Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2017-11-20 15:55:16
  • Article ID: 685530

How the Earth Stops High-Energy Neutrinos in Their Tracks

Efforts by Berkeley Lab scientists are key in new study analyzing data from Antarctic experiment

  • Credit: IceCube Collaboration

    The IceCube Lab in March 2017, with the South Pole station in the background.

  • Credit: IceCube Collaboration

    In this study, researchers measured the flux of muon neutrinos as a function of their energy and their incoming direction. Neutrinos with higher energies and with incoming directions closer to the North Pole are more likely to interact with matter on their way through Earth.

**** EMBARGOED: scheduled for Advance Online Publication (AOP) on Nature at 1800 London time / 1300 US Eastern Time on 22 November 2017 ****

Neutrinos are abundant subatomic particles that are famous for passing through anything and everything, only very rarely interacting with matter. About 100 trillion neutrinos pass through your body every second.

Now, scientists have demonstrated that the Earth stops energetic neutrinos—they do not go through everything. These high-energy neutrino interactions were seen by the IceCube detector, an array of 5,160 basketball-sized optical sensors deeply encased within a cubic kilometer of very clear Antarctic ice near the South Pole.

IceCube’s sensors do not directly observe neutrinos, but instead measure flashes of blue light, known as Cherenkov radiation, emitted by muons and other fast-moving charged particles, which are created when neutrinos interact with the ice, and by the charged particles produced when the muons interact as they move through the ice. By measuring the light patterns from these interactions in or near the detector array, IceCube can estimate the neutrinos’ directions and energies.

The study, published in the Nov. 22 issue of the journal Nature, was led by researchers at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley.

Spencer Klein, who leads Berkeley Lab’s IceCube research team, commented “This analysis is important because it shows that IceCube can make real contributions to particle and nuclear physics, at energies above the reach of current accelerators.”

“You create ‘pretend’ muons that simulate the response of the sensors,” Miarecki said. “You have to simulate their behavior, there has to be an ice model to simulate the ice’s behavior, you also have to have cosmic ray simulations, and you have to simulate the Earth using equations. Then you have to predict, probability-wise, how often a particular muon would come through the Earth.”

The study’s results are based on one year of data from about 10,800 neutrino-related interactions, stemming from a natural supply of very energetic neutrinos from space that go through a thick and dense absorber: the Earth. The energy of the neutrinos was critical to the study, as higher energy neutrinos are more likely to interact with matter and be absorbed by the Earth.

Scientists found that there were fewer energetic neutrinos making it all the way through the Earth to the IceCube detector than from less obstructed paths, such as those coming in at near-horizontal trajectories. The probability of neutrinos being absorbed by the Earth was consistent with expectations from the Standard Model of particle physics, which scientists use to explain the fundamental forces and particles in the universe. This probability—that neutrinos of a given energy will interact with matter—is what physicists refer to as a “cross section.”

“Understanding how neutrinos interact is key to the operation of IceCube,” explained Francis Halzen, principal investigator for the IceCube Neutrino Observatory and a University of Wisconsin–Madison professor of physics. Precision measurements at the HERA accelerator in Hamburg, Germany, allow us to compute the neutrino cross section with great accuracy within the Standard Model—which would apply to IceCube neutrinos of much higher energies if the Standard Model is valid at these energies. “We were of course hoping for some new physics to appear, but we unfortunately find that the Standard Model, as usual, withstands the test,” adds Halzen.

James Whitmore, program director in the National Science Foundation’s physics division, said, “IceCube was built to both explore the frontiers of physics and, in doing so, possibly challenge existing perceptions of the nature of universe. This new finding and others yet to come are in that spirit of scientific discovery.”

This study provides the first cross-section measurements for a neutrino energy range that is up to 1,000 times higher than previous measurements at particle accelerators. Most of the neutrinos selected for this study were more than a million times more energetic than the neutrinos produced by more familiar sources, like the sun or nuclear power plants. Researchers took care to ensure that the measurements were not distorted by detector problems or other uncertainties.

