Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-10-12 12:00:58
  • Article ID: 682810

International Team Reconstructs Nanoscale Virus Features from Correlations of Scattered X-rays

Team uses Berkeley Lab CAMERA's M-TIP algorithm to enable new X-ray science

  • Credit: Photo Credit: Marilyn Chung, Berkeley Lab

    CAMERA members (from left) Peter Zwart, Jeff Donatelli and Kanupriya Pande, co- authors of a paper describing how the group’s M-TIP algorithm determined 3D virus structures from single-particle diffraction data. Donatelli holds a 3D-printed model of one of the viruses reconstructed by M-TIP.

As part of an international research team, Jeff Donatelli, Peter Zwart and Kanupriya Pande of the Center for Advanced Mathematics for Energy Research Applications (CAMERA) at Lawrence Berkeley National Laboratory (Berkeley Lab) contributed key algorithms which helped achieve a goal first proposed more than 40 years ago – using angular correlations of X-ray snapshots from non-crystalline molecules to determine the 3D structure of important biological objects. This technique has the potential to allow scientists to shed light on biological structure and dynamics that were previously impossible to observe with traditional X-ray methods. 

The breakthrough resulted from a single-particle diffraction experiment conducted at the Department of Energy’s (DOE’s) Linac Coherent Light Source (LCLS) by the Single-Particle Initiative organized by the SLAC National Accelerator Laboratory. As part of this initiative, the CAMERA team combined efforts with Ruslan Kurta, a physicist at the European XFEL (X-ray free electron laser) facility in Germany, to analyze angular correlations from the experimental data and use CAMERA’s multi-tiered iterative phasing (M-TIP) algorithm to perform the first successful 3D virus reconstructions from experimental correlations. The results were described in a paper published Oct. 12 in Physical Review Letters.

“For the past 40 years, this was considered a problem that could not be solved,” said Peter Zwart, co-author on the paper and a physical bioscientist who is a member of CAMERA based out of the Molecular Biophysics and Integrated Imaging Division at Berkeley Lab. “But it turns out that the mathematical tools that we developed are able to leverage extra information hidden in the problem that had been previously overlooked. It is gratifying to see our theoretical approach lead to a practical tool.”

New Research Opportunities Enabled by XFELs

For much of the last century, the go-to technique for determining high-resolution molecular structure has been X-ray crystallography, where the sample of interest is arranged into a large periodic lattice and exposed to X-rays which scatter off and form diffraction patterns that are collected on a detector. Even though crystallography has been successful at determining many high-resolution structures, it is challenging to use this technique to study structures which are not susceptible to crystallization or structural changes that do not naturally occur within a crystal. 

The creation of XFEL facilities, including the Linac Coherent Light Source (LCLS) and the European X-FEL, have created opportunities for conducting new experiments which can overcome the limitations of traditional crystallography. In particular, XFEL beams are several orders of magnitude brighter than and have much shorter pulse lengths than traditional X-ray light sources, which allow them to collect measurable diffraction signal from smaller uncrystallized samples and also study fast dynamics. Single-particle diffraction is one such emerging experimental technique enabled by XFELS, where one collects diffraction images from single molecules instead of crystals. These single-particle techniques can be used to study molecular structure and dynamics that have been difficult to study with traditional imaging techniques. 

Overcoming Limitations in Single-Particle Imaging via Angular Correlations

One major challenge of single-particle imaging is that of orientation determination. “In a single-particle experiment, you don’t have control over rotation of the particles as they are hit by the X-ray beam, so each snapshot from a successful hit will contain information about the sample from a different orientation,” said co-author Jeff Donatelli, an applied mathematician in CAMERA who developed many of the algorithms in the new framework. “Most approaches to single-particle analysis have so far been based on trying to determine these particle orientations from the images; however, the best resolution achievable from these analyses is restricted by how precisely these orientations can be determined from noisy data.” 

Instead of trying to directly determine these orientations, the team took a different approach based on idea originally proposed in the 1970s by Zvi Kam. “Rather than examine the individual data intensities in an attempt to find the correct orientation for each measured frame, we eliminate this step altogether by using so-called cross-correlation functions,” Kurta said. 

This approach, known as fluctuation X-ray scattering, is based on analyzing the angular correlations of ultrashort, intense X-ray pulses scattered from non-crystalline biomolecules. ”The beauty of using correlation data is that it contains a comprehensive fingerprint of the 3D structure of an object that extends traditional solution scattering approaches,” Zwart said.

Reconstructing 3D Structure from Correlations with CAMERA’s M-TIP Algorithm

The team’s breakthrough in reconstructing 3D structure from correlation data was enabled by the multi-tiered iterative phasing (M-TIP) algorithm developed by CAMERA. “Among the prominent advantages of M-TIP is its ability to solve the structure directly from the correlation data without having to rely on any symmetry constraints, and, more importantly, without the need to solve the orientation determination problem,” Donatelli said.

