Studies  have
demonstrated a notable correlation between phenotypic traits
measured using remote sensing data obtained from unmanned
aerial vehicles (UAV) and the data obtained in situ[14]. The corre-
lation  underscores  the  reliability  and  potential  of  remote
sensing  in  phenotypic  data  collection  and  analysis,  marking  a
significant  advancement  in  the  study  of  plant  genetics  and
phenotypes.  High-throughput  phenotyping  technology,  in-
cluding  3D  modeling,  has  played  a  pivotal  role  in  large-scale
quantitative  trait  loci  (QTL)  analysis.  This  technology  has  been
instrumental in uncovering the genetic architecture governing
dynamic  plant  growth  in  maize[15],  the  genetic  control  of  leaf
elongation  in  barley  (Hordeum  vulgare)[16],  and  the  genomic
prediction  for  canopy  height  in  wheat[17].  The  integration  of
genomic  information  under  specific  environmental  conditions
with  plant  ontogenetical,  physiological,  and  biochemical  pro-
perties,  assessed  through  image-analysis-based  phenotypic
information, has enabled the targeted selection of more suita-
ble cultivars for breeding purposes[18].

Remote  sensing  technology  has  the  potential  to  bridge  the
gaps  between  genotype  and  phenotype  study,  by  alleviating
the challenges in large amounts of data collection across exten-
sive  geographic  extent.  By  supplying  consistent  and  reliable
spectral and phenotypic measurements, remote sensing proves
invaluable in the field of phylogeography, offering insights into
the natural dynamics of essential agronomic or ecological traits
across evolutionary history. In the review, we described applica-
tions of  remote sensing technology on phylogeographic  stud-
ies from two aspects. The initial aspect revolves around assess-
ing  genetic  variation  through  analyses  of  spectral  variability,
while  the  second centers  on investigating phenotypic  dynam-
ics for phylogeographic patterns to identify genetic basis linked
to  potential  phenotypic  traits  through  remote  sensing  tech-
nology.

To  consolidate  this  information,  we  conducted  a  thorough
review  of  relevant  publications,  encompassing  diverse  plat-
forms,  sensors,  wavelength  ranges,  spatial  resolutions,  model
optimization  techniques,  and  analysis  methods  (Table  1)[19,20].
We  also  summarized  the  advantages  and  disadvantages  of
remote  sensing  technologies  in  phenotypic  measurements
(Table 2). Finally, the review provides the deficiency and oppor-
tunities  for  future  improvements  in  the  cross-cutting  research
using  remote  sensing  in  phylogeography.  Existing  literatures
demonstrate a noteworthy surge in interest regarding the eva-
luation of genetic variation by leveraging spectral features and
identification  of  the  genetic  basis  of  remotely  sensed  pheno-
typic data (Figs 1 & 2). These studies play crucial roles in deve-
loping an integrated approach to identify, define, and conserve
genotypic  divergence,  thereby  enhancing  our  understanding
of  adaptive  evolution  and  biodiversity.  It  aims  to  identify  the
genetic foundations of these adaptive traits,  thereby contribu-
ting  to  advancements  in  genetic  breeding  and  germplasm
conservation.

In  this  study,  we  introduced  a  flowchart  designed  to  facili-
tate  the  application  of  remote  sensing  technology  on  phylo-
geographic  patterns  (Fig.  3).  The  flowchart  elucidates  the

connections between various facets  of  the dataset,  fostering a
comprehensive understanding of their relationships.

 Identifying genotypic divergence through
analysis of spectral variability

Recent  research  has  underscored  the  role  of  genetic  varia-
tion  in  regulating  plant  phenotypic  traits  by  influencing  the
responses  of  physiological  hormones  to  environmental  condi-
tions across diverse geographic locations[33]. Research has been
undertaken to explore genetic variations by analyzing spectral
variability  and  deriving  phenotypic  traits.  These  publications,
along  with  our  recent  study  on  remote  sensing  in
phylogeography[8−9,23−25,34,35],  primarily  focus  on  studying
genetic  divergence.  These  findings  establish  a  robust  founda-
tion  for  understanding  genetic  variation  revealed  by  spectral
variability  and exploring the practical  applications  of  remotely
sensed phenotypic traits in molecular breeding.

