DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2017-06-16 15:05:05
    • Article ID: 676587

    With ARM Instruments Watching, an Extensive Summer Melt in West Antarctica

    A new paper in Nature Communications demonstrates atmospheric reasons for ice loss

    • Credit: Brookhaven National Laboratory

      Number of days in January 2016 when surface melt was detected from passive microwave satellite observations. Credit: Julien Nicolas, The Ohio State University

    • Credit: Brookhaven National Laboratory

      AWARE instruments measure cloud characteristics and surface energy balance components in central West Antarctica for the first time since 1967. This photo, taken on December 22, 2015 using a fish-eye lens, displays an optical effect known as a "sun dog," caused by light interacting with atmospheric ice crystals. Credit: Colin Jenkinson, Australian Bureau of Meteorology

    One day in December of 2015, bound for a remote ice camp in the interior of Antarctica, Scripps Institution of Oceanography doctoral student Ryan Scott boarded a ski-equipped LC-130 turboprop transport plane at McMurdo Station at the south tip of Ross Island. It was austral summer and the temperature outside hovered around -4 degrees Celsius.

    Scott was part of the 2015 to 2017 ARM West Antarctic Radiation Experiment (AWARE), the most comprehensive meteorological field campaign in West Antarctica since 1957. He was stationed in the remote West Antarctic Ice Sheet (WAIS) ice camp, where scientists spent 45 days collecting first-ever surface measurements of clouds and radiation. The main AWARE site, far more heavily instrumented and researched, was at McMurdo.

    In mid-January 2016, Scott and other AWARE scientists got a bonus: a close-up view—with instruments—of an extensive summer surface melt event on the WAIS. It affected 915,000 square kilometer, an area more than twice the size of California. The temperature rose rapidly, imparting a mugginess to the air that Scott compared to stepping off a plane in Miami after a visit to wintry New York.

    The surface melt event inspired a paper that appears in the June 15, 2017, issue of Nature Communications.

    “We were very lucky,” says co-author and Ohio State University (OSU) atmospheric scientist David Bromwich, who co-wrote the 2015 AWARE science plan. “We wouldn’t have known about this [surface melt event] without instruments and scientists at the WAIS Divide.”

    Measuring surface melt intensity

    AWARE was a joint field study of the Atmospheric Radiation Measurement (ARM) Climate Research Facility, a U.S. Department of Energy scientific user facility, which supplied state-of-the-art portable instrumentation, and the National Science Foundation Division of Polar Programs, which provided logistical support critical to the deployment. Co-author Andrew Vogelmann, an atmospheric scientist at Brookhaven National Laboratory and an AWARE co-principal investigator, calls the collaborative effort “an excellent marriage between two outstanding capabilities.”

    The WAIS Divide ice camp was upslope and downwind from the surface melt event, an 1,801 meter-high vantage point just on the edge of the affected area. Scott, who spent five weeks there in a tent staked into the snow, had an unexpected front-row seat to what lead author Julien P. Nicolas (who is at OSU) calls “one of the most prominent events we’ve seen since 1978.”

    Nicolas described the 11-day warming event in January 2016 as having the second greatest melt intensity behind one recorded by satellite during the austral summer of 1991 to 1992.

    At the WAIS Divide ice camp, a smaller suite of instruments was in place compared to the main AWARE site at McMurdo. Scott monitored the weather, measured snow moisture, launched radiosondes, cleaned instruments, checked data quality, and took regular photos of snow grains—the kind that pattered against his tent like bird shot as he was trying to sleep.

    On January 10, from a 6- by 10-foot instrument shed arrayed with computers, Scott watched the temperature rise fast, from -20 Celsius to near zero, an astonishing spike in the mercury considering the camp’s high elevation and the position of the sun at the time; it was low on the horizon.

    “Once that warm air hit, it was relatively humid and muggy,” says Scott. “I knew something was up.” He soon alerted other scientists, including Scripps research physicist Dan Lubin, lead principal investigator for AWARE.

    Everyone in the AWARE campaign, of course, wanted to see and measure a melt event. But the traditional window to see such events usually passes by early January every year, says Nicolas. That made the mid-January warming in 2016, closely recorded by ARM instruments, a happy accident that came just in time. Not long after, instruments at the WAIS Divide camp were packed up and shipped out.

    “The atmospheric flow that caused [the surface melt event] passed over the ARM site at WAIS Divide,” says Bromwich. Those direct ARM measurements of the atmospheric conditions provided a clear picture of clouds over the WAIS Divide, including data on liquid water, ice phase, and mixed phase clouds.

    A robust array of ARM instruments

    Observations at the WAIS Divide on clouds, surface energy budget, and on atmospheric moisture and temperature came from a series of ARM instruments. Radiosonde balloons—the first there since 1967—were launched four times a day in the site’s 24-hour daylight, yielding vertical profiles of temperature and water vapor.