“Neutrinos have quite a well-earned reputation of surprising us with their behavior,” said Darren Grant, spokesperson for the IceCube Collaboration and a professor of physics at the University of Alberta in Canada. “It is incredibly exciting to see this first measurement and the potential it holds for future precision tests.”

In addition to providing the first measurement of the Earth’s absorption of neutrinos, the analysis shows that IceCube’s scientific reach is extending beyond its core focus on particle physics discoveries and the emerging field of neutrino astronomy into the fields of planetary science and nuclear physics. This analysis will also interest geophysicists who would like to use neutrinos to image the Earth’s interior, although this will require more data than was used in the current study.

The neutrinos used in this analysis were mostly produced when hydrogen or heavier nuclei from high-energy cosmic rays, created outside the solar system, interacted with nitrogen or oxygen nuclei in the Earth’s atmosphere. This creates a cascade of particles, including several types of subatomic particles that decay, producing neutrinos. These particles rain down on the Earth’s surface from all directions.

The analysis also included a small number of astrophysical neutrinos, which are produced outside of the Earth’s atmosphere, from cosmic accelerators unidentified to date, perhaps associated with supermassive black holes.

The neutrino-interaction events that were selected for the study have energies of at least one trillion electron volts, or a teraelectronvolt (TeV), roughly the kinetic energy of a flying mosquito. At this energy, the Earth’s absorption of neutrinos is relatively small, and the lowest energy neutrinos in the study largely served as an absorption-free baseline. The analysis was sensitive to absorption in the energy range from 6.3 TeV to 980 TeV, limited at the high-energy end by a shortage of sufficiently energetic neutrinos.

At these energies, each individual proton or neutron in a nucleus acts independently, so the absorption depends on the number of protons or neutrons that each neutrino encounters. The Earth’s core is particularly dense, so absorption is largest there. By comparison, the most energetic neutrinos that have been studied at human-built particle accelerators were at energies below 0.4 TeV. Researchers have used these accelerators to aim beams containing an enormous number of these lower energy neutrinos at massive detectors, but only a very tiny fraction yield interactions.

IceCube researchers used data collected from May 2010 to May 2011, from a partial array of 79 “strings,” each containing 60 sensors embedded more than a mile deep in the ice.

Gary Binder, a UC Berkeley graduate student affiliated with Berkeley Lab’s Nuclear Science Division, developed the software that was used to fit IceCube’s data to a model describing how neutrinos propagate through the Earth.

From this, the software determined the cross-section that best fit the data. University of Wisconsin – Madison student Chris Weaver developed the code for selecting the detection events that Miarecki used.

Simulations to support the analysis have been conducted using supercomputers at the University of Wisconsin–Madison and at Berkeley Lab’s National Energy Research Scientific Computing Center (NERSC).

Physicists now hope to repeat the study using an expanded, multiyear analysis of data from the full 86-string IceCube array, which was completed in December 2010, and to look at higher ranges of neutrino energies for any hints of new physics beyond the Standard Model. IceCube has already detected multiple ultra-high-energy neutrinos, in the range of petaelectronvolts (PeV), which have a 1,000-times-higher energy than those detected in the TeV range.

Klein said, “Once we can reduce the uncertainties and can look at slightly higher energies, we can look at things like nuclear effects in the Earth, and collective electromagnetic effects.”

Binder added, “We can also study how much energy a neutrino transfers to a nucleus when it interacts, giving us another probe of nuclear structure and physics beyond the Standard Model.”

A longer term goal is to build a larger detector, which would enable scientists to study neutrinos of even higher energies. The proposed IceCube-Gen2 would be 10 times larger than IceCube. Its larger size would enable the detector to collect more data from neutrinos at very high energies.

Some scientists are looking to build an even larger detector, 100 cubic kilometers or more, using a new approach that searches for pulses of radio waves produced when very high energy neutrinos interact in the ice. Measurements of neutrino absorption by a radio-based detector could be used to search for new phenomena that go well beyond the physics accounted for in the Standard Model and could scrutinize the structure of atomic nuclei in greater detail than those of other experiments.