 Remote sensing technology
Remote  sensing  data  acquired  from  satellites,  UAVs,  and

ground-based  platforms  play  a  pivotal  role  in  achieving  high-
throughput field phenotyping[36]. This allows for the characteri-
zation of genotypes in phylogeographic patterns across diverse
environmental  gradients.  UAVs  are  especially  useful  in  collec-
ting remote sensing data for a large size of population and field
studies. Ground-based platforms provide increased data resolu-
tion  due  to  shorter  distances  between  sensors  and  plant
targets[31].  Various  types  of  remotely  sensed  data,  including
those  obtained  from  RGB,  near  infrared  (NIR),  short-wave
infrared  (SWIR)  camera[37],  multispectral  or  hyperspectral
sensors,  light  detection and ranging (LiDAR)[38,39],  and thermal
sensors have been instrumental in assessing additional pheno-
typic  traits  indicative  of  genetic  differences.  VIS  imaging
systems  such  as  RGB  camera  with  three  color  sensors  (blue,
green and red) have been developed to measure plant growth,
development,  and responses to the environment[35].  Identified
pixels  through  image  processing  algorithms  are  used  for
measuring  the  morphological  (shape,  structure),  geometric
(length,  area),  and  color  properties  of  each  plant.  NIR/SWIR
cameras have spectral sensitivity in the range of 800–2,500 nm,
correlated  to  plant  growth  rate,  leaf  water  content,  and  leaf
thickness[40].  The  wavelength  range  of  800–1,700  nm  encom-
passes  three  out  of  five  water  absorption  regions.  These
regions  can  be  future  exploited  to  estimate  the  leaf  water
content.  Thermal  infrared  cameras  can  detect  long-wave
infrared (LWIR) radiation that is emitted by objects to estimate
leaf temperature[41]. Hyperspectral cameras with specific wave-
length  information  can  measure  hundreds  of  spectral  bands
between  350  and  2,500  nm.  Hyperspectral  imaging  has  a
promising potential for detecting plant traits related to abiotic
and biotic  stresses.  Chlorophyll  fluorescence imaging presents
the  potential  capability  to  measure  the  quantum  efficiency  of
photosystem  II  (PSII)  in  plant  stress  research[29].  Three-dimen-
sional  (3D)  traits  measured  using  laser-scanning  techniques
and depth/time-of-flight sensors can be employed to measure
architectural features such as the number of leaves or tillers for
analyzing  plant  growth  and  movement[42].  Remote  sensing
technologies  allow  the  collection  of  high-throughput  pheno-
typic  traits  that  have  precision  capable  of  discerning  genetic
differences  and  facilitating  the  identification  of  genetic  basis
for adaptive plant traits.
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 Analysis of spectral variability for revealing
genetic diversity

Establishing  the  correlation  of  remotely  sensed  data  with
empirically  measured  and  biologically  relevant  traits  is  the
greatest challenge in revealing genetic variation through analy-
sis  of  spectral  variability.  Spectral  wavelengths  sensitive  to
genetic  discrimination  are  closely  linked  to  photosynthetic
pigments,  proteins,  and  plant  fibers,  suggesting  that  genetic
variation  in  phylogeography  is  manifested  in  biochemical
characteristics[24]. Infrared spectra in different regions of visible,
near  IR  and mid-IR  spectrum could  allow capturing the  phylo-
geographic signal in Araucaria araucana that separates Coastal
and  Andean  origins[24].  This  capability  further  reveals  unique
genetic  patterns underlying diverse phenotypic traits.  In these
studies,  biological,  chemical,  and  structural  traits  were

