DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2016-11-29 11:05:53
    • Article ID: 665558

    Ultrafast Imaging Reveals Existence of 'Polarons'

    New technique reveals direct experimental evidence of strong coupling between electron motion and deformations in atomic arrangements that affect the flow of current

    • Jing Tao, Junjie Li, Marcus Babzien, Lijun Wu, Weiguo Yin, Yimei zhu, Tatiana Konstantinova with the 'home-built' microscope for ultrafast electron diffraction imaging.

    • Key findings: This illustration shows how the arrangement of atoms in the crystal lattice (e.g., oxygen, shown in green) and the electron cloud shapes both shift to try to accommodate one another in a push-me, pull-you arrangement. This intermediate stage in response to the laser pulse energy kick is part of a two-step relaxation process that proves the existence of polarons.

    • Imaging atomic-scale electron-lattice interactions: A laser pulse (red beam coming from right) gives electrons in a manganese oxide a "kick" of energy while a high-energy electron beam (blue) probes the atomic structure. Circle- and rod-shaped blobs represent spherical and elongated electron clouds on the manganese atoms. The oxygen atoms (not shown) form regular and elongated octahedra around the manganese atoms. Varying the time delay between the pulse and the probe reveals time-resolved subtle shifts in atomic arrangements as the lattice responds to the kicked-up electrons.

    UPTON, NY—Many people picture electrical conductivity as the flow of charged particles (mainly electrons) without really thinking about the atomic structure of the material through which those charges are moving. But scientists who study "strongly correlated electron" materials such as high-temperature superconductors and those with strong responses to magnetism know that picture is far too simplistic. They know that the atoms play a crucial role in determining a material's properties.

    For example, electrical resistance is a manifestation of electrons scattering off the atoms. Less evident is the concept that electrons and atoms can move cooperatively to stop the flow of charge—or, in the other extreme, make electrons flow freely without resistance.

    Now, a team led by physicist Yimei Zhu at the U.S. Department of Energy's Brookhaven National Laboratory has produced definitive evidence that the movement of electrons has a direct effect on atomic arrangements, driving deformations in a material's 3D crystalline lattice in ways that can drastically alter the flow of current. Finding evidence for these strong electron-lattice interactions, known as polarons, emphasizes the need to quantify their impact on complex phenomena such as superconductivity (the ability of some materials to carry current with no energy loss) and other promising properties.

    As described in a paper just published in the Nature partner journal npj Quantum Materials, the team developed an "ultrafast electron diffraction" system—a new laser-driven imaging technique and the first of its kind in the world—to capture the subtle atomic-scale lattice distortions. The method has widespread potential application for studying other dynamic processes.

     "The technique is similar to using stroboscopic photography to reveal the trajectory of a ball," said Zhu. "Using different time delays between throwing the ball and snapping the photo, you can capture the dynamic action," he said.

    But to image dynamics at the atomic scale, you need a much faster flash and a way to set subatomic scale objects in motion.

    The machine developed by the Brookhaven team uses a laser pulse to give electrons in a sample material a "kick" of energy. At the same time, a second laser split from the first generates very quick bursts of high-energy (2.8 mega-electron-volt) electrons to probe the sample. The electrons that make up these 130-femtosecond "flashes"—each lasting just 0. 00000000000013 seconds—scatter off the sample and create diffraction patterns that reveal the positions of the atoms. By varying the time delay between the pulse and the probe, the scientists can capture the subtle shifts in atomic arrangements as the lattice responds to the "kicked-up" electrons.

    "This is similar to x-ray diffraction, but by using electrons we get a much larger signal, and the high energy of the probe electrons gives us better access to measuring the precise motion of atoms," Zhu said. Plus, his microscope can be built for a fraction of what it would cost to build an ultrafast x-ray light source. "This is a 'home-built' machine."

    Key findings

    The scientists used this technique to study the electron-lattice interactions in a manganese oxide, a material of long-standing interest because of how dramatically its conductivity can be affected by the presence of a magnetic field. They detected a telltale signature of electrons interacting with and altering the shape of the atomic lattice—namely, a two-step "relaxation" exhibited by the kicked-up electrons and their surrounding atoms.

    In a normal one-step relaxation, electrons kicked up by a burst of energy from one atomic location to another quickly adapt their "shape" to the new environment.

    "But in strongly correlated materials, the electrons are slowed down by interactions with other electrons and interactions with the lattice," said Weiguo Yin, another Brookhaven physicist working on the study. "It's like a traffic jam with lots of cars moving more slowly."

