Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-10-03 09:05:38
  • Article ID: 682137

New Efficient Catalyst for Key Step in Artificial Photosynthesis

Process sets free protons and electrons that can be used to make fuels

  • Credit: Brookhaven National Laboratory

    Research team leader Javier Concepcion (standing, left) with Yan Xie, David Shaffer, and David Szalda

  • Credit: Brookhaven National Laboratory

    David Shaffer injects the catalyst into the reaction solution as Javier Concepcion looks on.

  • Credit: Brookhaven National Laboratory

    The new catalyst has a ruthenium (Ru) atom at its core, a "pendant" phosphonate group to act as a base that accepts protons (H+) from water, and a more flexible, or "labile," carboxylate group that facilitates the interaction of the catalyst with water.

UPTON, NY—Chemists at the U.S. Department of Energy’s Brookhaven National Laboratory have designed a new catalyst that speeds up the rate of a key step in “artificial photosynthesis”—an effort to mimic how plants, algae, and some bacteria harness sunlight to convert water and carbon dioxide into energy-rich fuels. This step—called water oxidation—releases protons and electrons from water molecules, producing oxygen as a byproduct.

This “single-site” catalyst—meaning the entire reaction sequence takes place on a single catalytic site of one molecule—is the first to match the efficiency of the catalytic sites that drive this reaction in nature. The single-site design and high efficiency greatly improve the potential for making efficient solar-to-fuel conversion devices.

“The end goal is to break out those molecular building blocks—the protons and electrons—to make fuels such as hydrogen,” said David Shaffer, a Brookhaven research associate and lead author on a paper describing the work in the Journal of the American Chemical Society. “The more efficient the water oxidation cycle is, the more energy we can store.”

But breaking apart water molecules isn’t easy.

“Water is very stable,” said Brookhaven chemist Javier Concepcion, who led the research team. “Water can undergo many boiling/condensing cycles and it stays as H2O. To get the protons and electrons out, we need to make the water molecules react with each other.”

The catalyst acts as a chemical handler, shuffling around the water molecules’ assets—electrons, hydrogen ions (protons), and oxygen atoms—to get the reaction to happen.

The new catalyst design builds on one the group developed last year, led by graduate student Yan Xie, which was also a single-site catalyst, with all the components needed for the reaction on a single molecule. This approach is attractive because the scientists can optimize how the various parts are arranged so that reacting molecules come together in just the right way. Such catalysts don’t depend on the free diffusion of molecules in a solution to achieve reactions, so they tend to continue functioning even when fixed to a surface, as they would be in real-world devices.

“We used computer modeling to study the reactions at the theoretical level to help us design our molecules,” Concepcion said. “From the calculations we have an idea of what will work or not, which saves time before we get into the lab.”

In both Xie’s design and the new improvement, there’s a metal at the core of the molecule, surrounded by other components the scientists can choose to give the catalyst particular properties. The reaction starts by oxidizing the metal, which pulls electrons away from the oxygen on a water molecule. That leaves behind a “positively charged,” or “activated,” oxygen and two positively charged hydrogens (protons).

“Taking electrons away makes the protons easier to release. But you need those protons to go somewhere. And it’s more efficient if you remove the electrons and protons at the same time to prevent the build-up of excess charges,” Concepcion said. “So Xie added phosphonate groups as ligands on the metal to act as a base that would accept those protons,” he explained. Those phosphonate groups also made it easier to oxidize the metal to remove the electrons in the first place.

But there was still a problem. In order to activate the H2O molecule, you first need it to bind to the metal atom at the center of the catalyst.

In the first design, the phosphonate groups were so strongly bound to the metal that they were preventing the water molecule from binding to the catalyst early enough to keep the process running smoothly. That slowed the catalytic cycle down.

So the team made a substitution. They kept one phosphonate group to act as the base, but swapped out the other for a less-tightly-bound carboxylate.

“The carboxylate group can more easily adjust its coordination to the metal center to allow the water molecule to come in and react at an earlier stage,” Shaffer said.

“When we are trying to design better catalysts, we first try to figure out what is the slowest step. Then we redesign the catalyst to make that step faster,” he said. “Yan’s work made one step faster, and that made one of the other steps end up being the slowest step. So in the current work we accelerated that second step while keeping the first one fast.”