extracted  through  remote  sensing  techniques,  examining  a
range  of  species  including  crops  such  as  rice,  maize,  and
wheat[36], as well as trees like Oaks and Araucaria Araucana and
grass.  Spectral  variability  related  to  physiological  and  highly
heritable  agronomic  traits,  such  as  plant  height  offers  the
potential  to  study  genetic  variation.  RGB  and  near-infrared
cameras  mounted  on  UAV  platforms  facilitate  the  monitoring
of  plant  height  in  maize  and  sorghum  over  extensive  spatial
regions  and  capturing  equivalent  genetic  variation  to  manual
measurements[28,43].  The UAV imagery technology can be used
for estimating variations in plant height across different geno-
types  and  several  genetic  mapping  populations.  This  has  the
potential  to  unveil  genetic  diversity.  Plant  height  estimates  of
maize  have  previously  offered  evidence  of  equivalent  or
greater  phenotypic  variation  partitioned  to  genetic  factors.
Genetic  variation  (s2  G)  and  repeatability  (R)  estimates
presented  the  percentage  of  genetic  variation  explained  by
plant height using RGB imagery, which can be used to compare
the  accuracy  of  plant  height  estimates  among  different  UAV
platforms  and  different  canopy  structures[44].  In  a  study  to
understand  drought-adaptive  traits,  Condorelli  et  al.[31] used
multi-spectral  cameras  mounted  on  UAV  and  tractor-based
platforms to gather NDVI  measurements in a  high-throughput
manner.  NDVI  serves  as  an  integrative  measure  to  correlate
with  chlorophyll  content  and  total  plant/canopy  biomass,
showing sensitivity features to genetic variation and capacities
to  discriminate  genotypes[45].  Important  traits  for  forest  struc-
ture,  such  as  crown  density  and  structural  complexity  could
reveal  genetic-based  diversity  within  and  between  species
through rapid phenotyping using ultra-dense UAV-LiDAR point
clouds[36].  Certain spectral  indices derived from optical  remote
sensing data demonstrate the potential to identify genetic vari-
ation in plants. The application of remotely sensed phenotypic
traits  in  estimating  genetic  variation  suggests  that  these  traits
may  exhibit  heritable  genetic  diversity  in  response  to  diverse
environmental conditions.
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Fig.  1    Annual  number  of  publications  related  to  the  use  of
vegetation  spectral  data  in  phylogeography,  from  2016  to  2023.
These  publications  were  searched  using  keywords  'vegetation
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Advances  in  computer  vision-assisted  analysis  methods  in
high-throughput  plant  phenotyping  data  are  needed  to
improve  further.  The  soft  independent  modeling  of  class  ana-
logy  (SIMCA)  presented  high  prediction  capability  to  discrimi-
nate  phylogeographic  origin  with  a  classification  accuracy  of
88%–91%[24]. The mixed linear model, employing residual maxi-
mum  likelihood  (REML),  in  conjunction  with  the  Weibull
sigmoid  growth  model,  has  been  used  to  estimate  genetic
variation  based  on  predicted  plant  height  and  growth
parameters[28]. Significant genetic variation was detected at the
provenance  level  in E.  pauciflora and E.  tenuiramis by  calcula-
ting  genetic  parameters  including  the  quantitative  inbreeding
coefficient  (QST)  and  narrow-sense  heritability  (h2

OP)  estimates
for  remote  sensing  data  derived  from  individual  tree  LiDAR
point clouds[36].

