logo
Latest News
    Atomic Movie of Melting Gold Could Help Design Materials for Future Fusion Reactors

    Atomic Movie of Melting Gold Could Help Design Materials for Future Fusion Reactors

    Researchers at the Department of Energy's SLAC National Accelerator Laboratory have recorded the most detailed atomic movie of gold melting after being blasted by laser light. The insights they gained into how metals liquefy have potential to aid the development of fusion power reactors, steel processing plants, spacecraft and other applications where materials have to withstand extreme conditions for long periods of time.

    New Insights Bolster Einstein's Idea About How Heat Moves Through Solids

    New Insights Bolster Einstein's Idea About How Heat Moves Through Solids

    A discovery by scientists at the Department of Energy's Oak Ridge National Laboratory supports a century-old theory by Albert Einstein that explains how heat moves through everything from travel mugs to engine parts.

    Sandia Light Mixer Generates 11 Colors Simultaneously

    Sandia Light Mixer Generates 11 Colors Simultaneously

    A multicolor laser pointer you can use to change the color of the laser with a button click -- similar to a multicolor ballpoint pen -- is one step closer to reality thanks to a new tiny synthetic material made at Sandia National Laboratories. Research on the new light-mixing metamaterial was published in Nature Communications earlier today.

    Reproducibility Matters

    Reproducibility Matters

    An international team reported on the results of a large-scale field study to identify the core microbial community for the maize rhizosphere. The work partially replicates earlier trials to identify soil microbes that colonize plants and which can be associated with particular traits.

    Tracking Down Helium-4's Quarks and Gluons

    Tracking Down Helium-4's Quarks and Gluons

    Scientists obtain the first exclusive measurement of deeply virtual Compton scattering of electrons off helium-4, vital to obtaining an unambiguous 3-D view of quarks and gluons within nuclei.

    Separate But Together: Ultrathin Membrane Both Isolates and Couples Living and Non-Living Catalysts

    Separate But Together: Ultrathin Membrane Both Isolates and Couples Living and Non-Living Catalysts

    Bioelectrochemical systems combine the best of both worlds - microbial cells with inorganic materials - to make fuels and other energy-rich chemicals with unrivaled efficiency. Yet technical difficulties have kept them impractical anywhere but in a lab. Now researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a novel nanoscale membrane that could address these issues and pave the way for commercial scale-up.

    Engineer Creates New Design for Ultra-Thin Capacitive Sensors

    Engineer Creates New Design for Ultra-Thin Capacitive Sensors

    As part of ongoing acoustic research at Binghamton University, State University at New York Distinguished Professor Ron Miles has created a workable sensor with the least possible resistance to motion.

    'Workhorse' Lithium Battery Could Be More Powerful Thanks to New Design

    'Workhorse' Lithium Battery Could Be More Powerful Thanks to New Design

    Cornell University chemical engineering professor Lynden Archer believes there needs to be a battery technology "revolution" - and thinks that his lab has fired one of the first shots.

    Predicting Magnetic Explosions: From Plasma Current Sheet Disruption to Fast Magnetic Reconnection

    Predicting Magnetic Explosions: From Plasma Current Sheet Disruption to Fast Magnetic Reconnection

    Supercomputer simulations and theoretical analysis shed new light on when and how fast reconnection occurs.

    Is Nature Exclusively Left Handed? Using Chilled Atoms to Find Out

    Is Nature Exclusively Left Handed? Using Chilled Atoms to Find Out

    Elegant techniques of trapping and polarizing atoms open vistas for beta-decay tests of fundamental symmetries, key to understanding the most basic forces and particles constituting our universe.

    Forever Young Catalyst Reduces Diesel Emissions

    Forever Young Catalyst Reduces Diesel Emissions

    Atom probe tomography reveals key explanations for stable performance over a cutting-edge diesel-exhaust catalyst's lifetime.

    Sense Like a Shark: Saltwater-Submersible Films

    Sense Like a Shark: Saltwater-Submersible Films

    A nickelate thin film senses electric field changes analogous to the electroreception sensing organ in sharks, which detects the bioelectric fields of prey.

    Enhanced Detection of Nuclear Events, Thanks to Deep Learning

    Enhanced Detection of Nuclear Events, Thanks to Deep Learning

    Scientists at Pacific Northwest National Laboratory are exploring deep learning to interpret data related to national security, the environment, the cosmos, and breast cancer. In one project a deep neural network is interpreting data about nuclear events as well as - sometimes better than - today's best automated methods or human experts.

    A Bit of Quantum Logic--What Did the Atom Say to the Quantum Dot?

    A Bit of Quantum Logic--What Did the Atom Say to the Quantum Dot?

    Let's talk! Scientists demonstrate coherent coupling between a quantum dot and a donor atom in silicon, vital for moving information inside quantum computers.

