logo
Latest News
    Ramp Compression of Iron Provides Insight into Core Conditions of Large Rocky Exoplanets

    Ramp Compression of Iron Provides Insight into Core Conditions of Large Rocky Exoplanets

    A team of researchers from Lawrence Livermore National Laboratory (LLNL), Princeton University, Johns Hopkins University and the University of Rochester have provided the first experimentally based mass-radius relationship for a hypothetical pure iron planet at super-Earth core conditions. This discovery can be used to evaluate plausible compositional space for large, rocky exoplanets, forming the basis of future planetary interior models, which in turn can be used to more accurately interpret observation data from the Kepler space mission and aid in identifying planets suitable for habitability.

    Getting Magnesium Ions to Pick Up the Pace

    Getting Magnesium Ions to Pick Up the Pace

    Magnesium ions move very fast to enable a new class of battery materials.

    Valleytronics Discovery Could Extend Limits of Moore's Law

    Valleytronics Discovery Could Extend Limits of Moore's Law

    Research appearing today in Nature Communications finds useful new information-handling potential in samples of tin(II) sulfide (SnS), a candidate "valleytronics" transistor material that might one day enable chipmakers to pack more computing power onto microchips. 

    Scientists Use Machine Learning to Speed Discovery of Metallic Glass

    Scientists Use Machine Learning to Speed Discovery of Metallic Glass

    SLAC and its collaborators are transforming the way new materials are discovered. In a new report, they combine artificial intelligence and accelerated experiments to discover potential alternatives to steel in a fraction of the time.

    Seeing How Next-Generation Batteries Power-Up

    Seeing How Next-Generation Batteries Power-Up

    Scientists directly see how the atoms in a magnesium-based battery fit into the structure of electrodes.

    A Heavyweight Solution for Lighter-Weight Combat Vehicles

    A Heavyweight Solution for Lighter-Weight Combat Vehicles

    Researchers at Pacific Northwest National Laboratory have developed and successfully tested a novel process - called Friction Stir Dovetailing - that joins thick plates of aluminum to steel. The new process will be used to make lighter-weight military vehicles that are more agile and fuel efficient.

    How to Turn Light Into Atomic Vibrations

    How to Turn Light Into Atomic Vibrations

    Converting laser light into nuclear vibrations is key to switching a material's properties on and off for future electronics.

    Could Holey Silicon Be the Holy Grail of Electronics?

    Could Holey Silicon Be the Holy Grail of Electronics?

    Electronics miniaturization has put high-powered computing capability into the hands of ordinary people, but the ongoing downsizing of integrated circuits is challenging engineers to come up with new ways to thwart component overheating.

    Superacids Are Good Medicine for Super Thin Semiconductors

    Superacids Are Good Medicine for Super Thin Semiconductors

    Scientists demonstrated that powerful acids heal certain structural defects in synthetic films.

    UNH Researchers Find Combination For Small Data Storage and Tinier Computers

    UNH Researchers Find Combination For Small Data Storage and Tinier Computers

    It may sound like a futuristic device out of a spy novel, a computer the size of a pinhead, but according to new research from the University of New Hampshire, it might be a reality sooner than once thought. Researchers have discovered that using an easily made combination of materials might be the way to offer a more stable environment for smaller and safer data storage, ultimately leading to miniature computers.

    Understanding a Cell's 'Doorbell'

    Understanding a Cell's 'Doorbell'

    A multi-institutional project to understand one of the major targets of human drug design has produced new insights into how structural communication works in a cell component called a G protein-coupled receptor (GPCRs), basically a "doorbell" structure that alerts the cell of important molecules nearby.

    CMI Expands Research in Tech Metals as Rapid Growth in Electric Vehicles Drives Demand for Lithium, Cobalt

    CMI Expands Research in Tech Metals as Rapid Growth in Electric Vehicles Drives Demand for Lithium, Cobalt

    As increasing consumer interest in electric vehicles drives the demand for supplies of lithium and cobalt (ingredients in lithium-ion batteries), the Critical Materials Institute will begin new efforts this July to maximize the efficient processing, use, and recycling of those elements.

    Tubular Science Improves Polymer Solar Cells

    Tubular Science Improves Polymer Solar Cells

    Novel engineered polymers assemble buckyballs into columns using a conventional coating process.

    Biologically Inspired Membrane Purges Coal-Fired Smoke of Greenhouse Gases

    Biologically Inspired Membrane Purges Coal-Fired Smoke of Greenhouse Gases

    A biologically inspired membrane intended to cleanse carbon dioxide almost completely from the smoke of coal-fired power plants has been developed by scientists at Sandia National Laboratories and the University of New Mexico.