    In effect the negatively charged electrons and positively charged atomic nuclei respond to one another in a way that causes each to try to accommodate the "shape" of the other. So an elongated electron cloud, when entering a symmetrical atomic space, begins to assume a more spherical shape, while at the same time, the atoms that make up the lattice, shift positions to try to accommodate the elongated electron cloud. In the second step, this in-between, push-me, pull-you arrangement gradually relaxes to what would be expected in a one-step relaxation.

    "This two-step behavior, which we can see with our ultrafast electron diffraction, is the proof that the lattice vibrations are interacting with the electrons in a timely fashion. They are the proof that polarons exist," Yin said.

    The finding yields insight into how the lattice response helps generate the huge decrease in electrical resistance the manganites experience in a magnetic field—an effect known as colossal magnetoresistance.

    "The electron cloud shapes are linked to the magnetic attributes of the electrons," Yin explained. "When the magnetic moments of the electrons are aligned in a magnetic field, the electron cloud shape and the atomic arrangement become more symmetric and homogenous. Without the need to play the push-me, pull-you game, electric charges can flow more easily."

    This work shows that an ultrafast laser can quickly modify electronic, magnetic, and lattice dynamics in strongly correlated electron materials—an approach that could result in promising new technical applications, such as ultrafast memory or other high-speed electronic devices.

    "Our method can be used to better understand these dynamic interactions, and suggests that it will also be useful for studying other dynamic processes to discover hidden states and other exotic material behavior," said Zhu.

    Other Brookhaven Lab scientists involved in the project include Junjie Li, Xijie Wang, Pengfei Zhu, Lijun Wu, Tatiana Konstantinova, Jing Tao, John Hill, and James Misewich, in collaboration with researchers from Rutgers University and Princeton University. Brookhaven's role in the work was funded by the DOE Office of Science and by Brookhaven's Laboratory Directed Research and Development program.

    Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy.  The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

    X
    X
    X
    • Filters

    • × Clear Filters
    Fat-Based Molecules are Key to Zika Virus Infection

    Fat-Based Molecules are Key to Zika Virus Infection

    Researchers from PNNL have helped colleagues at OHSU identify lipid molecules required for Zika infection in human cells. The specific lipids involved could also be a clue to why the virus primarily infects brain tissue.

    Another Win for the Standard Model: New Study Defies Decades-Old 'Discrepancy' With High-Precision Measurement

    Another Win for the Standard Model: New Study Defies Decades-Old 'Discrepancy' With High-Precision Measurement

    A new study dives into a decades-old discrepancy from a Standard Model of particle physics pillar known as "lepton flavor universality," and provides strong evidence to resolve it.

    Influx of Electric Vehicles Accelerates Need for Grid Planning

    Influx of Electric Vehicles Accelerates Need for Grid Planning

    A new PNNL report says the western U.S. bulk power system can reliably support projected growth of up to 24 million electric vehicles through 2028, but challenges will arise as EV adoption grows beyond that threshold. This study is the most comprehensive of its kind, integrating multiple variables not evaluated before, such as growth in commercial delivery fleets and long-haul trucks, as well as large-scale and long-term EV charging scenarios and strategies.

    First results of an upgraded experiment highlight the value of lithium for the creation of fusion energy

    First results of an upgraded experiment highlight the value of lithium for the creation of fusion energy

    Initial results of the Lithium Tokamak Experiment-Beta (LTX-β) at PPPL show that the enhancements significantly improve performance of the plasma that will fuel future fusion reactors.

    Hybrid inverter integrates distributed energy resources, supports smart grid function

    Hybrid inverter integrates distributed energy resources, supports smart grid function

    Oak Ridge National Laboratory researchers have developed an intelligent power electronic inverter platform that can connect locally sited energy resources such as solar panels, energy storage and electric vehicles and smoothly interact with the utility power grid.

    Ready to Join the Fight Against COVID-19

    Ready to Join the Fight Against COVID-19

    UPTON, NY--On July 29, 2020 the U.S. Department of Energy's (DOE) Brookhaven National Laboratory opened a new cryo-electron microscopy center, the Laboratory for BioMolecular Structure (LBMS), with an initial focus on COVID-19-related research. This state-of-the-art research center for life sciences imaging offers researchers access to advanced cryo-electron microscopes (cryo-EM)--funded by NY State--for studying complex proteins, as well as the architecture of cells and tissues.

    ORNL-produced plutonium-238 to help power Perseverance on Mars

    ORNL-produced plutonium-238 to help power Perseverance on Mars

    Mars 2020 will be the first NASA mission that uses ORNL-produced plutonium-238, the first U.S.-produced Pu-238 in three decades. ORNL's Pu-238 will help power Perseverance across the Red Planet's surface.

    Solving materials problems with a quantum computer

    Solving materials problems with a quantum computer

    Scientists at Argonne and the University of Chicago have developed a method paving the way to using quantum computers to simulate realistic molecules and complex materials. They tested the method on a quantum simulator and IBM quantum computer.

