logo
Latest News
    New Measurement Yields Smaller Proton Radius

    New Measurement Yields Smaller Proton Radius

    Physicists get closer to solving the proton radius puzzle with unique new measurement of the charge radius of the proton.

    A Game-Changing Test for Prion, Alzheimer's, and Parkinson's Diseases is on the Horizon

    A Game-Changing Test for Prion, Alzheimer's, and Parkinson's Diseases is on the Horizon

    A new test agent can easily and efficiently detect the misfolded protein aggregates that cause devastating neurological diseases in blood samples. The technology could lead to early diagnosis of prion, Alzheimer's, and Parkinson's diseases for the first time.

    Are Students Getting Enough Air?

    Are Students Getting Enough Air?

    Roughly 85% of recently installed HVAC systems in K-12 classrooms investigated in California did not provide adequate ventilation, according to a study from UC Davis and the Department of Energy's Lawrence Berkeley National Laboratory.

    Scientists put the ​"solve" in ​"solvent" for lithium-sulfur battery challenge

    Scientists put the ​"solve" in ​"solvent" for lithium-sulfur battery challenge

    Argonne scientists have discovered how a certain class of electrolyte material can reduce the frequency of polysulfide shuttling, potentially paving the way for more effective lithium-sulfur batteries.

    Tethered Chem Combos Could Revolutionize Artificial Photosynthesis

    Tethered Chem Combos Could Revolutionize Artificial Photosynthesis

    Scientists at the U.S. Department of Energy's Brookhaven National Laboratory have doubled the efficiency of a chemical combo that captures light and splits water molecules so the building blocks can be used to produce hydrogen fuel. Their study, selected as an American Chemical Society "Editors' Choice" that will be featured on the cover* of the Journal of Physical Chemistry C

    The Secret Behind Crystals that Shrink when Heated

    The Secret Behind Crystals that Shrink when Heated

    Scientists at Brookhaven Lab have new experimental evidence and a predictive theory that solves a long-standing materials science mystery: why certain crystalline materials shrink when heated. Their work could have widespread application for matching material properties to specific applications in medicine, electronics, and other fields, and may even provide fresh insight into unconventional superconductors.

    Science Snapshots from Berkeley Lab

    Science Snapshots from Berkeley Lab

    Gamers designing proteins, raw food changing the gut, and a toxin-absorbing MOF

    Shedding new light on the charging of lithium-ion batteries

    Shedding new light on the charging of lithium-ion batteries

    Researchers at Argonne National Laboratory have discovered a photo-excitation process that speeds up the charging of lithium-ion batteries. If commercialized, such technology could be a game changer for electric vehicles.

    How do you know it's perfect graphene?

    How do you know it's perfect graphene?

    Scientists at the U.S. Department of Energy's Ames Laboratory have discovered an indicator that reliably demonstrates a sample's high quality, and it was one that was hiding in plain sight for decades.

    PPPL findings: From new fusion developments to surprises in astrophysics at global plasma physics gathering

    PPPL findings: From new fusion developments to surprises in astrophysics at global plasma physics gathering

    Feature wraps-up wide-ranging PPPL talks on fusion and plasma science at the 61st American Physical Society-Department of Plasma Physics conference.

    Living on the Edge: How a 2D Material Got Its Shape

    Living on the Edge: How a 2D Material Got Its Shape

    A team of scientists led by the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has gained valuable insight into 3D transition metal oxide nanoparticles' natural "edge" for 2D growth.

    Quantum supremacy milestone harnesses ORNL Summit supercomputer

    Quantum supremacy milestone harnesses ORNL Summit supercomputer

    A joint research team from Google Inc., NASA Ames Research Center, and the Department of Energy's Oak Ridge National Laboratory has demonstrated that a quantum computer can outperform a classical computer at certain tasks, a feat known as quantum supremacy.