    Sodium- and Potassium-based Batteries Hold Promise for Cheap Energy Storage

    Sodium- and Potassium-based Batteries Hold Promise for Cheap Energy Storage

    Researchers at the Georgia Institute of Technology have found new evidence suggesting that batteries based on sodium and potassium hold promise as a potential alternative to lithium-based batteries.

    ORNL researchers use AI to improve mammogram interpretation

    ORNL researchers use AI to improve mammogram interpretation

    In an effort to reduce errors in the analyses of diagnostic images by health professionals, a team of researchers from Oak Ridge National Laboratory has improved understanding of the cognitive processes involved in image interpretation, work that has enormous potential to improve health outcomes for the hundreds of thousands of American women affected by breast cancer each year. The ORNL-led team found that analyses of mammograms by radiologists were significantly influenced by context bias, or the radiologist's previous diagnostic experiences.

    Scientists Make the First Molecular Movie of One of Nature's Most Widely Used Light Sensors

    Scientists Make the First Molecular Movie of One of Nature's Most Widely Used Light Sensors

    Scientists have made the first molecular movie of the instant when light hits a sensor that's widely used in nature for probing the environment and harvesting energy from light. The sensor, a form of vitamin A known as retinal, is central to a number of important light-driven processes in people, animals, microbes and algae, including human vision and some forms of photosynthesis, and the movie shows it changing shape in a trillionth of an eye blink.

    Scientists isolate protein data from the tiniest of caches - single human cells

    Scientists isolate protein data from the tiniest of caches - single human cells

    Scientists have captured the most information yet about proteins within a single human cell, giving scientists one of their clearest looks yet at the molecular happenings inside a human cell. The team detected on average more than 650 proteins in each cell - many times more than conventional techniques capture from single cells.

    Researchers Generate Electricity and Hydrogen from Live Bacteria

    Researchers Generate Electricity and Hydrogen from Live Bacteria

    Using a family of photosynthetic bacteria that commonly live in lakes and seas, researchers at the Technion have developed a technology to generate electricity and hydrogen energy. The researchers believe their technology can serve as a promising source of clean, environment-friendly energy that will not emit pollutants during production or use (hydrogen fuel).

    Carbon Nanotube Optics Poised to Provide Pathway to Optical-Based Quantum Cryptography and Quantum Computing

    Carbon Nanotube Optics Poised to Provide Pathway to Optical-Based Quantum Cryptography and Quantum Computing

    Researchers at Los Alamos and partners in France and Germany are exploring the enhanced potential of carbon nanotubes as single-photon emitters for quantum information processing. Their analysis of progress in the field is published in this week's edition of the journal Nature Materials.

    New Tech Uses Isomeric Beams to Study How and Where the Galaxy Makes One of Its Most Common Elements

    New Tech Uses Isomeric Beams to Study How and Where the Galaxy Makes One of Its Most Common Elements

    A new measurement using a beam of aluminum-26 prepared in a metastable state allows researchers to better understand the creation of the elements in our galaxy.

    Scientists Use Neutrons to Take a Deeper Look at Record Boost in Thermoelectric Efficiency

    Scientists Use Neutrons to Take a Deeper Look at Record Boost in Thermoelectric Efficiency

    Neutron facilities at Oak Ridge National Laboratory are aiding scientists in research to boost the power and efficiency of thermoelectric materials. These performance increases could enable more cost-effective and practical uses for thermoelectrics, with wider industry adoption, to improve fuel economy in vehicles, make power plants more efficient, and advance body heat-powered technologies for watches and smartphones.

    The science behind pickled battery electrolytes

    The science behind pickled battery electrolytes

    Argonne material scientists have discovered a reaction that helps explain the behavior of a key electrolyte additive used to boost battery performance.

    Faster, Cheaper, Better: A New Way to Synthesize DNA

    Faster, Cheaper, Better: A New Way to Synthesize DNA

    Researchers at the Department of Energy's Joint BioEnergy Institute (JBEI) based at Berkeley Lab have pioneered a new way to synthesize DNA sequences through a creative use of enzymes that promises to be faster, cheaper, and more accurate. DNA synthesis is a fundamental tool in the rapidly growing field of synthetic biology, in which organisms can be engineered to do things like decompose plastic and manufacture biofuels and medicines. This discovery could dramatically accelerate the pace of scientific discovery.

    Scientists Create Continuously Emitting Microlasers With Nanoparticle-Coated Beads

    Scientists Create Continuously Emitting Microlasers With Nanoparticle-Coated Beads

    Researchers have found a way to convert nanoparticle-coated microscopic beads into lasers smaller than red blood cells. These microlasers, which convert infrared light into light at higher frequencies, are among the smallest continuously emitting lasers of their kind ever reported and can constantly and stably emit light for hours at a time, even when submerged in biological fluids such as blood serum.