DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2017-08-24 13:05:11
    • Article ID: 680037

    Big Bang - The Movie

    • Credit: Lindsey Bleem, Nan Li, and the HACC team/Argonne National Laboratory; Mike Gladders/University of Chicago

      A simulated sky image of galaxies produced by running Argonne-developed high-performance computing codes and then running a galaxy formation model. Argonne has collaborated with the University of Illinois, teaming up two supercomputers to perform simulation and data analysis of extremely large-scale, computationally intensive models of the universe.

    • Credit: Joe Insley and Silvio Rizzi/Argonne National Laboratory.

      Dark matter halo distribution from the Outer Rim simulation carried out on 32 racks of Mira with the Hardware/Hybrid Accelerated Cosmology Code (HACC). Shown is the full simulation volume with halos above a certain mass cut. The halos are colored by mass, the heavier halos are shown in red. These halos host the galaxies that we observe with large telescopes.

    If you have ever had to wait those agonizing minutes in front of a computer for a movie or large file to load, you’ll likely sympathize with the plight of cosmologists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory. But instead of watching TV dramas, they are trying to transfer, as fast and as accurately as possible, the huge amounts of data that make up movies of the universe – computationally demanding and highly intricate simulations of how our cosmos evolved after the Big Bang.

    In a new approach to enable scientific breakthroughs, researchers linked together supercomputers at the Argonne Leadership Computing Facility (ALCF) and at the National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign (UI). This link enabled scientists to transfer massive amounts of data and to run two different types of demanding computations in a coordinated fashion – referred to technically as a workflow.

    “We talk about building the ‘universe in the lab,’ and simulations are a huge component of that.” - Katrin Heitmann, Argonne cosmologist

    What distinguishes the new work from typical workflows is the scale of the computation, the associated data generation and transfer and the scale and complexity of the final analysis. Researchers also tapped the unique capabilities of each supercomputer: They performed cosmological simulations on the ALCF’s Mira supercomputer, and then sent huge quantities of data to UI’s Blue Waters, which is better suited to perform the required data analysis tasks because of its processing power and memory balance.

    For cosmology, observations of the sky and computational simulations go hand in hand, as each informs the other. Cosmological surveys are becoming ever more complex as telescopes reach deeper into space and time, mapping out the distributions of galaxies at farther and farther distances, at earlier epochs of the evolution of the universe.

    The very nature of cosmology precludes carrying out controlled lab experiments, so scientists rely instead on simulations to provide a unique way to create a virtual cosmological laboratory. “The simulations that we run are a backbone for the different kinds of science that can be done experimentally, such as the large-scale experiments at different telescope facilities around the world,” said Argonne cosmologist Katrin Heitmann. “We talk about building the ‘universe in the lab,’ and simulations are a huge component of that.”

    Not just any computer is up to the immense challenge of generating and dealing with datasets that can exceed many petabytes a day, according to Heitmann. “You really need high-performance supercomputers that are capable of not only capturing the dynamics of trillions of different particles, but also doing exhaustive analysis on the simulated data,” she said. “And sometimes, it’s advantageous to run the simulation and do the analysis on different machines.”

    Typically, cosmological simulations can only output a fraction of the frames of the computational movie as it is running because of data storage restrictions. In this case, Argonne sent every data frame to NCSA as soon it was generated, allowing Heitmann and her team to greatly reduce the storage demands on the ALCF file system. “You want to keep as much data around as possible,” Heitmann said. “In order to do that, you need a whole computational ecosystem to come together: the fast data transfer, having a good place to ultimately store that data and being able to automate the whole process.”

    In particular, Argonne transferred the data produced immediately to Blue Waters for analysis. The first challenge was to set up the transfer to sustain the bandwidth of one petabyte per day.

    Once Blue Waters performed the first pass of data analysis, it reduced the raw data – with high fidelity – into a manageable size. At that point, researchers sent the data to a distributed repository at Argonne, the Oak Ridge Leadership Computing Facility at Oak Ridge National Laboratory and the National Energy Research Scientific Computing Center (NERSC) at Lawrence Berkeley National Laboratory. Cosmologists can access and further analyze the data through a system built by researchers in Argonne’s Mathematics and Computer Science Division in collaboration with Argonne’s High Energy Physics Division.

    Argonne and University of Illinois built one such central repository on the Supercomputing ’16 conference exhibition floor in November 2016, with memory units supplied by DDN Storage. The data moved over 1,400 miles to the conference’s SciNet network. The link between the computers used high-speed networking through the Department of Energy’s Energy Science Network (ESnet). Researchers sought, in part, to take full advantage of the fast SciNET infrastructure to do real science; typically it is used for demonstrations of technology rather than solving real scientific problems.

