DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2017-11-28 07:05:20
    • Article ID: 685764

    What Can Science Gain From Computers That Learn?

    Machine learning and deep learning programs provide a helping hand to scientists analyzing images.

    • Credit: Image courtesy of Greg Stewart/SLAC National Accelerator Laboratory

      Scientists have for the first time used deep learning to analyze complex distortions in spacetime, called gravitational lenses. This method was 10 million times faster than traditional analyses.

    • Credit: Photo courtesy of Daniela Ushizima, Lawrence Berkeley National Laboratory

      The pyCBIR deep-learning tool can help researchers match their images to similar ones already in the database. This is an analysis of images from X-ray scattering from the Advanced Light Source.

    Physicists on the MINERvA neutrino experiments at the Department of Energy’s Fermilab faced a conundrum. Their particle detector was swamping them with images. The detector lights up every time a neutrino, a tiny elementary particle, breaks into other particles. The machine then takes a digital photo of all of the new particles’ movements. As the relevant interactions occur very rarely, having a huge amount of data should have been a good thing. But there were simply too many pictures for the scientists to be able to analyze them as thoroughly as they would have liked to.

    Enter a new student eager to help. In some ways, it was an ideal student: always attentive, perfect recall, curious to learn. But unlike the graduate students who usually end up analyzing physics photos, this one was a bit more – electronic. In fact, it wasn’t a person at all. It was a computer program using machine learning. Computer scientists at DOE’s Oak Ridge National Laboratory (ORNL) brought this new student to the table as part of a cross-laboratory collaboration. Now, ORNL researchers and Fermilab physicists are using machine learning together to better identify how neutrinos interact with normal matter.  

    “Most of the scientific work that’s being done today produces a tremendous amount of data where basically, you can’t get human eyes on all of it,” said Catherine Schuman, an ORNL computer scientist. “Machine learning will help us discover things in the data that we’re collecting that we would not otherwise be able to discover.”

    Fermilab scientists aren’t the only ones using this technique to power scientific research. A number of scientists in a variety of fields supported by DOE’s Office of Science are applying machine learning techniques to improve their analysis of images and other types of scientific data.

     

    Teaching a Computer to Think

    In traditional software, a computer only does what it’s told. But in machine learning, tools built into the software enable it to learn through practice. Like a student reading books in a library, the more studying it does, the better it gets at finding patterns that can help it solve a big-picture problem.

    “Machine learning gives us the ability to solve complex problems that humans can’t solve ourselves, or complex problems that humans solve well but don’t really know why,” said Drew Levin, a researcher who works with DOE’s Sandia National Laboratories.

    Recognizing images, like those from experiments like MINERvA, is one such major problem. While humans are great at identifying and grouping photos, it’s difficult to translate that knowledge into equations for computer programs.

     

    Speeding up Analysis

    In the past, creating image-recognition programs was incredibly complex. First, programmers identified every single type of feature in the image they wanted to analyze. Using this list of features, they then made rules for the program to follow. For the neutrino experiments, those rules included describing all of the possible angles a proton could travel. Because scientific images can involve thousands of variables, the process was so slow that many astrophysics experiments had scientists analyze the images by hand instead. Unfortunately, that too was a slow and laborious process.

    But machine learning eliminates the vast majority of that work. Programmers create a set of examples that tell the program how to broadly do the analysis, such as processing an image. The program then works to “understand” the data and come up with the rules. It’s the difference between telling a student how to add together objects one by one each time and teaching the principles behind arithmetic.

    After the programmer finishes creating the program, he or she then supplies it with large amounts of sample data. The program creates its rules, processes the data, and spits out an answer. In the beginning, these predictions may seem random. As the program takes more data into account, it revises its equations. Those equations then come up with more accurate answers.

     

    To Supervise or Not to Supervise?

    Training a machine-learning program can be either “supervised” or “unsupervised.”

    In supervised learning, the program receives input data as well as output data that gives the “right” answer. Like a student self-scoring a test with an answer key, the program checks to see how its result differs from the correct one. It then tweaks its calculations to get a little closer the next time. Programs that classify images, like identifying whether a photograph is of a star or a galaxy, need to use supervised learning. Scientists can also use supervised learning for creating programs that analyze relationships between variables, such as how the position of a star affects its brightness.

    But supervised learning requires data with the answer clearly labeled. For many experiments, labeling the data the program would need for training purposes could take so long that the scientists might as well just analyze it themselves.

    “Beginning with unlabeled data is a challenge,” said Daniela Ushizima, a researcher at DOE’s Lawrence Berkeley National Laboratory (Berkeley Lab), who develops machine learning tools. Unlabeled data particularly pose an issue when researchers are interested in a rare event.