    Microwave radiometers, including a G-Band (183 GHZ) Vapor Radiometer Profiler (GVRP), estimated column water vapor and the low-liquid cloud water path of passing clouds. “ARM made special provisions to make the GVRP’s AWARE deployment possible,” says Vogelmann. “That turned out to be critically important to observe the low-cloud liquid water paths.”

    Vogelmann helped the AWARE team determine which subset of instruments to include for maximum benefit in the WAIS Divide deployment, where space was at a premium. Meanwhile, the main body of ARM instrumentation resided at McMurdo. He says the site separation is parallel to the idea of a central observation facility augmented by an extended facility on the periphery of the main realm of observation. (The two sites are 1,600 kilometers apart. WAIS Divide is open only in summer.)

    The challenge was getting everything for the Divide into one sea container, he says. The instruments also had to be versatile and robust enough to make the journey into the harsh interior of an already harsh place. (Instrument engineer for AWARE at WAIS Divide was Heath Powers from Los Alamos National Laboratory.) For observing the surface energy budget during the surface melt event, says Vogelmann, the chosen instruments “worked out incredibly well.”

    In the paper, Figure 4 demonstrates how the surface energy budget was derived. The last panel shows the surface energy gain in the first 17 days of that January. Plainly, nature had turned the burners on high from January 10 to 14, a period the paper describes as Phase 1 of the surface melt event.

    “You got this huge build-up” of net surface energy gain, says Vogelmann, and it was supported by contemporaneous satellite data.

    Phase 2 (January 15 to 21) represents the next four days, when surface energy gain started to sink back to the normal range. Such surface melt events have occurred in the past, he says, “but without ARM instruments we could have only known from satellites that something was going on. We would not have had this picture from the surface to help us understand what was really happening.”

    Interactive puzzle of ENSO and SAM

    In the Nature Communications paper, Nicolas, Bromwich, and others at OSU’s Byrd Polar and Climate Research Center used satellite data to measure the extent and duration of the melt event; to examine the atmospheric circulation that led to it; and to run model simulations of two large-scale modes of climate variability: the El Niño Southern Oscillation (ENSO), a recurring Tropical Pacific climate pattern, and the Southern Annular Mode (SAM), a westerly wind belt that during its “positive” phase contracts protectively toward Antarctica.

    The January 2016 surface melt event coincided with one of the strongest El Niño events on record. These warm phases of ENSO tend to shift warm air towards Antarctica’s temperature-vulnerable Ross Ice Shelf. On the other hand, the SAM (when in its positive phase, as it was in January 2016) often blocks the warm air like a kind of atmospheric fence. As the paper notes, understanding the roles of ENSO and SAM in such Antarctic surface melting events would provide insight into their future likelihood.

    So far, the mechanisms are not clear, though it is likely, the paper says, that a predicted future of more extreme and frequent El Niño patterns could mean more prolonged summer melt events in the WAIS.

    Grasping the ENSO-SAM interactions with the ice sheet of West Antarctica is consequential.

    “The ice sheet was gone in previous warming periods,” says Bromwich, pointing to the Earth’s last inter-glacial period about 125,000 years ago. Conditions then, he added, “were only a little warmer than today”—and yet the sea level was 6 to 9 meters higher than it is now. How much came from the WAIS is presently uncertain.

    One key point of the new paper, agreed Bromwich and Nicolas in a joint phone interview, is that scientific attention is now shifting from a traditional sense of Antarctica’s ice-melt susceptibility (warm ocean water underneath the coastal ice shelves) to a sense that it is also influenced by a warming atmosphere, which spurs surface melting.

    It’s an idea pointedly made in a 2016 Nature paper (cited in the Nature Communications article) on the continent’s contribution to past and future sea level rise.

    “There is a lot of work to be done with climate models and teleconnections,” says Bromwich, which are climate features related to one another at long distances, over thousands of kilometers. “We’ll see what these can tell us about the future.”

    Continuing momentum of science

    AWARE benefited from having instruments in the right place at the right time to observe and record such an extensive summer surface melt event. “It was an extraordinary piece of good luck,” agrees Lubin. But more broadly, the data gathered during AWARE “will have a great deal of longevity,” he says. “They are very unique, very powerful data sets.”

    Lubin and Bromwich had tried for years to propose Antarctic projects that were the investigative predecessors of AWARE and had come close to funding several times. Finally, the science stars aligned because of the ARM Mobile Facilities, says Lubin. “The timing was just right,” he says.

    The first of these portable instrumented observation platforms, available by a competitive proposal process, was launched in 2005; now there are three.