    “External data movement at high speeds significantly impacts a supercomputer’s performance,” said Brandon George, systems engineer at DDN Storage. “Our solution addresses that issue by building a self-contained data transfer node with its own high-performance storage that takes in a supercomputer’s results and the responsibility for subsequent data transfers of said results, leaving supercomputer resources free to do their work more efficiently.”

    The full experiment ran successfully for 24 hours without interruption and led to a valuable new cosmological data set that Heitmann and other researchers started to analyze on the SC16 show floor.

    Argonne senior computer scientist Franck Cappello, who led the effort, likened the software workflow that the team developed to accomplish these goals to an orchestra. In this “orchestra,” Cappello said, the software connects individual sections, or computational resources, to make a richer, more complex sound.

    He added that his collaborators hope to improve the performance of the software to make the production and analysis of extreme-scale scientific data more accessible. “The SWIFT workflow environment and the Globus file transfer service were critical technologies to provide the effective and reliable orchestration and the communication performance that were required by the experiment,” Cappello said.

    “The idea is to have data centers like we have for the commercial cloud. They will hold scientific data and will allow many more people to access and analyze this data, and develop a better understanding of what they’re investigating,” said Cappello, who also holds an affiliate position at NCSA and serves as director of the international Joint Laboratory on Extreme Scale Computing, based in Illinois. “In this case, the focus was cosmology and the universe. But this approach can aid scientists in other fields in reaching their data just as well.”

    Argonne computer scientist Rajkumar Kettimuthu and David Wheeler, lead network engineer at NCSA, were instrumental in establishing the configuration that actually reached this performance. Maxine Brown from University of Illinois provided the Sage environment to display the analysis result at extreme resolution. Justin Wozniak from Argonne developed the whole workflow environment using SWIFT to orchestrate and perform all operations.

    The Argonne Leadership Computing Facility, the Oak Ridge Leadership Computing Facility, the Energy Science Network and the National Energy Research Scientific Computing Center are DOE Office of Science User Facilities. Blue Waters is the largest leadership-class supercomputer funded by the National Science Foundation. Part of this work was funded by DOE’s Office of Science.

    The National Center for Supercomputing Applications (NCSA) at the University of Illinois at Urbana-Champaign provides supercomputing and advanced digital resources for the nation’s science enterprise. At NCSA, University of Illinois faculty, staff, students, and collaborators from around the globe use advanced digital resources to address research grand challenges for the benefit of science and society. NCSA has been advancing one third of the Fortune 50 for more than 30 years by bringing industry, researchers, and students together to solve grand challenges at rapid speed and scale.

    The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2016, its budget is $7.5 billion. NSF funds reach all 50 states through grants to nearly 2,000 colleges, universities and other institutions. Each year, NSF receives more than 48,000 competitive proposals for funding and makes about 12,000 new funding awards. NSF also awards about $626 million in professional and service contracts yearly.

    Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

    The U.S. Department of Energy's Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

    X
    X
    X
    • Filters

    • × Clear Filters

    New simulations confirm efficiency of waste-removal process in plasma device

    PPPL scientists have found evidence suggesting that a process could remove the unwanted ash produced during fusion reactions and make the fusion processes more efficient within a type of fusion facility known as a field-reversed configuration device.

    How Animals Use Their Tails to Swish and Swat Away Insects

    A new study shows how animals use their tails to keep mosquitoes at bay by combining a swish that blows away most of the biting bugs and a swat that kills the ones that get through.

    Missing gamma-ray blobs shed new light on dark matter, cosmic magnetism

    Scientists, including researchers from the Department of Energy's SLAC National Accelerator Laboratory, have compiled the most detailed catalog of such blobs using eight years of data collected with the Large Area Telescope (LAT) on NASA's Fermi Gamma-Ray Space Telescope. The blobs, including 19 gamma-ray sources that weren't known to be extended before, provide crucial information on how stars are born, how they die, and how galaxies spew out matter trillions of miles into space.

    Applying Auto Industry's Fuel-Efficiency Standards to Agriculture Could Net Billions in Corn Sector, Researchers Conclude

    Adopting benchmarks similar to the fuel-efficiency standards used by the auto industry in the production of fertilizer could yield $5-8 billion in economic benefits for the U.S. corn sector alone, researchers have concluded in a new analysis.

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    A paper published in Nature Communications by Sufei Shi, assistant professor of chemical and biological engineering at Rensselaer, increases our understanding of how light interacts with atomically thin semiconductors and creates unique excitonic complex particles, multiple electrons, and holes strongly bound together.

    Next-Gen Ultrafast Optical Fiber-Based Electron Gun to Reveal Atomic Motions During Transition State

    A new method enables researchers to directly observe and capture atomic motions at surfaces and interfaces in real time.