    That’s where unsupervised learning comes into play. Unsupervised learning requires the program to find patterns itself without the “correct” answers. It’s the computer version of independent study. Fortunately, these programs can still group types of data, such as similar images from particle detectors.

     

    Creating a Brain: Deep Learning

    While machine learning itself is useful, deep learning takes the concept to the next level. Deep learning is a form of machine learning that uses a neural network – software inspired by human brains.

    Each deep learning program is made of a series of very simple units networked together. By grouping the units into hierarchical layers and stacking those layers, programmers create powerful programs. Each layer of units is like a separate team in a factory assembling an intricate puzzle. The earliest teams process basic features. In images, these would be edges and lines or even points. They then pass that analysis along to later teams or deeper layers. The deeper layers put the simple features together to create more complex ones. For an image, this could be a texture or a shape. The final layer spits out an answer. For MINERvA, this final answer may include a variety of information, including where the neutrino collided and what particles resulted from the collision.

    As the program learns, it doesn’t necessarily change the equations as it would in a simpler machine-learning program. Instead, it subtly changes the relationships between the units and layers, shifting connections from one to another.

     

    What Machine Learning Can Do For You

    Grouping and identifying images is one of the most promising uses for machine learning. Back in 2012, a deep-learning program could identify photos in a specific database of images with a 20 percent error rate. Over the course of only three years, scientists improved deep-learning programs so much that a similar program in 2015 beat the average human error rate of 5 percent.

    “There’s a lot of image-based science that can benefit from deep learning,” said Tom Potok, leader of ORNL’s Computational Data Analytics group.

    For image recognition that requires special expertise, machine learning can provide even bigger benefits. “These techniques are extremely efficient at finding subtle signals” like small shifts in particle tracks, said Gabe Perdue, a Fermilab physicist on the MINERvA experiment.

    While Fermilab physicists are using deep learning to understand neutrinos, other scientists are using it to understand images from sources as diverse as telescopes and light sources.

    Spotting when a very large object is warping our view of a galaxy can help astronomers understand unknown phenomena like dark matter and dark energy. But it can take expert astronomers weeks to analyze a single image. This rate is fine for current equipment, which has only captured a few hundred images of this happening. But when the Large Synoptic Survey Telescope goes online in 2022, astronomers predict it will photograph tens of thousands of these galaxies.

    To get ready, scientists at SLAC National Accelerator Laboratory have already developed a deep-learning program to tackle it. First, they spent a day feeding about half a million real and simulated images of galaxies into the eager student’s electronic brain. The program then analyzed a combination of real images from the Hubble Space Telescope and simulated images in a few seconds. This analysis was 10 million times faster than previous methods and just as accurate. It even provided data that the previous methods didn’t, like measurements of how much mass was warping the images.

    Other scientists are using machine learning to sort and organize images. Most databases of scientific images are difficult to search or limited to images with in-depth descriptions. But Ushizima thought she had a better way. She imagined something like Google’s Image Search, where you can upload an image and have Google find others like it.  

    “Instead of looking for experiments in terms of keywords or a mathematical model, we would have a more concrete way to retrieve results: We input an image,” she said.

    Using a DOE Early Career Research Program award, she and graduate students Flavio Araujo and Romuere Silva developed a deep-learning tool called pyCBIR. The program can tell researchers how similar their images are to ones already in its database. Currently, Ushizima and her fellow researchers are working with the Advanced Light Source, an Office of Science user facility, to analyze many of its images. With the program analyzing the content from millions of images, scientists can now rank and organize experimental data without needing to rely on filename or other textual information. While sifting through massive amounts of unlabeled data could take days or even longer, the pyCBIR software allows scientists to find relevant images in seconds.

    Image analysis is just one application of deep learning for science. Scientists are using machine learning to identify extreme weather events in earth system simulations. They’re also using it to predict flaws in new metal alloys and analyze millions of cancer drug results.

     

    Tackling Future Challenges

    But machine and deep learning aren’t panaceas for scientific research. One of the biggest challenges is ensuring that the programs are providing the correct answers. In deep learning, programmers can only see calculations that are happening in the first and last layer. In the classroom of deep learning, there’s no way to ask the student about its thought process. In addition, if there are inaccuracies in the training data, the deep-learning program will amplify it.

    “You might worry if there’s some bias or some mistake coming from these simulations used to train these machines,” said Perdue.

    Usually, scientists can recognize when results they receive are wrong or at least different from what they expected. In the case of MINERvA, neutrinos only move and interact in certain ways. If the images show something different, they need to double-check the machine. Scientists also understand what kinds of problems can arise from the programs they use to conduct the analysis and how to fix them. But because programs used for deep learning are so different from traditional ones, they throw a wrench in that institutional knowledge.