    Fast! Hard X-Ray Flash Breaks Speed Record

    Fast! Hard X-Ray Flash Breaks Speed Record

    Lasting just a few hundred billionths of a billionth of a second, these bursts offer new tool to study chemistry and magnetism.

    Tiny Distortions in Universe's Oldest Light Reveal Clearer Picture of Strands in Cosmic Web

    Tiny Distortions in Universe's Oldest Light Reveal Clearer Picture of Strands in Cosmic Web

    Scientists have decoded faint distortions in the patterns of the universe's earliest light to map huge tubelike structures invisible to our eyes - known as filaments - that serve as superhighways for delivering matter to dense hubs such as galaxy clusters.

    Diamond-Based Circuits Can Take the Heat for Advanced Applications

    Diamond-Based Circuits Can Take the Heat for Advanced Applications

    When power generators transfer electricity to homes, businesses and the power grid, they lose almost 10 percent of the generated power. To address this problem, scientists are researching new diamond semiconductor circuits to make power conversion systems more efficient. Researchers in Japan successfully fabricated a key circuit in power conversion systems using hydrogenated diamond. These circuits can be used in diamond-based electronic devices that are smaller, lighter and more efficient than silicon-based devices. They report their findings in this week's Applied Physics Letters.

    ADMX Announces Breakthrough in Axion Dark Matter Detection Technology

    ADMX Announces Breakthrough in Axion Dark Matter Detection Technology

    This week, the Axion Dark Matter Experiment (ADMX) unveiled a new result, published in Physical Review Letters, that places it in a category of one: It is the world's first and only experiment to have achieved the necessary sensitivity to "hear" the telltale signs of dark matter axions. This technological breakthrough is the result of more than 30 years of research and development, with the latest piece of the puzzle coming in the form of a quantum-enabled device that allows ADMX to listen for axions more closely than any experiment ever built.

    Removing the Brakes on Plant Oil Production

    Removing the Brakes on Plant Oil Production

    UPTON, NY--Scientists studying plant biochemistry at the U.S. Department of Energy's Brookhaven National Laboratory have discovered new details about biomolecules that put the brakes on oil production. The findings suggest that disabling these biomolecular brakes could push oil production into high gear--a possible pathway toward generating abundant biofuels and plant-derived bioproducts.

    Ultra-Powerful Batteries Made Safer, More Efficient

    Ultra-Powerful Batteries Made Safer, More Efficient

    An international team of researchers is laying the foundation for more widespread use of lithium metal batteries. They developed a method to mitigate the formation of dendrites - crystal-like masses - that damage the batteries' performance.

    Mirror, Mirror

    Mirror, Mirror

    The mirror-like physics of the superconductor-insulator transition operates exactly as expected. Scientists know this to be true following the observation of a remarkable phenomenon, the existence of which was predicted three decades ago but that had eluded experimental detection until now. The observation confirms that two fundamental quantum states, superconductivity and superinsulation, both arise in mirror-like images of each other.

    Neutrino Experiment at Fermilab Delivers an Unprecedented Measurement

    Neutrino Experiment at Fermilab Delivers an Unprecedented Measurement

    A group of scientists working on the MiniBooNE experiment at the Department of Energy's Fermilab has reported a breakthrough: They were able to identify exactly-known-energy muon neutrinos hitting the atoms at the heart of their particle detector. The result eliminates a major source of uncertainty when testing theoretical models of neutrino interactions and neutrino oscillations.

    Tick, Tock on the 'Attoclock:' Tracking X-Ray Laser Pulses at Record Speeds

    Tick, Tock on the 'Attoclock:' Tracking X-Ray Laser Pulses at Record Speeds

    To catch chemistry in action, scientists at the Department of Energy's SLAC National Accelerator Laboratory use the shortest possible flashes of X-ray light to create "molecular movies" that capture the motions of atoms in chemical reactions and reveal new details about the most fundamental processes in nature.

    Tiny Bubbles

    Tiny Bubbles

    Bubbles are a linchpin of nuclear engineering, helping to explain the natural world, predict safety issues and improve the operation of the existing and next-generation nuclear fleet. High-performance supercomputers like Mira, located at Argonne, are helping researchers understand the phenomena of bubbling behavior more quickly.

    Notre Dame Researchers Developing Renewable Energy Approach for Producing Ammonia

    Notre Dame Researchers Developing Renewable Energy Approach for Producing Ammonia

    Ammonia is an essential component of fertilizers that support the world's food production needs, and currently production relies on non-renewable fossil fuels and has limited applications for only large, centralized chemical plants.