 Identifying genetic loci through analysis of
phenotypic dynamics derived from remote
sensing

In the realms of biodiversity and plant breeding, researchers
have endeavored to elucidate the genetic mechanisms govern-
ing  essential  phenotypic  traits,  leading  to  the  identification  of
numerous  genetic  loci  associated  with  phenotyping  across
diverse genotypic groups[46]. A thorough exploration of pheno-
typic  information  is  needed  to  ascertain  its  suitability  for
detecting genetic  variations in phylogeographic patterns,  spa-
nning  from  the  original  geographic  sites  to  extended  regions.
Phenotypic  measurements  of  samples  with  phylogeographic
patterns provide the dynamic nature of  many important agro-
nomical  traits  to  adapt  to  different  environments  at  large
geographic  scales.  These  biochemical  traits  derived  from
remote sensing technology have the potential for studying the
association  of  genetic  diversity  and  phenotypic  traits.  By
analyzing  spectral  data  that  captures  phenotypic  changes
across  diverse  genotypic  groups  and  aligns  with  phylogeo-
graphic  patterns,  it  becomes  feasible  to  identify  genes  and
genetic  loci  influencing  the  development  of  specific  pheno-
typic traits. The capability facilitates the rapid discovery of new
phenotypes[35]. The genetic architecture of plant traits has been
determined to identify some large effect loci likely fixed during
domestication  and  early  selection[47].  The  acquisition  of  high-
throughput  phenotypic  data  through  remote  sensing  has
proven to be pivotal in the development of molecular markers
for spinach (Spinacia oleracea L.)[32].

 Phenotypic dynamics in phylogeographic pattern
detected through remote sensing technology

The  high-throughput  nature  of  phenotyping  facilitates  the
examination  of  dynamic  mechanisms  in  plant  functional  traits
of  genetically  diverse  groups.  With  the  decreasing  cost  of
genome-wide  genotyping,  large-scale  phenotyping  through
remote sensing has become a crucial tool for exploring signifi-
cant  phenotypic  variation  attributed  to  genetic  factors[43,44,48].
The  recent  progress  in  high-throughput  phenotyping  plat-
forms (HTTPs) based primarily on the use of ground based plat-
forms  and/or  UAVs  provides  unprecedented  opportunities  to
accurately  measure  proxy  traits  in  hundreds  of  plots[49−52],  as
required  in  experiments  to  identify  QTLs.  An  UAV  remote
sensing  experiment,  featuring  repeated  measurements  every
month with a flight duration of approximately 10 min, demon-
strated  a  performance  in  measuring  sorghum  plant  height

comparable  to  manual  phenotypic  measurements  for
genomics-assisted  breeding[26].  Increased  ability  of  aerial  over
ground-based  platforms  has  been  observed  to  detect  quanti-
tative  trait  loci  (QTLs)  for  NDVI,  particularly  under  terminal
drought  stress[28].  Various  remote  sensing  techniques  are
commonly  used  to  explore  the  phenotypic  dynamics  within
phylogeographic  relationships.  NDVI  was  extracted  from
georeferenced ortho mosaic GeoTIFFs generated from imagery
captured  from  multi-spectral  cameras  carried  on  UAVs  and
tractor-based platforms.  The NDVI  data has been employed to
ascertain  the  genetic  basis  for  grain  yield  using  GWAS
analysis[53].  Both  airborne  laser  scanning  and  imaging  spec-
troscopy  have  proven  valuable  for  mapping  phenotypic  varia-
tion  within  species,  particularly  in  tree  functional  traits[54].
Canopy cover, assessed through digital cameras, exhibits corre-
lations  with  plant  density,  early  vigor,  leaf  size  attributed  to
genetic variation[55].  Thermal sensors emerge as effective tools
for  measuring  canopy  temperature,  offering  valuable  insights
into estimating water stress levels[56]. Furthermore, the integra-
tion of  multispectral  and hyperspectral  imaging from different
sensors is successful in discriminating and mapping long-range
spatial phenotypic features[57,58].