    There is momentum in southern latitudes research. This September, ARM will launch the Measurements of Radiation, Aerosols, and Clouds over the Southern Ocean (MARCUS) campaign using its second mobile facility designed with ship deployments in mind. It will unfold off the coast of Antarctica on the Australian Antarctic supply vessel Aurora Australis, in a usually pristine region tossed by epic storms, winds, and waves.

    AWARE is also likely to inspire “AWARE-like” projects for years to come, says Lubin.

    Moreover, extensive surface melt events in West Antarctica continue to happen. Scott pointed to one this past January in the Ross Sea sector.

    He is currently funded by a NASA Earth and Space Science Fellowship and is one of many scientists busy grappling with AWARE data sets. Scott is lead author on a paper cited in the Nature Communications article and has another on the way based on earlier (though less extensive) melting events he found in online satellite data from 1973 to 1978.

    Scott, slated to get his doctorate next year, would like to spend years scouring AWARE data for insights into the consequential fate of ice cover in Antarctica. Most of the measurements are from ARM instruments that had been sited at McMurdo on Ross Island, he says. “It’s the first time Antarctica has seen data like this.”

    X
    X
    X
    • Filters

    • × Clear Filters
    Not Your Average Refinery

    Not Your Average Refinery

    PNNL researchers outline how to convert stranded biomass to sustainable fuel using electrochemical reduction reactions in mini-refineries powered by renewable energy.

    Supercooled Water Is a Stable Liquid, Scientists Show for the First Time

    Supercooled Water Is a Stable Liquid, Scientists Show for the First Time

    First-ever measurements provide evidence that supercooled liquid water exists in two distinct structures that co-exist and vary in proportion dependent on temperature

    New Calculation Refines Comparison of Matter with Antimatter

    New Calculation Refines Comparison of Matter with Antimatter

    An international collaboration of theoretical physicists has published a new calculation relevant to the search for an explanation of the predominance of matter over antimatter in our universe. The new calculation gives a more accurate prediction for the likelihood with which kaons decay into a pair of electrically charged pions vs. a pair of neutral pions.

    Digging into soil organic matter

    Digging into soil organic matter

    A new study found patterns in how soil organic matter forms across a wide range of climate types. Understanding how soils break down or preserve organic matter is important because organic matter plays a central role in the kind of services soils can provide, such as whether they make good agricultural soils or if they can sequester carbon to slow climate change.

    Quirky Response to Magnetism Presents Quantum Physics Mystery

    Quirky Response to Magnetism Presents Quantum Physics Mystery

    The search is on to discover new states of matter, and possibly new ways of encoding, manipulating, and transporting information. One goal is to harness materials' quantum properties for communications that go beyond what's possible with conventional electronics. Topological insulators--materials that act mostly as insulators but carry electric current across their surface--provide some tantalizing possibilities. Scientists at Brookhaven Lab describe one such material that should be right just right for making qubits. But this material doesn't obey the rules.

    High-precision electrochemistry: The new gold standard in fuel cell catalyst development

    High-precision electrochemistry: The new gold standard in fuel cell catalyst development

    As part of an international collaboration, scientists at Argonne National Laboratory have made a pivotal discovery that could extend the lifetime of fuel cells that power electric vehicles by eliminating the dissolution of platinum catalysts.

    Scientists probe the chemistry of a single battery electrode particle both inside and out

    Scientists probe the chemistry of a single battery electrode particle both inside and out

    Cracks and chemical reactions on a battery particle's surface can sap its ability to store and release energy. Scientists probed a single charged particle the size of a red blood cell to see how interior and surface damage influence each other.

    Quantum light squeezes the noise out of microscopy signals

    Quantum light squeezes the noise out of microscopy signals

    Researchers at Oak Ridge National Laboratory used quantum optics to advance state-of-the-art microscopy and illuminate a path to detecting material properties with greater sensitivity than is possible with traditional tools.

    Exploring Oxidative Pathways in Nuclear Fuel

    Exploring Oxidative Pathways in Nuclear Fuel

    An international team used PNNL microscopy to answer questions about how uranium dioxide--used in nuclear power plants--might behave in long-term storage.

    Researchers find unexpected electrical current that could stabilize fusion reactions

    Researchers find unexpected electrical current that could stabilize fusion reactions

    PPPL scientists have found that electrical currents can form in ways not known before. The novel findings could give researchers greater ability to bring the fusion energy that drives the sun and stars to Earth.


    • Filters

    • × Clear Filters
    Key Partners Mark Launch of Electron-Ion Collider Project

    Key Partners Mark Launch of Electron-Ion Collider Project

    U.S. Department of Energy (DOE) Undersecretary for Science Paul Dabbar, leaders from DOE's Brookhaven National Laboratory (Brookhaven Lab) and Thomas Jefferson National Accelerator Facility (Jefferson Lab), and elected officials from New York State and Virginia today commemorated the start of the Electron-Ion Collider project.