 Donatelli, CAMERA director James Sethian and Zwart developed their M-TIP framework by developing a mathematical generalization of a class of algorithms known as iterative phasing techniques, which are used for determining structure in a simpler problem, known as phase retrieval. A paper describing the original M-TIP framework was published August 2015 in the Proceedings of the National Academy of Sciences.

“Advanced correlation analyses in combination with ab-initio reconstructions by M-TIP clearly define an efficient route for structural analysis of nanoscale objects at XFELs,” Zwart said.

Future Directions for Correlation Analysis and M-TIP

The team notes that methods used in this analysis can also be applied to analyze diffraction data when there is more than one particle per shot.

“Most algorithms for single-particle imaging can only handle one molecule at a time, thus limiting signal and resolution. Our approach, on the other hand, is scalable so that we should also be able to measure more than one particle at a time,” said Kurta. Imaging with more than one particle per shot will allow scientists to achieve much higher hit rates, since it is easier to use a wide beam and hit many particles at a time, and will also avoid the need to separate out single-particle hits from multiple-particle hits and blank shots, which is another challenging requirement in traditional single-particle imaging.

As part of CAMERA’s suite of computational tools, they have also developed a different version of M-TIP which solves the orientation problem and can classify the images into conformational states, and consequently can used to study small biological differences in the measured sample. This alternate version of M-TIP was described in a paper published June 26 2017 in the Proceedings of the National Academy of Sciences and is part of a new collaboration initiative between SLAC National Accelerator Laboratory, CAMERA, the National Energy Research Scientific Computing Center (NERSC) and Los Alamos National Laboratory as part of DOE’s Exascale Computing Project (ECP).

This work was supported by the offices of Advanced Scientific Computing Research and Basic Energy Sciences in the Department of Energy’s Office of Science and the National Institute of General Medical Sciences at the National Institutes of Health. LCLS and NERSC are both DOE Office of Science User Facilities.

The Office of Science supports Berkeley Lab. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

X
X
X
  • Filters

  • × Clear Filters

Opening Windows for New Spintronic Studies

A surprising discovery could potentially offer major advantages in speed, heat dissipation and power consumption in electronic devices.

Sunlight Stimulates Microbial Respiration of Carbon in Surface Waters

This research offers new information to understand the role of microorganisms in elemental cycling in the Arctic.

Pulling Needles Out of Haystacks: With Computation, Researchers Identify Promising Solid Oxide Fuel Cell Materials

Using advanced computational methods, University of Wisconsin-Madison materials scientists have discovered new materials that could bring widespread commercial use of solid oxide fuel cells closer to reality.

Imaging Individual Flexible DNA 'Building Blocks' in 3-D

A team of researchers from Lawrence Berkeley National Lab (Berkeley Lab) and Ohio State University have generated 3-D images from 129 individual molecules of flexible DNA origami particles. Their work provides the first experimental verification of the theoretical model of DNA origami. https://newscenter.lbl.gov/2018/02/22/imaging-individual-flexible-dna-building-blocks-3-d

Remembering Really Fast

Colossal magnetoresistance at terahertz frequencies in thin composites boosts novel memory devices operated at extremely high speed.

In a First, Tiny Diamond Anvils Trigger Chemical Reactions by Squeezing

Menlo Park, Calif. --Scientists have turned the smallest possible bits of diamond and other super-hard specks into "molecular anvils" that squeeze and twist molecules until chemical bonds break and atoms exchange electrons. These are the first such chemical reactions triggered by mechanical pressure alone, and researchers say the method offers a new way to do chemistry at the molecular level that is greener, more efficient and much more precise.

Berkeley Lab "Minimalist Machine Learning" Algorithms Analyze Images From Very Little Data

Berkeley Lab mathematicians have developed a new approach to machine learning aimed at experimental imaging data. Rather than relying on the tens or hundreds of thousands of images used by typical machine learning methods, this new approach "learns" much more quickly and requires far fewer images.

Tuning Quantum Light Sources

First known material capable of emitting single photons at room temperature and telecom wavelengths.

Working Night and Day

Day-night changes in light and temperature power a low-cost material assembly that mimics biological self-copying.

Squeezing Into the Best Shape

Gel uses nanoparticles for on-demand control of droplet shapes, of interest for energy storage and catalysis.


  • Filters

  • × Clear Filters

ORNL Wins Four FLC Technology Transfer Awards

Four technologies developed at the Department of Energy's Oak Ridge National Laboratory have earned 2018 Excellence in Technology Transfer Awards from the Federal Laboratory Consortium for Technology Transfer (FLC).