Miarecki said, “This is pretty exciting – I couldn’t have thought of a more interesting project.” 

Berkeley Lab’s National Energy Research Scientific Computing Center is a DOE Office of Science User Facility.

Read a related Berkeley Lab article about Sandra Miarecki, who performed much of the data analysis for this study: https://newscenter.lbl.gov/2017/11/22/flight-path-physics-success/.

###

The work was supported by the U.S. National Science Foundation-Office of Polar Programs, U.S. National Science Foundation-Physics Division, University of Wisconsin Alumni Research Foundation, Grid Laboratory of Wisconsin (GLOW) grid infrastructure at the University of Wisconsin–Madison, Open Science Grid (OSG) grid infrastructure, National Energy Research Scientific Computing Center, Louisiana Optical Network Initiative (LONI) grid computing resources, U.S. Department of Energy Office of Nuclear Physics, and United States Air Force Academy; Natural Sciences and Engineering Research Council of Canada, WestGrid and Compute/Calcul Canada; Swedish Research Council, Swedish Polar Research Secretariat, Swedish National Infrastructure for Computing (SNIC), and Knut and Alice Wallenberg Foundation, Sweden; German Ministry for Education and Research (BMBF), Deutsche Forschungsgemeinschaft (DFG), Helmholtz Alliance for Astroparticle Physics (HAP), Initiative and Networking Fund of the Helmholtz Association, Germany; Fund for Scientific Research (FNRS-FWO), FWO Odysseus programme, Flanders Institute to encourage scientific and technological research in industry (IWT), Belgian Federal Science Policy Office (Belspo); Marsden Fund, New Zealand; Australian Research Council; Japan Society for Promotion of Science (JSPS); the Swiss National Science Foundation (SNSF), Switzerland; National Research Foundation of Korea (NRF); Villum Fonden, Danish National Research Foundation (DNRF), Denmark.

The IceCube Neutrino Observatory was built under a National Science Foundation (NSF) Major Research Equipment and Facilities Construction grant, with assistance from partner funding agencies around the world. The NSF Office of Polar Programs and NSF Physics Division support the project with a Maintenance and Operations (M&O) grant. The University of Wisconsin–Madison is the lead institution for the IceCube Collaboration, coordinating data-taking and M&O activities.

X
X
X
  • Filters

  • × Clear Filters

Scientists Discover Path to Improving Game-Changing Battery Electrode

Researchers from Stanford University, two Department of Energy national labs and the battery manufacturer Samsung created a comprehensive picture of how the same chemical processes that give cathodes their high capacity are also linked to changes in atomic structure that sap performance.

ESnet's Petascale DTN Project Speeds up Data Transfers between Leading HPC Centers

A new Petascale Data Transfer Node project aims to to achieve regular disk-to-disk, end-to-end transfer rates of one petabyte per week between major supercomputing facilities, which translates to achievable throughput rates of about 15 Gbps on real world science data sets.

Underappreciated Microbes Now Get Credit for Holding Down Two Jobs in Soil

Soil microbes work as both decomposers and synthesizers of carbon compounds in soil, offering new answers with impacts to crops and eco-health.

Energy, Economy, and the Earth: The Benefits of Creating Feedback Loops

Scientists reduce uncertainties in future climate prediction by directly coupling an energy-economy model to an Earth system model.

How Grasslands Regulate Their Productivity in Response to Droughts

Scientists show that grasslands are more sensitive to changes in the amount of moisture in the air than to changes in precipitation.

Building Confidence in Hydrologic Models

Scientists evaluate seven hydrologic models to understand how each model agrees and differs.

New Research Shows Hydropower Dams Can Be Managed Without an All-or-Nothing Choice Between Energy and Food

Nearly 100 hydropower dams are planned for construction along tributaries off the Mekong River's 2,700-mile stretch. In Science Magazine, researchers present a mathematical formula to balance power generation needs with needs of fisheries downstream.