As  we  unravel  the  underlying  genetic  loci  governing  the
variability  of  remotely  sensed  phenotypic  traits,  spectral-
related  proxies  such  as  NDVI  play  increasingly  vital  roles  in
selecting valuable cultivars. These plant traits like plant height,
dry  biomass,  leaf  rolling,  and  phenology  score  obtained  using
remote sensing technology, chosen based on genetic informa-
tion obtained from identified loci, facilitate the optimization of
desirable  traits  in  breeding  programs[59−62].  Researchers  have
explored  phenotypic  dynamics  in  plants  exhibiting  phylogeo-
graphic  patterns  using  the  Normalized  Difference  Vegetation
Index  (NDVI)[51,63,64] as  well  as  traits  related  to  drought
adaptation[31]. NDVI is proven to be useful in predicting canopy
biomass  and  nitrogen  status[55].  Using  an  optical  sensor  to
detect  NDVI  values,  researches  identified  a  total  of  44  genetic
loci across different environments linked to traits such as stay-
green  (Stg)  at  physiological  maturity,  yield  components,  plant
height, and yield-related physiological traits in wheat[52,65,66]. In
the  context  of  spinach,  GWAS  was  employed  to  identify  SNPs
associated  with  growth  parameters  such  as  canopy  cover,
canopy volume, and excess green index (ExG) measured using
RGB sensor mounted on UAVs[32].  The canopy height measure-
ments  and  their  respective  growth  rates  obtained  using  UAV-
RGB and NIR-GB camera identified unique QTLs and candidate
genes  controlling  plant  height  in  the  GWAS  study[67].  Further-
more,  remote  sensing  techniques  have  been  employed  to
investigate  the  adaptive  significance  of  photosynthetic  path-
ways in the grass family (Poaceae) under different light environ-
ments. These studies aimed to test ecological theories concern-
ing  adaptive  evolution[34,68,69].  The  integration  of  spectral  data
and phylogeography has proven instrumental in systematically
examining  the  genetic  architecture  of  agronomic  traits[70,71]

and gene-environment interactions[72]. These valuable insights,
in  turn,  contributed  significantly  to  the  conservation  and
breeding of plant germplasm resources.

 Association analysis between genetic variation
and phenotypic traits

To  examine  the  dynamic  interplay  between  phenotypic
changes and phylogeographic patterns, it is crucial to employ a
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variety  of  analytical  methods.  These  methods  are  essential  to
elucidating the relationships between phylogeography and the
expression  of  phenotypic  traits  derived  from  remote  sensing
data.  The  integration  of  spectroscopy-based  functional  traits
with  phylogeography  can  be  achieved  using  Mantel  tests,
allowing  for  the  assessment  of  correlations  between  their
dissimilarity  matrices.  Additionally,  Partial  least  squares  (PLS)
regression can be used to predict the likelihood of populations
belonging to a particular genetic cluster based on their similar-
ity in predicted remotely sensed phenotypic traits[9,23]. Notably,
genomic  prediction  models  have  demonstrated  a  remarkable
resemblance in sorghum between plant height measurements
obtained via remote  sensing  and  those  obtained  through
conventional methods[26].

Capitalizing  on  the  rich  genetic  variation  inherent  in  phylo-
geographic relationships and the phenotypic diversity extracted
from remote sensing data across extensive geographic regions,
GWAS  presents  a  remarkable  opportunity  to  pinpoint  numer-
ous significant genetic loci under natural phenotypic variation.
The  genomic  study  conducted  by  Huang  et  al.[73] pinpointed
crucial  components,  including  single-nucleotide  polymor-
phisms  (SNPs),  QTLs,  and  sequencing-based  genotypes,  all
exhibiting  significant  associations  with  phenotypic  traits  such
as  plant  height  and  some  growth  parameters  through
GWAS[32,53]. This approach facilitates the optimization of marker
development,  particularly  for  complex  agronomic  traits[70,72].
Genomic  selection  model  refers  to  an  accurate  prediction
model  using genomic  selection (GS).  UAVs-based plant  height
estimates  in  sorghum  could  perform  similar  results  to  manual
measurements  in  the  genomic  prediction model[26].  Identifica-
tion  of  QTL  hotspots  provided  insight  for  marker-assisted  and
genomic  selection  analyses  in  sorghum,  rice,  and  wheat
breeding[6]. Advanced models seek to identify the genetic basis
responsible for adaptive traits by leveraging extensive datasets
of  genomes  and  phenotypes.  Uncovering  specific  genetic  loci
or candidate genes holds the potential to significantly enhance
agriculturally important traits through selective breeding.