Pacific Northwest National Laboratory, OHSU Create Joint Research Co-Laboratory to Advance Precision Medicine

News Release PORTLAND, Ore. -- Pacific Northwest National Laboratory and OHSU today announced a joint collaboration to improve patient care by focusing research on highly complex sets of biomedical data, and the tools to interpret them.The OHSU-PNNL Precision Medicine Innovation Co-Laboratory, called PMedIC, will provide a comprehensive ecosystem for scientists to utilize integrated 'omics, data science and imaging technologies in their research in order to advance precision medicine -- an approach to disease treatment that takes into account individual variability in genes, environment and lifestyle for each person.

The Mysteries of Plasma and Solar Eruptions Earn PPPL Graduate an Astrophysics Prize

Article describes dissertation award for graduate of Princeton University Department of Astrophysical Sciences.

45-Year-Old Telescope Gets a Makeover to Demystify Dark Energy

Forty-five years ago this month, a telescope tucked inside a 14-story, 500-ton dome atop a mile-high peak in Arizona took in the night sky for the first time and recorded its observations on glass photographic plates. Today, the dome closes on the previous science chapters of the 4-meter Nicholas U. Mayall Telescope and starts preparing for its new role in creating the largest 3-D map of the universe. This map could help determine why the universe is expanding at faster and faster rates, driven by an unknown force called dark energy.

MSU Uses $3 Million NASA Grant to Find Better Ways to Regulate Dams

Michigan State University researchers, equipped with $3 million from NASA, will investigate innovative methods to improve dams so that they are less harmful to people and the environment.

Harker School Wins Second Consecutive SLAC Regional DOE Science Bowl

Twenty-four teams from 16 Bay Area high schools faced off Feb. 3 in the SLAC Regional DOE Science Bowl, a series of fast-paced question-and-answer matches that test knowledge in biology, chemistry, physics, earth and space sciences, energy and math. The competition is hosted annually by the Department of Energy's SLAC National Accelerator Laboratory.

David Asner Named Deputy Associate Laboratory Director and Head of the Instrumentation Division in Brookhaven Lab's Nuclear and Particle Physics Directorate

A particle physicist with extensive leadership and management experience, Asner will help expand a portfolio of physics programs and oversee instrumentation research and development.

UIC to Provide Energy-Saving 'Kits' with $3.1m in Funding From ComEd

The University of Illinois at Chicago's Energy Resources Center has received funding from ComEd to provide energy-efficient LED light bulbs, advanced power strips, and educational material to income-qualified participants in northern Illinois.As part of a $3.1 million year-long investment, the utility company will fund the Low Income Kit Energy (LIKE) program, allowing engineers at UIC's Energy Resources Center to provide energy-saving kits to 35,000 eligible individuals and/or families.

DOE's HPC4Manufacturing Program Seeks Industry Proposals

The Department of Energy (DOE) on Feb. 1 announced up to $3 million will be made available to U.S. manufacturers for public/private projects aimed at applying high performance computing to industry challenges for the advancement of energy innovation.

Elke-Caroline Aschenauer Awarded Prestigious Humboldt Research Award

UPTON, NY -- Elke-Caroline Aschenauer, a senior physicist at the U.S. Department of Energy's Brookhaven National Laboratory, has been awarded a Humboldt Research Award for her contributions to the field of experimental nuclear physics. This prestigious international award--issued by the Alexander von Humboldt Foundation in Bonn, Germany--comes with a prize of EUR60,000 (more than $70,000 U.


  • Filters

  • × Clear Filters

Sunlight Stimulates Microbial Respiration of Carbon in Surface Waters

This research offers new information to understand the role of microorganisms in elemental cycling in the Arctic.

Defects and Surface Reactions Boost Batteries

Defect-enhanced transport and complex phase growth are changing design rules for lithium-ion batteries.

Remembering Really Fast

Colossal magnetoresistance at terahertz frequencies in thin composites boosts novel memory devices operated at extremely high speed.

Tuning Quantum Light Sources

First known material capable of emitting single photons at room temperature and telecom wavelengths.

Working Night and Day

Day-night changes in light and temperature power a low-cost material assembly that mimics biological self-copying.

A Nanowire Array to Screen Drugs for Neurodegenerative Diseases

Engineers develop wires that penetrate neurons and measure their activity

Squeezing Into the Best Shape

Gel uses nanoparticles for on-demand control of droplet shapes, of interest for energy storage and catalysis.

Forcing the Hand of Elusive Electrons

Current generated when light hits a material reveals electrons behaving like an elusive particle.

Single Atoms in Nano-Cages

Tiny cages can trap and release inert argon gas atoms, allowing their further study and providing a new way to capture rare gases.

Unwavering Juggler with Three Extra Electrons

Simulations discovered the first molecule with three extra electrons and extraordinary stability.


Spotlight

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University





Showing results

0-4 Of 2215