logo
Latest News
    Two is Better Than One

    Two is Better Than One

    UPTON, NY - A collaboration of scientists from the National Synchrotron Light Source II (NSLS-II), Yale University, and Arizona State University has designed and tested a new two-dimensional (2-D) catalyst that can be used to improve water purification using hydrogen peroxide.

    Big science, tiny snail

    Big science, tiny snail

    Researchers discovered the Tennessee cavesnail, Antrorbis tennesseensis, in caves near Oak Ridge National Laboratory. The snail measures in at less than 2 millimeters long.

    Cell Membrane Proteins Imaged in 3-D

    Cell Membrane Proteins Imaged in 3-D

    A team of scientists including researchers at the National Synchrotron Light Source II have demonstrated a new technique for imaging proteins in 3-D with nanoscale resolution. Their work, published in the Journal of the American Chemical Society, enables researchers to identify the precise location of proteins within individual cells, reaching the resolution of the cell membrane and the smallest subcellular organelles.

    Science Snapshots from Berkeley Lab: 3D nanoparticles and magnetic spin

    Science Snapshots from Berkeley Lab: 3D nanoparticles and magnetic spin

    Researchers at Berkeley Lab have captured 3D images of nanoparticles in liquid with atomic precision, and developed an ultrathin electrical switch that could further miniaturize computing devices and personal electronics without loss of performance.

    A step ahead in the race toward ultrafast imaging of single particles

    A step ahead in the race toward ultrafast imaging of single particles

    New research from Argonne National Laboratory takes a step toward the "holy grail" of imaging: the ability to see the structure of a single, free-form molecule at atomic resolution.

    The Milky Way's Satellites Help Reveal Link Between Dark Matter Halos and Galaxy Formation

    The Milky Way's Satellites Help Reveal Link Between Dark Matter Halos and Galaxy Formation

    Just like we orbit the sun and the moon orbits us, the Milky Way has satellite galaxies with their own satellites. Drawing from data on those galactic neighbors, a new model suggests the Milky Way should have an additional 100 or so very faint satellite galaxies awaiting discovery.

    Making Biofuels Cheaper by Putting Plants to Work

    Making Biofuels Cheaper by Putting Plants to Work

    One strategy to make biofuels more competitive is to make plants do some of the work themselves. Scientists can engineer plants to produce valuable chemical compounds, or bioproducts, as they grow. Then the bioproducts can be extracted from the plant and the remaining plant material can be converted into fuel. But one important part of this strategy has remained unclear -- exactly how much of a particular bioproduct would plants need to make in order to make the process economically feasible?

    Capturing 3D microstructures in real time

    Capturing 3D microstructures in real time

    Argonne researchers have invented a machine-learning based algorithm for quantitatively characterizing material microstructure in three dimensions and in real time. This algorithm applies to most structural materials of interest to industry.

    A new way to fine-tune exotic materials: Thin, stretch and clamp

    A new way to fine-tune exotic materials: Thin, stretch and clamp

    Turning a brittle oxide into a flexible membrane and stretching it on a tiny apparatus flipped it from a conducting to an insulating state and changed its magnetic properties. The technique can be used to study and design a broad range of materials for use in things like sensors and detectors.

    An innovative model of the dynamic magnetic field that surrounds Mercury

    An innovative model of the dynamic magnetic field that surrounds Mercury

    The first detailed model of the interaction between the solar wind and the magnetic field that surrounds Mercury, findings that could lead to improved understanding of the stronger field around Earth.

    Story Tips: Molding matter atom by atom and seeing inside uranium particles

    Story Tips: Molding matter atom by atom and seeing inside uranium particles

    Story Tips: Molding matter atom by atom and seeing inside uranium particles, from the Department of Energy's Oak Ridge National Laboratory

    Scientists See Energy Gap Modulations in a Cuprate Superconductor

    Scientists See Energy Gap Modulations in a Cuprate Superconductor

    Scientists studying high-Tc superconductors at the U.S. Department of Energy's Brookhaven National Laboratory have definitive evidence for the existence of a state of matter known as a pair density wave--first predicted by theorists some 50 years ago. Their results show that this phase coexists with superconductivity in a well-known bismuth-based copper-oxide superconductor.