 Key factors influencing remote sensing
applications in phylogeography

 Sources of origin of spectral variability
Remotely  sensed  spectral  data  can  be  obtained  at  various

levels,  including  leaf,  plant,  canopy,  and  landscape,  each
exhibiting distinct sensitivity to phylogeographic patterns. Vari-
ability  in  biophysical  parameters  such  as  leaf  area  index  (LAI),
height,  plant,  and  canopy  structure,  can  impact  spectral
measurements.  The  biochemical  components  like  pigments,
biomass,  water,  and  N  contents,  as  well  as  functional  compo-
nents  like  photosynthesis,  fluorescence,  and  stress  response,
may  also  influence  spectral  measurements,  thus  potentially
confounding the study on relationships between remote sens-
ing  and  phylogeography[8].  To  gather  diverse  information  and
crucial phenotypic trait-related characteristics from field-grown
plants, it is imperative to carefully select appropriate platforms
and  remote  sensing  sensors.  High-throughput  phenotypic
measurements,  facilitated  by  hyperspectral  and  multispectral
sensors,  often  complimented  with  active  LIDAR,  have  proven
effective  in  measuring  canopy  reflectance,  estimating  plant
height,  and  assessing  biomass[49,74−76].  For  instance,  sensors
equipped with a NIR band may outperform those limited to the

visible range alone in genomic prediction modeling[26].  Hyper-
spectral  imaging  has  been  instrumental  in  examining
pigments,  as  well  as  quality  traits  such as  oil,  amylose,  protein
content,  and  moisture  in  whole  rice  grains  and  other  crops.
Additionally,  it  has  been  applied  to  assess  N  content  and
biomass in plants[77,78].

 Spatial scales
Considerations  for  spatial  scales  are  important  when  using

remote sensing methods for targeted vegetation parameters or
phenotypic traits.  Factors such as plant and canopy structures,
their physical and biochemical compositions, background soils
and atmospheric  conditions,  and platforms,  all  influence spec-
tral  signals[79,80].  Therefore,  spectral  data  acquired  at  different
scales  will  be  impacted  by  different  interference  factors.  For
instance,  a  measurement  at  the  leaf  scale  may  not  be  influ-
enced by soil  properties and canopy structures,  so leaf-related
traits  would be measured with  more confidence than plant  or
canopy-related  traits.  Canopy  or  landscape  properties  can  be
measured  at  a  larger  spatial  scale,  however,  leaf  level  proper-
ties may only be estimated through empirical models or inver-
sion  of  physical  models  with  large  uncertainty.  Ground-based
phenotyping  platforms  require  a  longer  time  to  complete  the
measurements as compared to UAV-based remote sensing. The
advantage of UAV-based phenotyping over a larger area in less
time could minimize the effects of daily environmental fluctua-
tions on spectral measurements[31].