The improvement transformed a catalyst that created two or three oxygen molecules per second to one that produces more than 100 per second—with a corresponding increase in the production of protons and electrons that can be used to create hydrogen fuel.

“That’s a rate that is comparable to the rate of this reaction in natural photosynthesis, per catalytic site,” Concepcion said. “The natural photosynthesis catalyst has four metal centers and ours only has one,” he explained. “But the natural system is very complex with thousands and thousands of atoms. It would be extremely hard to replicate something like that in the lab. This is a single molecule and it does the same function as that very complex system.”

The next step is to test the new catalyst in devices incorporating electrodes and other components for converting the protons and electrons to hydrogen fuel—and then later, with light-absorbing compounds to provide energy to drive the whole reaction.

“We have now systems that are working quite well, so we are very hopeful,” Concepcion said.

This work was supported by the DOE Office of Science. 

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

X
X
X
  • Filters

  • × Clear Filters

Taming 'Wild' Electrons in Graphene

Graphene - a one-atom-thick layer of the stuff in pencils - is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can't be stopped. Until now, that is. Scientists at Rutgers University-New Brunswick have learned how to tame the unruly electrons in graphene, paving the way for the ultra-fast transport of electrons with low loss of energy in novel systems. Their study was published online in Nature Nanotechnology.

On-Demand 3-D Printing of Tiny Magic Wands

Direct writing of pure-metal structures may advance novel light sources, sensors and information storage technologies.

Heavy Quarks Probe the Early Universe

New studies of behaviors of particles containing heavy quarks shed light into what the early universe looked like in its first microseconds.

Cool Roofs Have Water Saving Benefits Too

The energy and climate benefits of cool roofs have been well established: By reflecting rather than absorbing the sun's energy, light-colored roofs keep buildings, cities, and even the entire planet cooler. Now a new study by the Department of Energy's Lawrence Berkeley National Laboratory has found that cool roofs can also save water by reducing how much is needed for urban irrigation.

The Blob That Ate the Tokamak: Physicists Gain Understanding of How Bubbles at the Edge of Plasmas Can Drain Heat and Reduce Fusion Reaction Efficiency

Scientists at PPPL have completed new simulations that could provide insight into how blobs at the plasma edge behave. The simulations, produced by a code called XGC1 developed by a national team based at PPPL, performed kinetic simulations of two different regions of the plasma edge simultaneously.

Scientists Solve a Magnesium Mystery in Rechargeable Battery Performance

A Berkeley Lab-led research team has discovered a surprising set of chemical reactions involving magnesium that degrade battery performance even before the battery can be charged up. The findings could steer the design of next-gen batteries.

Extreme Light Trapping

Shawn-Yu Lin, professor of physics, applied physics, and astronomy at Rensselaer Polytechnic Institute, has built a nanostructure whose crystal lattice bends light as it enters the material and directs it in a path parallel to the surface, known as "parallel to interface refraction."

Researchers Customize Catalysts to Boost Product Yields, Decrease Chemical Separation Costs

For some crystalline catalysts, what you see on the surface is not always what you get in the bulk, according to two studies led by the Department of Energy's Oak Ridge National Laboratory.

Innovative Design Using Loops of Liquid Metal Can Improve Future Fusion Power Plants, Scientists Say

Article describes proposed design for production of steady-state plasma in future fusion power plants.

Scientists Create Most Powerful Micro-Scale Bio-Solar Cell Yet

Researchers at Binghamton University, State University of New York have created a micro-scale biological solar cell that generates a higher power density for longer than any existing cell of its kind.


  • Filters

  • × Clear Filters

Two ORNL-Led Research Teams Receive $10.5 Million to Advance Quantum Computing for Scientific Applications

DOE's Office of Science has awarded two research teams, each headed by a member of ORNL's Quantum Information Science Group, more than $10 million over 5 years to both assess the feasibility of quantum architectures in addressing big science problems and to develop algorithms capable of harnessing the massive power predicted of quantum computing systems. The two projects are intended to work in concert to ensure synergy across DOE's quantum computing research spectrum and maximize mutual benefits.

Department of Energy Awards Flow Into Argonne

DOE Secretary Rick Perry awarded Argonne with nearly $4.7 million in projects as part of the DOE's Office of Technology Transition's Technology Commercialization Fund (TCF) in September.