    Uncertain Climate Future Could Disrupt Energy Systems

    Uncertain Climate Future Could Disrupt Energy Systems

    An international team of scientists has published a new study proposing an optimization methodology for designing climate-resilient energy systems and to help ensure that communities will be able to meet future energy needs given weather and climate variability. Their findings were recently published in Nature Energy.

    Argonne and CERN weigh in on the origin of heavy elements

    Argonne and CERN weigh in on the origin of heavy elements

    Nuclear physicists from Argonne National Laboratory led an international physics experiment conducted at CERN that utilizes novel techniques developed at Argonne to study the nature and origin of heavy elements in the universe.

    A new explanation for sudden collapses of heat in plasmas can help create fusion energy on Earth

    A new explanation for sudden collapses of heat in plasmas can help create fusion energy on Earth

    PPPL researchers find that jumbled magnetic fields in the core of fusion plasmas can cause the entire plasma discharge to suddenly collapse.

    New Technique Looks for Dark Matter Traces in Dark Places

    New Technique Looks for Dark Matter Traces in Dark Places

    A new study by scientists at Berkeley Lab, UC Berkeley, and the University of Michigan - published online this week in the journal Science - concludes that a possible dark matter-related explanation for a mysterious light signature in space is largely ruled out.

    Quantum Effect Triggers Unusual Material Expansion

    Quantum Effect Triggers Unusual Material Expansion

    New research conducted in part at Brookhaven Laboratory may bring a whole new class of chemical elements into a materials science balancing act for designing alloys for aviation and other applications.

    Upgrading Biomass with Selective Surface-Modified Catalysts

    Upgrading Biomass with Selective Surface-Modified Catalysts

    Loading single platinum atoms on titanium dioxide promotes the conversion of a plant derivative into a potential biofuel.

    Upconverting Nanolasers from Subwavelength Plasmons: Stability and Ultralow Powers

    Upconverting Nanolasers from Subwavelength Plasmons: Stability and Ultralow Powers

    Researchers have created miniature lasers that are stable and work continuously at room temperature. The lasers use arrays of nanopillars with nanoparticles that can absorb two photons of light and emit them as a single photon with higher energy. They could have applications in quantum technologies, imaging, and other areas.

    SLAC researcher discovers giant cavity in key tuberculosis molecule

    SLAC researcher discovers giant cavity in key tuberculosis molecule

    Researchers were looking into a protein that tuberculosis bacteria need to thrive, but when they finally solved its structure, they discovered a gigantic cavity that could help shuttle a variety of molecules into TB bacteria.

    Science Snapshots from Berkeley Lab

    Science Snapshots from Berkeley Lab

    March 2020 Science Snapshots from Berkeley Lab

    Nature-Inspired Green Energy Technology Clears Important Development Hurdle

    Nature-Inspired Green Energy Technology Clears Important Development Hurdle

    A new design has put the long-sought idea of artificial photosynthesis within reach

    An advance in molecular moviemaking reveals the subtle, complex ways a simple molecule can shimmy and fly apart

    An advance in molecular moviemaking reveals the subtle, complex ways a simple molecule can shimmy and fly apart

    Researchers observed atomic nuclei moving over distances of less than an angstrom in less than a trillionth of a second -- a level of resolution that can only be achieved with an X-ray free-electron laser.

    Artificial intelligence helps prevent disruptions in fusion devices

    Artificial intelligence helps prevent disruptions in fusion devices

    Research led by a Princeton University graduate student demonstrates that machine learning can predict and avoid damaging disruptions to fusion facilities.

    Chasing Lithium Ions on the Move in a Fast-Charging Battery

    Chasing Lithium Ions on the Move in a Fast-Charging Battery

    Atomic distortions emerging in the electrode during operation provide a "fast lane" for the transport of lithium ions.