    How clean water technologies could get a boost from X-ray synchrotrons

    How clean water technologies could get a boost from X-ray synchrotrons

    In a new perspective, SLAC and University of Paderborn scientists argue that research at synchrotrons could help improve water-purifying materials in ways that might not otherwise be possible.

    Computational gene study suggests new pathway for COVID-19 inflammatory response

    Computational gene study suggests new pathway for COVID-19 inflammatory response

    A team led by Dan Jacobson of the Department of Energy's Oak Ridge National Laboratory used the Summit supercomputer at ORNL to analyze genes from cells in the lung fluid of nine COVID-19 patients compared with 40 control patients.


    • Filters

    • × Clear Filters
    Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

    Magnum Venus Products licenses ORNL co-developed additive manufacturing technologies

    The Department of Energy's Oak Ridge National Laboratory has licensed two additive manufacturing-related technologies that aim to streamline and ramp up production processes to Knoxville-based Magnum Venus Products, Inc., a global manufacturer of fluid movement and product solutions for industrial applications in composites and adhesives.

    Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

    Berkeley Lab Part of Multi-Institutional Team Awarded $60M for Solar Fuels Research

    The Department of Energy has awarded $60 million to a new solar fuels initiative - called the Liquid Sunlight Alliance (LiSA) - led by Caltech in close partnership with Berkeley Lab. LiSA will build on the foundational work of the Joint Center for Artificial Photosynthesis (JCAP).

    Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

    Will Fox wins 2020 John Dawson Award for producing new insights into astrophysical shockwaves

    Profile of PPPL winner of APS Dawson Award for outstanding achievement in plasma physics research.

    Jefferson Lab ES&H Deputy Director Receives Health Physics Society Honor

    Jefferson Lab ES&H Deputy Director Receives Health Physics Society Honor

    Bob May's career-long aspiration has been to keep people from all walks of life and in different work environments safe from radiation in the workplace. Now, the deputy director of Environment, Safety and Health at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility has been honored for his dedication to the field by being named a fellow of the Health Physics Society.

    Robert Ainsworth awarded $2.5 million to improve particle beams for high-intensity experiments

    Robert Ainsworth awarded $2.5 million to improve particle beams for high-intensity experiments

    Fermilab scientist Robert Ainsworth has won a $2.5 million Department of Energy Early Career Research Award to study different ways of ensuring stability in high-intensity proton beams. By studying how certain types of beam instabilities emerge and evolve under different conditions, his team can help sharpen scientists' methods for correcting them or avoiding them to begin with.

    PNNL's Vapor Detection Technology Named GeekWire's 'Innovation of the Year'

    PNNL's Vapor Detection Technology Named GeekWire's 'Innovation of the Year'

    A PNNL-developed technology that can quickly detect explosive vapors, deadly chemicals and illicit drugs with unparalleled accuracy has been named the 2020 Innovation of the Year by GeekWire, the Seattle-based technology news company.

    Accomplished early career physicist is first recipient of fellowship that honors pioneering PPPL physicist Robert Ellis Jr.

    Accomplished early career physicist is first recipient of fellowship that honors pioneering PPPL physicist Robert Ellis Jr.

    An early career physicist with a strong background in plasma physics has been named to a new postdoctoral fellowship named for Robert Ellis Jr., a pioneering physicist at PPPL, that is aimed at diversifying the plasma physics field.

    U.S. Department of Energy to announce "Launch to the Future: Quantum Internet" at UChicago

    U.S. Department of Energy to announce "Launch to the Future: Quantum Internet" at UChicago

    On Thursday, July 23, Secretary of the U.S. Department of Energy Dan Brouillette will join government, academic, and science leaders at the University of Chicago to unveil a report outlining a blueprint for the construction of a national quantum internet, bringing the U.S. to the forefront of the global quantum race and ushering in a new era of communications.

    Department of Energy Names Three Office of Science Distinguished Scientists Fellows

    The U.S. Department of Energy (DOE) named three National Laboratory scientists as DOE Office of Science Distinguished Scientists Fellows

    U.S. Department of Energy unveils blueprint for the quantum internet at 'Launch to the Future: Quantum Internet' event

    U.S. Department of Energy unveils blueprint for the quantum internet at 'Launch to the Future: Quantum Internet' event

    The U.S. Department of Energy unveils a report that lays out a blueprint strategy for the development of a national quantum internet, bringing the United States to the forefront of the global quantum race and ushering in a new era of communications. This report provides a pathway to ensure the development of the National Quantum Initiative Act.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory





    Showing results

    0-4 Of 2215