    Rethinking the science of plastic recycling

    Rethinking the science of plastic recycling

    A multi-institutional collaboration reports a catalytic method for selectively converting discarded plastics into higher quality products. The team included Argonne National Laboratory, Ames Laboratory, Northwestern University and three other universities.

    Machine-Learning Analysis of X-ray Data Picks Out Key Catalytic Properties

    Machine-Learning Analysis of X-ray Data Picks Out Key Catalytic Properties

    Scientists seeking to design new catalysts to convert carbon dioxide (CO2) to methane have used a novel artificial intelligence (AI) approach to identify key catalytic properties. By using this method to track the size, structure, and chemistry of catalytic particles under real reaction conditions, the scientists can identify which properties correspond to the best catalytic performance, and then use that information to guide the design of more efficient catalysts.

    Argonne multidisciplinary team develops new probe for battery research: Strength in numbers

    Argonne multidisciplinary team develops new probe for battery research: Strength in numbers

    An Argonne team has developed a powerful technique for probing in three dimensions the nanostructure for cathode materials of next-generation batteries. Such batteries could one day revolutionize energy storage for both transportation and the electric grid.

    Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

    Shake, rattle, roll: Turbulence found to disrupt the crucial magnetic fields in fusion energy devices

    Scientists at PPPL have discovered that turbulence may play an increased role in affecting the self-driven, or bootstrap, current in plasma that is necessary for tokamak fusion reactions.

    Bio-circuitry mimics synapses and neurons in a step toward sensory computing

    Bio-circuitry mimics synapses and neurons in a step toward sensory computing

    Researchers at the Department of Energy's Oak Ridge National Laboratory, the University of Tennessee and Texas A&M University demonstrated bio-inspired devices that accelerate routes to neuromorphic, or brain-like, computing.

    Staircase to the stars: Turbulence in fusion plasmas may not be all bad

    Staircase to the stars: Turbulence in fusion plasmas may not be all bad

    Surprise discovery shows that turbulence at the edge of the plasma may facilitate production of fusion energy.

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists Pinpoint Cause of Harmful Dendrites and Whiskers in Lithium Batteries

    Scientists have uncovered a root cause of the growth of needle-like structures--known as dendrites and whiskers--that plague lithium batteries, sometimes causing a short circuit or failure. The defects are a major factor holding back the batteries from broader widespread use and further improvement.

    Unlocking the Biochemical Treasure Chest Within Microbes

    Unlocking the Biochemical Treasure Chest Within Microbes

    An international team of scientists lead by the Joint Genome Institute has developed a genetic engineering tool that makes producing and analyzing microbial secondary metabolites - the basis for many important agricultural, industrial, and medical products - much easier than before, and could even lead to breakthroughs in biomanufacturing.

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    Study shows a much cheaper catalyst can generate hydrogen in a commercial device

    SLAC and Stanford researchers have shown for the first time that a cheap catalyst can split water and generate hydrogen gas for hours on end in the harsh environment of a commercial electrolyzer - a step toward large-scale hydrogen production for fuel, fertilizer and industry.

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois to form hydrogen fuel cell coalition

    Argonne and University of Illinois announce intent to form the Midwest Hydrogen and Fuel Cell Coalition.

    Six Degrees of Nuclear Separation

    Six Degrees of Nuclear Separation

    For the first time, Argonne scientists have printed 3D parts that pave the way to recycling up to 97 percent of the waste produced by nuclear reactors. From left to right: Peter Kozak, Andrew Breshears, M Alex Brown, co-authors of a recent Scientific Reports article detailing their breakthrough. (Image by Argonne National Laboratory.)

    Shaping nanoparticles for improved quantum information technology

    Shaping nanoparticles for improved quantum information technology

    Argonne researchers find that semiconductor nanoparticles in the shape of rings have attractive properties for quantum networking and computation.

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data

    Science Snapshots - Waste to fuel, moire superlattices, mining cellphones for energy data