Making Fuel Out of Thick Air

In a new study, researchers at the U.S. Department of Energy's (DOE) Argonne National Laboratory, Tufts University and Oak Ridge National Laboratory teamed up to explore the potential of rhodium-based catalysts for this conversion under milder conditions.

El Nino and Liquid Water Clouds Contribute to Antarctic Melt in 2015-2016

Atmospheric Radiation Measurement (ARM) observations provide clues on atmospheric contributions to an Antarctic melt event.

Designer Yeast Consumes Plant Matter and Spits Out Fatty Alcohols for Detergents and Biofuels

Highest concentration and yield of valuable chemicals reported in industrial yeast Saccharomyces cerevisiae.


  • Filters

  • × Clear Filters

US Dept. Of Energy Grant to Advance Combined Heat and Power Systems in the Midwest

The University of Illinois at Chicago has received a five-year, $4.2 million grant from the U.S. Department of Energy to help industrial, commercial, institutional and utility entities evaluate and install highly efficient combined heat and power (CHP) technologies.CHP, also known as cogeneration, is a single system that produces both thermal energy and electricity.

Applications Open: ECS Toyota Young Investigator Fellowship 2018-2019

ECS, in a continued partnership with the Toyota Research Institute of North America (TRINA), a division of Toyota Motor Engineering & Manufacturing North America, Inc. (TEMA), is requesting proposals from young professors and scholars pursuing innovative electrochemical research in green energy technology.

Successful Startup Founder to Lead Entrepreneurship Program at Argonne

John Carlisle has been named the director of Chain Reaction Innovations (CRI), a program aimed at accelerating job creation through innovation, based at the U.S. Department of Energy's Argonne National Laboratory.

Department of Energy Supports Argonne Nuclear Technologies

This fall, U.S. Department of Energy Secretary Rick Perry announced nearly $4.7 million in funding for the department's Argonne National Laboratory across 16 projects in three divisions. Four of those TCF awards, representing more than $1 million in funds, are slated for Argonne's Nuclear Engineering division.

Southern Research Develops Gasifier Technology to Unlock Coal's Potential

Southern Research has been selected to receive nearly $1.7 million in U.S. Department of Energy funding to develop a new, cost-efficient gasifier capable of converting low-grade coal into synthesis gas (syngas) that can be used in a number of applications.

CEBAF Begins Operations following Upgrade Completion

The world's most advanced particle accelerator for investigating the quark structure of matter is gearing up to begin its first experiments following official completion of an upgrade to triple its original design energy. The Continuous Electron Beam Accelerator Facility (CEBAF) at the Department of Energy's Thomas Jefferson National Accelerator Facility is now back online and ramping up for the start of experiments.

Chory and Walter Awarded Breakthrough Prizes

HHMI Investigators Joanne Chory and Peter Walter are among five scientists honored for transformative advances toward understanding living systems and extending human life.

Shantenu Jha Named Chair of Brookhaven Lab's Center for Data-Driven Discovery

Jha--a computational scientist who holds a joint appointment as an associate professor at Rutgers University--will lead a center that provides the focal point for data science research and development.

Five Brookhaven Lab Scientists Named 2017 American Physical Society Fellows

Anatoly Frenkel, Morgan May, Rachid Nouicer, Eric Stach, and Peter Steinberg were recognized for their outstanding contributions to astrophysics, materials physics, and nuclear physics.

Argonne Appoints Chief of Staff

Megan Clifford has been named Chief of Staff at the U.S. Department of Energy's (DOE) Argonne National Laboratory, effective January 1, 2018.


  • Filters

  • × Clear Filters

Underappreciated Microbes Now Get Credit for Holding Down Two Jobs in Soil

Soil microbes work as both decomposers and synthesizers of carbon compounds in soil, offering new answers with impacts to crops and eco-health.

Energy, Economy, and the Earth: The Benefits of Creating Feedback Loops

Scientists reduce uncertainties in future climate prediction by directly coupling an energy-economy model to an Earth system model.

