X
  • Qinyi Fu, Francisco J. Medellin-Rodriguez, Nisha Verma, and Benjamin Ocko (from left to right) prepare to mount the membrane samples that mimic the membranes used in reverse osmosis for the measurements in the Complex Materials Scattering (CMS) beamline at the National Synchrotron Light Source II (NSLS-II).
    Brookhaven National Laboratory
    Qinyi Fu, Francisco J. Medellin-Rodriguez, Nisha Verma, and Benjamin Ocko (from left to right) prepare to mount the membrane samples that mimic the membranes used in reverse osmosis for the measurements in the Complex Materials Scattering (CMS) beamline at the National Synchrotron Light Source II (NSLS-II).
  • The sketch shows how the x-rays hit the membrane at a slight angle and scatter off the surface. They are then captured by a detector that records the so-called scattering pattern of the x-rays that is specific to the membrane's molecular structure. The top left panel shows two different molecular structures, which are also called molecular packing motifs. The results of the measurements suggest that the perpendicular motif (lower right) could be correlated with superior filtration properties.
    Brookhaven National Laboratory
    The sketch shows how the x-rays hit the membrane at a slight angle and scatter off the surface. They are then captured by a detector that records the so-called scattering pattern of the x-rays that is specific to the membrane's molecular structure. The top left panel shows two different molecular structures, which are also called molecular packing motifs. The results of the measurements suggest that the perpendicular motif (lower right) could be correlated with superior filtration properties.
Chat now!