NIH Awards $6.5 Million to Berkeley Lab for Augmenting Structural Biology Research Experience

The NIH has awarded $6.5 million to Berkeley Lab to integrate existing synchrotron structural biology resources to better serve researchers. The grant will establish a center based at the Lab's Advanced Light Source (ALS) called ALS-ENABLE that will guide users through the most appropriate routes for answering their specific biological questions.

LIGO Announces Detection of Gravitational Waves From Colliding Neutron Stars

The U.S.-based Laser Interferometer Gravitational-Wave Observatory and the Virgo detector in Italy announced on Oct. 16 that all three of their detectors had picked up the ripples, or gravitational waves, from two neutron stars that collided 130 million years ago. Among other discoveries, the detection allowed scientists to use gravitational waves to directly calculate the rate at which the universe is expanding.

WVU Energy Conference to Address State's Economic Opportunities

West Virginia University will look at the state's emerging energy economy through industry experts, public policy organizations, environmental groups and academic institutions at the sixth annual National Energy Conference Oct. 20.

Exploring the Exotic World of Quarks and Gluons at the Dawn of the Exascale

As nuclear physicists delve ever deeper into the heart of matter, they require the tools to reveal the next layer of nature's secrets. Nowhere is that more true than in computational nuclear physics. A new research effort led by theorists at DOE's Thomas Jefferson National Accelerator Facility (Jefferson Lab) is now preparing for the next big leap forward in their studies thanks to funding under the 2017 SciDAC Awards for Computational Nuclear Physics.

Matthew Latimer Receives 2017 Lytle Award

A staff member at the Department of Energy's SLAC National Acceleratory Laboratory, Matthew Latimer is in charge of seven spectroscopy beamlines at SSRL. He was recently selected for the 2017 Farrel W. Lytle Award, established by the SSRL Users' Organization Executive Committee. The award promotes accomplishments in synchrotron science and supports collaboration among visiting scientists and staff who conduct research at SSRL.

Jefferson Lab Completes 12 GeV Upgrade

Nuclear physicists are now poised to embark on a new journey of discovery into the fundamental building blocks of the nucleus of the atom. The completion of the 12 GeV Upgrade Project of the Continuous Electron Beam Accelerator Facility (CEBAF) at the Department of Energy's Thomas Jefferson National Accelerator Facility (Jefferson Lab) heralds this new era to image nuclei at their deepest level.

Sunderrajan to Lead Science and Technology Partnerships and Outreach Directorate

Suresh Sunderrajan has been named the associate laboratory director (ALD) for the Science and Technology Partnerships and Outreach (STPO) Directorate at the U.S. Department of Energy's Argonne National Laboratory.

Career Awards Advance Research for Jefferson Lab Researchers

Two researchers affiliated with the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility have received 2017 Early Career Research Program awards from the DOE's Office of Science.


  • Filters

  • × Clear Filters

On-Demand 3-D Printing of Tiny Magic Wands

Direct writing of pure-metal structures may advance novel light sources, sensors and information storage technologies.

Heavy Quarks Probe the Early Universe

New studies of behaviors of particles containing heavy quarks shed light into what the early universe looked like in its first microseconds.

Discovering the Genetic Timekeepers in Bioenergy Crops

A new class of plant-specific genes required for flowering control in temperate grasses is found.

New Technology Illuminates Microbial Dark Matter

Demonstrating the microfluidic-based, mini-metagenomics approach on samples from hot springs shows how scientists can delve into microbes that can't be cultivated in a laboratory.

Tiny Green Algae Reveal Large Genomic Variation

First complete picture of genetic variations in a natural algal population could help explain how environmental changes affect global carbon cycles.

A Complex Little Alga that Lives by the Sea

The genetic material of Porphyra umbilicalis reveals the mechanisms by which it thrives in the stressful intertidal zone at the edge of the ocean.

Precise Radioactivity Measurements: A Controversy Settled

Simultaneous measurements of x-rays and gamma rays emitted in radioactive nuclear decays show that the vacancy left by an electron's departure, not the atomic structure, influences whether gamma rays are released.

OLYMPUS Experiment Sheds Light on Inner Workings of Protons

Seven-year study explains how packets of light are exchanged when protons meet electrons.

Explorations of the Universal Glue

The newly upgraded CEBAF Accelerator opens door to strong force studies.

Understanding the Rice Genome for Bioenergy Research

Genome-wide rice studies yield first major, large-scale collection of mutations for grass model crops, vital to boosting biofuel production.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215