 Spectral scales
Spectral  resolution  and  wavelength  ranges  play  important

roles  in  shaping  the  connections  between  spectral  variability
and  phylogeographic  patterns.  Spectral  signatures  in  visible
ranges are sensitive to pigment concentrations and photosyn-
thetic  behaviors.  Spectral  reflectance in  near-infrared to  short-
wave  infrared  ranges  is  sensitive  to  water  content,  biomass,
and plant/canopy structures. Sensors with a high spectral reso-
lution  can  capture  narrow  spectral  signatures  or  targets.  For
instance, estimation of red-edge position and chlorophyll fluo-
rescence requires high to super-high spectral resolution. Accu-
rate  estimation  of  plant  water  content  may  also  benefit  from
narrow  spectral  resolution  to  eliminate  influence  from  atmo-
spheric  water  vapor  content  variation.  Sensors  with  coarser
spectral  resolution  are  common  and  affordable,  such  as  many
multi-spectral  sensors  mounted  on  satellite  platforms,  but  still
be  valuable  for  vegetation  structural  properties.  Current
ground-  and  UAVs-based  remote  sensing  technologies  prima-
rily  concentrate  on  NDVI-related  bands,  such  as  red  and  near-
infrared, for dissecting genetic factors associated with drought
adaptive  traits  in  durum  wheat[31].  The  study  by  Hernandez-
Stefanoni  et  al.[81] demonstrated  that  the  Landsat  shortwave
infrared band had a robust correlation with species richness in
tropical  forest  ecosystems.  Therefore,  the  careful  selection  of
appropriate  spectral  resolution  and  spectral  ranges  is  impera-
tive  to  enhance  the  integration  of  spectral  variability  and
genetic diversity.

 Temporal scales
The spectral data collected from large-scale experiments are

significantly influenced by both the stage of plant growth and
daily fluctuations in environmental conditions[5]. Consequently,
variations  in  leaf  age  and  seasonal  adjustments  can  introduce
spectral  variability  within  individual  canopies,  potentially
complicating  the  relationship  between  spectral  diversity  and
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phylogeography[82−84].  By examining the seasonal  dynamics of
phenotypic  traits  using  multi-temporal  remote  sensing  data,
we gain  valuable  insights  into  how spectral  reflectance,  geno-
type,  and  the  environment  are  interconnected.  A  comprehen-
sive  understanding  of  the  temporal  changes  in  spectral  diver-
sity improves our ability to accurately capture genetic variation
through  spectral  variation  and  remotely  sensed  phenotypic
traits across different growth stages[30,85].

 Challenges and constraints in integrating
remote sensing with phylogeography

In  this  paper,  we  present  an  in-depth  investigation  of
research dedicated to the application of remote sensing in phy-
logeography.  Despite  significant  advancements,  there  remain
persistent  overarching  limitations  and  challenges  in  this  inter-
disciplinary  approach.  These  challenges  stem  from  a  lack  of
physical models linking spectral measurements with phylogeo-
graphic patterns and a deficiency in systematic and consistent
data acquisition at large scales and quantities.

One  significant  constraint  associated  with  remote  sensing
data  is  spatial  resolution.  Satellite  imagery  and  other  remote
sensing  technologies  often  have  limited  resolution,  making  it
difficult  to  capture  subtle  genetic  patterns  at  fine  scales.  As
phylogeographic  studies  increasingly  delve  into  population-
level  analyses,  the  growing  gaps  between  genetic  data  and
remote sensing data become more apparent.

The  lack  of  temporal  congruence  between  these  data
sources  can  introduce  uncertainties  in  deciphering  the  link
between spectral variability and genetic diversification. Remote
sensing data offers snapshots of the landscape at specific time
points,  while  phylogeographic  processes  unfold  over  evolu-
tionary  timescales.  Achieving  temporal  synchronization  is
crucial but labor-intensive and complex.

The effective integration of  remote sensing and phylogeog-
raphy  relies  on  the  availability  and  accessibility  of  relevant
datasets.  Acquiring  suitable  remote  sensing  data  and  genetic
information  for  study  areas,  especially  in  remote  or  politically
sensitive regions, can be challenging. Additionally, disparities in
data  specifications  and  quality  across  diverse  sources  may
hinder effective integration.

 Efforts to mitigate integration challenges

The  integration  of  various  data  sources,  UAVs,  satellite  ima-
gery,  and  ground  instrumentation,  is  essential  for  overcoming
limitations in spatial coverage and data quality inherent in indi-
vidual  platforms[6].  UAVs  offer  high-resolution  data  but  suffer
from  limited  battery  life  and  flight  duration,  while  satellites
provide  broader  coverage  but  lower  spatial  resolution  and
susceptibility  to  cloud  cover.  Ground-based  instruments  excel
in accuracy but face challenges in certain environments like tall
crops or muddy fields[86].