    Intense Microwave Pulse Ionizes Its Own Channel Through Plasma

    Researchers experimentally observed the ionization-induced channeling of an intense microwave beam propagating through a neutral gas (>103 Pa).

    Ancient Pigment Can Boost Energy Efficiency

    Egyptian blue, derived from calcium copper silicate, was routinely used on ancient depictions of gods and royalty. Previous studies have shown that when Egyptian blue absorbs visible light, it then emits light in the near-infrared range. Now a team led by researchers at Lawrence Berkeley National Laboratory has confirmed the pigment's fluorescence can be 10 times stronger than previously thought.

    Expanding Fungal Diversity, One Cell at a Time

    Reported October 8, 2018, in Nature Microbiology, a team led by U.S. Department of Energy Joint Genome Institute researchers developed a pipeline to generate genomes from single cells of uncultivated fungi. The approach was tested on several uncultivated species representing early diverging fungi.

    Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator

    Optical frequency combs can enable ultrafast processes in physics, biology, and chemistry, as well as improve communication and navigation, medical testing, and security. Columbia Engineers have built a Kerr frequency comb generator that, for the first time, integrates the laser with the microresonator, significantly shrinking the system's size and power requirements. They no longer need to connect separate devices using fiber--they can now integrate it all on compact and energy efficient photonic chips.


    • Filters

    • × Clear Filters

    Prototype Solar Energy, Battery Systems to Fuel Commercialization

    Designing, building and testing prototype systems that show how renewable energy can power devices, such as a weather and soil sensor station, can help bridge the gap between basic science research and commercialization.

    Argonne to Advance High Performance Computing in Manufacturing

    Argonne awarded funding to partner with Industry to advance the use of high performance computing in manufacturing.

    "Invisible Glass" Wins 2018 Create the Future Design Contest Grand Prize

    Scientists from the Center for Functional Nanomaterials developed a technique for making nonreflecting glass, silicon, and plastic surfaces.

    Missouri S&T researchers win multimillion dollar grant to build fast-charging stations for electric cars

    Researchers from Missouri S&T and three private companies will combine their expertise to create charging stations for electric vehicles that could charge a car in less than 10 minutes - matching the time it takes to fill up a conventional vehicle with gasoline."The big problem with electric vehicles is range, and it's not so much range as range anxiety.

    Making batteries store more energy, last longer

    A new solid polymer electrolyte may help make cell phone batteries store more energy and last longer.

    Three Brookhaven Lab Scientists Named Fellows of American Physical Society

    The American Physical Society (APS), the world's largest physics organization, has elected three scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory as 2018 APS fellows.

    Southern Research first to win accreditation under ISO 14034

    Southern Research has become the first organization in the United States to earn accreditation under ISO 14034, a new international standard for evaluating and verifying environmental technologies that was recently adopted by the American National Standards Institute.

    Kawtar Hafidi to head Physical Sciences and Engineering directorate at Argonne

    Physicist Kawtar Hafidi has been appointed Associate Laboratory Director, Physical Sciences and Engineering at the U.S. Department of Energy's (DOE) Argonne National Laboratory.

    Argonne researchers honored by Energy Secretary's awards program

    A select group of researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory was recently recognized for their contributions to infrastructure security and nuclear nonproliferation at the Secretary's Honor Awards ceremony in Washington, D.C., on August 29.

    PPPL's Sam Cohen earns award at meeting of U.S. government-funded laboratories hosted by PPPL

    PPPL physicist Sam Cohen and a local company win a Federal Laboratory Consortium award for a rocket propulsion technology.


    • Filters

    • × Clear Filters

    How to Make Soot and Stardust

    Scientists unlock mystery that could help reduce emissions of fine particles from combustion engines and other sources.

    Breaking the Symmetry Between Fundamental Forces

    Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

    Water Plays Unexpected Role in Forming Minerals

    Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

    Heavy Particles Get Caught Up in the Flow

    First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

    Seeing Between the Atoms

    New detector enables electron microscope imaging at record-breaking resolution.

    Scaling Up Single-Crystal Graphene

    New method can make films of atomically thin carbon that are over a foot long.

    Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

    U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

    New Electron Glasses Sharpen Our View of Atomic-Scale Features

    A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

    Getting an Up-Close, 3-D View of Gold Nanostars

    Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

    Small, Short-Lived Drops of Early Universe Matter

    Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.


    Spotlight

    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory

    Tuesday March 28, 2017, 12:05 PM

    Champions in Science: Profile of Jenica Jacobi

    Department of Energy, Office of Science

    Friday March 24, 2017, 10:40 AM

    Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

    Brookhaven National Laboratory

    Wednesday February 15, 2017, 04:05 PM

    Middle Schoolers Test Their Knowledge at Science Bowl Competition

    Argonne National Laboratory





    Showing results

    0-4 Of 2215