How an Enzyme Repairs DNA via a "Pinch-Push-Pull" Mechanism

In a study published in the May 21, 2018 issue of the Proceedings of the National Academy of Sciences, a team of researchers - aided with supercomputing resources from the San Diego Supercomputer Center (SDSC) based at UC San Diego - created a dynamic computer simulation to delineate a key biological process that allows the body to repair damaged DNA.

Story Tips from the Department of Energy's Oak Ridge National Laboratory, June 2018

A direct brain-to-computer interface may be on the horizon. New insights into how quickly microorganisms break down organic matter in warming Arctic soil. Using liquid salt that contains FLiBe to cool molten salt reactors. Compact, powerful solar.

Mississippi State Physicists Net High Impact Experimental Result on the Weak Force

Two Mississippi State physicists are seeing more than a decade of research yield a new high-precision result that will expand scientists' knowledge of the weak force in protons. Published this month in the international journal of science, Nature, the Q-weak project conducted by the Jefferson Lab Q-weak Collaboration sought to precisely measure the proton's weak charge, a quantity that signifies the influence the weak force exerts on protons. MSU Professors James Dunne and Dipangkar Dutta have worked with the consortia since 2004 and 2006, respectively.

X-Ray Laser Scientists Develop a New Way to Watch Bacteria Attack Antibiotics

An international team of researchers has found a new way to investigate how tuberculosis bacteria inactivate an important family of antibiotics: They watched the process in action for the first time using an X-ray free-electron laser, or XFEL.

Nuclear Scientists Calculate Value of Key Property that Drives Neutron Decay

Supercomputer simulations of neutrons' inner turmoil and a new method that filters out "noise" yield the highest-ever precision calculation of nucleon axial coupling, a property crucial to predicting neutron lifetime.

From Face Recognition to Phase Recognition: Neural Network Captures Atomic-Scale Rearrangements

UPTON, NY--If you want to understand how a material changes from one atomic-level configuration to another, it's not enough to capture snapshots of before-and-after structures. It'd be better to track details of the transition as it happens. Same goes for studying catalysts, materials that speed up chemical reactions by bringing key ingredients together; the crucial action is often triggered by subtle atomic-scale shifts at intermediate stages.

Scientists Simulate a Sliver of the Universe to Tackle a Subatomic-Scale Physics Problem

A team led by Berkeley Lab researchers has enlisted powerful supercomputers to calculate a quantity, known as the "nucleon axial coupling" or gA, that is central to our understanding of a neutron's lifetime.

New Machine Learning Approach Could Accelerate Bioengineering

Scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have developed a way to use machine learning to dramatically accelerate the design of microbes that produce biofuel.

Scientists improve ability to measure electrical properties of plasma

New research indicates a way to more accurately measure the electrical properties of plasma when it meets a solid surface.

Researchers predict materials to stabilize record-high capacity lithium-ion battery

A Northwestern University research team has found ways to stabilize a new battery with a record-high charge capacity. Based on a lithium-manganese-oxide cathode, the breakthrough could enable smart phones and battery-powered automobiles to last more than twice as long between charges.

Better, Faster, Stronger: Building Batteries That Don't Go Boom

Understanding how lithium reacts to pressure developed from charging and discharging a battery could mean safer, better batteries.

Study: Graphene Layered with Magnetic Materials Could Drive Ultrathin Spintronics

Researchers working at Berkeley Lab coupled graphene, a monolayer form of carbon, with thin layers of magnetic materials like cobalt and nickel to produce exotic behavior in electrons that could be useful for next-generation computing applications.

Checking the Global Pulse for Electric Vehicles

A team of Argonne researchers has reviewed 40 automotive market diffusion models from 16 countries to help determine how many plug-in electric vehicles consumers will buy over the next few decades.

Powering Up With a Smart Window

Window material repeatedly switches from being see-through to blocking the heat and converting sunlight into electricity.

Remnant Superconductivity From Invisible Stripes

Scientists used an intense light to unveil hidden rivers that transport electricity with no loss.

Columbia Researchers Squeeze Light into Nanoscale Devices and Circuits

Columbia investigators have made a major breakthrough in nanophotonics research, with their invention of a novel "home-built" cryogenic near-field optical microscope that has enabled them to directly image, for the first time, the propagation and dynamics of graphene plasmons at variable temperatures down to negative 250 degrees Celsius. If researchers can harness this nanolight, they will be able to improve sensing, subwavelength waveguiding, and optical transmission of signals.

Self-Assembling 3D Battery Would Charge in Seconds

A cross-campus collaboration led by Ulrich Wiesner, professor of engineering at Cornell University, has resulted in a novel energy storage device architecture that has the potential for lightning-quick charges for electronic devices.

Understanding the Generation of Light-Induced Electrical Current in Atomically Thin Nanomaterials

Scientists added an imaging capability to Brookhaven Lab's Center for Functional Nanomaterials that could provide the optoelectronic information needed to improve the performance of devices for power generation, communications, data storage, and lighting.

Diamond 'Spin-Off' Tech Could Lead to Low-Cost Medical Imaging and Drug Discovery Tools

An international team led by scientists at Berkeley Lab and UC Berkeley discovered how to exploit defects in nanoscale and microscale diamonds and potentially enhance the sensitivity of magnetic resonance imaging and nuclear magnetic resonance systems while eliminating the need for their costly and bulky superconducting magnets.

PROSPECTing For Antineutrinos

The Precision Reactor Oscillation and Spectrum Experiment (PROSPECT) has completed installation of a novel antineutrino detector that will probe the possible existence of a new form of matter - sterile neutrinos.

How to Cope with Cases of Mistaken Identity: MINERvA's Tale of Pions and Neutrinos

Neutral pion production is a major character in a story of mistaken identity worthy of an Agatha Christie novel.

Perfecting the Noise-Canceling Neutrino Detector

MicroBooNE neutrino experiment cuts through the noise, clearing the way for signals made by the hard-to-detect particle.

Supersonic Waves May Help Electronics Beat the Heat

Researchers at the Department of Energy's Oak Ridge National Laboratory made the first observations of waves of atomic rearrangements, known as phasons, propagating supersonically through a vibrating crystal lattice--a discovery that may dramatically improve heat transport in insulators and enable new strategies for heat management in future electronics devices.

Riding Bacterium to the Bank

Jet fuel, pantyhose and plastic soda bottles are all products currently derived from petroleum. Sandia National Laboratories scientists have demonstrated a new technology based on bioengineered bacteria that makes it feasible to produce all three from renewable plant sources.

Flexible, Highly Efficient Multimodal Energy Harvesting

A piezoelectric ceramic foam supported by a flexible polymer support provides a 10-fold increase in the ability to harvest mechanical and thermal energy over standard piezo composites, according to Penn State researchers.