    Fermilab scientist Vladimir Shiltsev elected to Academia Europaea

    Fermilab scientist Vladimir Shiltsev elected to Academia Europaea

    Widely recognized for his work in accelerator beam physics, Shiltsev is one of 361 individuals elected to Academia Europaea, which promotes a wider appreciation of the value of European scholarship and research.

    PPPL physicist Hutch Neilson receives award for decades of leadership on national and international fusion experiments

    PPPL physicist Hutch Neilson receives award for decades of leadership on national and international fusion experiments

    Hutch Neilson, a physicist at PPPL who is head of ITER Projects, has received the 2020 Institute of Electrical and Electronics Engineers' (IEEE) Nuclear & Plasma Sciences Society (NPSS) Merit Award for decades of achievements, including collaborations with fusion experiments around the world from the Wendelstein 7-X (W7-X) stellarator in Germany to the international ITER experiment in the south of France.

    Virtual internships for physics students present challenges, build community

    Virtual internships for physics students present challenges, build community

    Summer is usually the time when student interns flock to PPPL to learn about fusion and plasma physics at a national laboratory. But because of the coronavirus pandemic, this year's students participated virtually from their homes around the country.

    Argonne cuts ribbon on expanded Materials Engineering Research Facility to enhance nation's future manufacturing competitiveness

    Argonne cuts ribbon on expanded Materials Engineering Research Facility to enhance nation's future manufacturing competitiveness

    Leaders from DOE and Argonne cut the ribbon on a new era of manufacturing -- science and technology that will accelerate commercialization of complex materials and chemicals critically important to U.S. competitiveness.

    DOE provides $21 million to advance diagnostics on the flagship fusion facility at PPPL

    DOE provides $21 million to advance diagnostics on the flagship fusion facility at PPPL

    New funding will upgrade key diagnostics on the National Spherical Tokamak Experiment-Upgrade, the flagship facility at PPPL.

    Lead Lab Selected for Next-Generation Cosmic Microwave Background Experiment

    Lead Lab Selected for Next-Generation Cosmic Microwave Background Experiment

    The largest collaborative undertaking yet to explore the relic light emitted by the infant universe has taken a step forward with the U.S. DOE's selection of Berkeley Lab to lead the partnership of national labs, universities, and other institutions that are joined in the effort to carry out the DOE roles and responsibilities.

    Jonathan Jarvis wins prestigious DOE award for development of next-generation particle beam cooling and control

    Jonathan Jarvis wins prestigious DOE award for development of next-generation particle beam cooling and control

    This award, totaling $2.5 million, will fund the development of a faster particle beam cooling method as well as the implementation of machine learning advancements to optimally control the system.

    Fermilab to lead $115 million National Quantum Information Science Research Center to build revolutionary quantum computer with Rigetti Computing, Northwestern University, Ames Laboratory, NASA, INFN and additional partners

    Fermilab to lead $115 million National Quantum Information Science Research Center to build revolutionary quantum computer with Rigetti Computing, Northwestern University, Ames Laboratory, NASA, INFN and additional partners

    Fermilab has been selected to lead one of five national centers to bring about transformational advances in quantum information science as a part of the U.S. National Quantum Initiative. The initiative provides the new Superconducting Quantum Materials and Systems Center -- based at Fermilab and comprising 20 partner institutions -- $115 million over five years with the goal of building and deploying a beyond-state-of-the-art quantum computer based on superconducting technologies. The center will also develop new quantum sensors, which could lead to the discovery of the nature of dark matter and other elusive subatomic particles.

    SLAC and Stanford join Q-NEXT national quantum center

    SLAC and Stanford join Q-NEXT national quantum center

    Q-NEXT will bring together nearly 100 world-class researchers from three national laboratories, 10 universities and 10 leading U.S. technology companies with the single goal of developing the science and technology to control and distribute quantum information. These activities, along with a focus on rapid commercialization of new technologies, will support the emerging "quantum economy" and ensure that the U.S. remains at the forefront in this rapidly advancing field.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Virtual internships for physics students present challenges, build community
    Tuesday September 15, 2020, 04:35 PM

    Virtual internships for physics students present challenges, build community

    Princeton Plasma Physics Laboratory

    Blocking the COVID-19 Virus's Exit Strategy
    Monday August 31, 2020, 04:05 PM

    Blocking the COVID-19 Virus's Exit Strategy

    Brookhaven National Laboratory

    Summer Students Tackle COVID-19
    Monday August 31, 2020, 03:35 PM

    Summer Students Tackle COVID-19

    Brookhaven National Laboratory

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory





    Showing results

    0-4 Of 2215