How Grasslands Regulate Their Productivity in Response to Droughts

Scientists show that grasslands are more sensitive to changes in the amount of moisture in the air than to changes in precipitation.

Building Confidence in Hydrologic Models

Scientists evaluate seven hydrologic models to understand how each model agrees and differs.

El Nino and Liquid Water Clouds Contribute to Antarctic Melt in 2015-2016

Atmospheric Radiation Measurement (ARM) observations provide clues on atmospheric contributions to an Antarctic melt event.

Designer Yeast Consumes Plant Matter and Spits Out Fatty Alcohols for Detergents and Biofuels

Highest concentration and yield of valuable chemicals reported in industrial yeast Saccharomyces cerevisiae.

Making Polymer Chemistry Click

Scientists unlock the key to efficiently make a new class of engineering polymers.

Photosynthesis without Cells: Turning Light into Fuel

An entirely human-made architecture produces hydrogen fuel using light, shows promise for transmitting energy in numerous applications.

Craters on Graphene: Electrons Impact

Novel defect control in graphene enables direct imaging of trapped electrons that follow Einstein's rules.

A Molecular Zipper for Efficient Gas Separation

Metal-organic frameworks with chains of iron centers adsorb and release carbon monoxide with very little energy input.


Spotlight

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University

Thursday February 10, 2011, 05:00 PM

ARRA Grant to Help Fund Seminary Building Green Roof

University of Chicago

Tuesday December 07, 2010, 05:00 PM

UC San Diego Installing 2.8 Megawatt Fuel Cell to Anchor Energy Innovation Park

University of California San Diego

Monday November 01, 2010, 12:50 PM

Rensselaer Smart Lighting Engineering Research Center Announces First Deployment of New Technology on Campus

Rensselaer Polytechnic Institute (RPI)

Friday September 10, 2010, 12:40 PM

Ithaca College Will Host Regional Clean Energy Summit

Ithaca College

Tuesday July 27, 2010, 10:30 AM

Texas Governor Announces $8.4 Million Award to Create Renewable Energy Institute

Texas Tech University

Friday May 07, 2010, 04:20 PM

Creighton University to Offer New Alternative Energy Program

Creighton University

Wednesday May 05, 2010, 09:30 AM

National Engineering Program Seeks Subject Matter Experts in Energy

JETS Junior Engineering Technical Society

Wednesday April 21, 2010, 12:30 PM

Students Using Solar Power To Create Sustainable Solutions for Haiti, Peru

Rensselaer Polytechnic Institute (RPI)

Wednesday March 03, 2010, 07:00 PM

Helping Hydrogen: Student Inventor Tackles Challenge of Hydrogen Storage

Rensselaer Polytechnic Institute (RPI)

Thursday February 04, 2010, 02:00 PM

Turning Exercise into Electricity

Furman University

Thursday November 12, 2009, 12:45 PM

Campus Leaders Showing the Way to a Sustainable, Clean Energy Future

National Wildlife Federation (NWF)

Tuesday November 03, 2009, 04:20 PM

Furman University Receives $2.5 Million DOE Grant for Geothermal Project

Furman University

Thursday September 17, 2009, 02:45 PM

Could Sorghum Become a Significant Alternative Fuel Source?

Salisbury University

Wednesday September 16, 2009, 11:15 AM

Students Navigating the Hudson River With Hydrogen Fuel Cells

Rensselaer Polytechnic Institute (RPI)

Wednesday September 16, 2009, 10:00 AM

College Presidents Flock to D.C., Urge Senate to Pass Clean Energy Bill

National Wildlife Federation (NWF)

Wednesday July 01, 2009, 04:15 PM

Northeastern Announces New Professional Master's in Energy Systems

Northeastern University

Friday October 12, 2007, 09:35 AM

Kansas Rural Schools To Receive Wind Turbines

Kansas State University

Thursday August 17, 2006, 05:30 PM

High Gas Prices Here to Stay, Says Engineering Professor

Rowan University





Showing results

0-4 Of 2215