To address these limitations, an integrated approach levera-
ging data from multiple platforms can be employed to extract
both spectral and phenotypic information across geographical
areas.  However,  ensuring  consistency  and  high  standards  in
imaging  processing  across  different  platforms,  sensors,  and
timeframes is crucial for subsequent data analysis[87].

Cloud-based  image  analysis  platforms  like  Google  Earth
Engine  (GEE)[88],  Amazon  Web  Services[89],  Landsat  Cloud

(USGS), Copernicus Hub (ESA), and EOS Platform have become
common  for  processing  extensive  datasets  from  various
sensors[90].  These  platforms  facilitate  the  accurate  remote
sensing images processing and enable the selection of suitable
imagery based on study parameters.

The adoption of cloud-based platforms, particularly GEE, has
gained traction in biological  studies[91].  Researchers  have used
these  platforms  for  various  applications,  such  as  mapping
forest  changes  and  monitoring  wildlife  populations[92−94].  For
instance, Millary[95] efficiently used the EOS Platform to analyze
changes in vegetation greenness in the Cirebon Regency using
the NDVI algorithm obtained from Landsat series images.

Furthermore,  advancement  in  equipment  accuracy  and
image  processing  techniques,  along  with  rigorous  plant
measurements and outlier removal, are essential for enhancing
the effectiveness of plant breeding initiatives. A deeper investi-
gation  into  the  connection  between  plant  phylogeography,
functional traits, and spectral attributes is needed for a compre-
hensive  understanding  of  evolutional  dynamics  and  genetic
diversity identification.

While  remote  sensing  data  provides  valuable  insights  into
environmental  factors  influencing  phylogeographic  processes,
it captures only a fraction of these variables. Integrating analy-
ses with additional environmental data sources and employing
ecological  modeling  approaches  become  imperative  to  enrich
the  explanatory  capacity  of  such  studies[96].  However,  careful
interpretation  and  validation  are  required  when  connecting
genetic patterns with remotely sensed environmental variables,
considering  potential  confounding  factors  and  the  need  for
additional experimental validation.

 Conclusions

The use of  remote sensing in phylogeography offers  a  valu-
able  interdisciplinary  approach  to  comprehending  adaptive
evolution  processes  and  landscape  genetics.  This  integration
enables  these  researchers  to  pursue  two  primary  objectives:
1)  modeling  and  assessing  temporal  and  spatial  patterns  of
genetic  variation  through  diverse  spectral  features  obtained
using  remote  sensing  technology;  and  2)  identifying  the
genetic basis of specific phenotypic traits predicted from spec-
tral  data.  We illustrate  the estimation of  genotypic  divergence
through  the  analysis  of  vegetation  spectral  variability.  Addi-
tionally,  we elucidate that  the functional  dynamics inherent in
evolutionary  processes  can  be  studied  by  combining  remote
sensing  technology  with  phylogeographic  patterns.  Further-
more,  we  demonstrate  the  identification  of  genetic  loci  asso-
ciated with phenotypes derived from remote sensing data.

For  the  effective  and  meaningful  application  of  remote
sensing  and  phylogeography  in  biodiversity  and  plant  bree-
ding,  amalgamating  diverse  data,  methods,  and  theories  is
imperative.  However,  researchers  must  remain  cognizant  of
inherent  limitations  and  challenges.  Overcoming  spatial  and
temporal discrepancies, enhancing data availability and quality,
addressing  scale-related  issues,  and  accounting  for  complex
environmental interactions are pivotal steps in maximizing the
potential  of  this  integration.  By  overcoming  these  challenges,
researchers  can  uncover  profound  insights  into  the  intricate
relationships between landscapes, environmental changes, and
genetic variation.
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