    The ORNL team helping Fermilab analyze the MINERvA data is hoping to solve some of those challenges. They’re using three different technologies to design a powerful, accurate deep- learning program. Using a specialized computer that processes quantum information, they hope to design the best structure for the program. They’ll then use ORNL’s fastest supercomputer, Titan, to create the best arrangement of units and connections to maximize accuracy and speed. Lastly, they’ll run the program on a brain-like piece of hardware. In addition to MINERvA, they plan to use this program to analyze data from ORNL’s Spallation Neutron Source, an Office of Science user facility.

    Whether in neutrino experiments or cancer research, machine learning offers a new way for both researchers and their electronic students to better understand our world and beyond.

    As Prasanna Balaprakash, a computer scientist at DOE’s Argonne National Laboratory, said, “Machine learning has applications all the way from subatomic levels up to the universe. Wherever we have data, machine learning is going to play a big role.”

     

    The Office of Science is the single largest supporter of basic energy research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information please visit https://science.energy.gov.

    Shannon Brescher Shea is a Senior Writer/Editor in the Office of Science, shannon.shea@science.doe.gov.

    X
    X
    X
    • Filters

    • × Clear Filters
    Faced with pandemic shortages, researchers combine heat and humidity to disinfect N95 masks for reuse

    Faced with pandemic shortages, researchers combine heat and humidity to disinfect N95 masks for reuse

    They found that gently heating N95 masks in high relative humidity could inactivate SARS-CoV-2 virus trapped within the masks, without degrading the masks' performance.

    Machine Learning Takes on Synthetic Biology: Algorithms Can Bioengineer Cells for You

    Machine Learning Takes on Synthetic Biology: Algorithms Can Bioengineer Cells for You

    Scientists at Lawrence Berkeley National Laboratory have developed a new tool that adapts machine learning algorithms to the needs of synthetic biology to guide development systematically. The innovation means scientists will not have to spend years developing a meticulous understanding of each part of a cell and what it does in order to manipulate it.

    Scientists achieve higher precision weak force measurement between protons, neutrons

    Scientists achieve higher precision weak force measurement between protons, neutrons

    Through a one-of-a-kind experiment at Oak Ridge National Laboratory, nuclear physicists have precisely measured the weak interaction between protons and neutrons. The result quantifies the weak force theory as predicted by the Standard Model of Particle Physics.

    Novel cell membrane model could be key to uncovering new protein properties

    Novel cell membrane model could be key to uncovering new protein properties

    Researchers have recently shed light on how cell membrane proteins could be influenced by the lipids around them. By developing a novel type of membrane model, they were able to show that the shape and behavior of a protein can be altered by exposure to different lipid compositions. The research team confirmed the artificial membrane's structure using x-ray and neutron scattering at the Department of Energy's (DOE's) Brookhaven (BNL) and Oak Ridge National Laboratories (ORNL).

    SLAC invention could make particle accelerators 10 times smaller

    SLAC invention could make particle accelerators 10 times smaller

    A team led by scientists at the Department of Energy's SLAC National Accelerator Laboratory has invented a new type of accelerator structure that could make accelerators used for a given application 10 times shorter.

    Active learning accelerates redox-flow battery discovery

    Active learning accelerates redox-flow battery discovery

    In a new study from the U.S. Department of Energy's Argonne National Laboratory, researchers are accelerating the hunt for the best possible battery components by employing artificial intelligence.

    Automatic database creation for materials discovery: Innovation from frustration

    Automatic database creation for materials discovery: Innovation from frustration

    A collaboration between the University of Cambridge and Argonne has developed a unique method of generating automatic databases to support specific fields of science using AI and high-performance computing.

    Scientists develop forecasting technique that could help advance quest for fusion energy

    Scientists develop forecasting technique that could help advance quest for fusion energy

    An international group of researchers has developed a technique that forecasts how tokamaks might respond to unwanted magnetic errors. These forecasts could help engineers design fusion facilities that create a virtually inexhaustible supply of safe and clean fusion energy to generate electricity.

    New composite material revs up pursuit of advanced electric vehicles

    New composite material revs up pursuit of advanced electric vehicles

    Scientists at Oak Ridge National Laboratory used new techniques to create a composite that increases the electrical current capacity of copper wires, providing a new material that can be scaled for use in ultra-efficient, power-dense electric vehicle traction motors.

    Not Your Average Refinery

    Not Your Average Refinery

    PNNL researchers outline how to convert stranded biomass to sustainable fuel using electrochemical reduction reactions in mini-refineries powered by renewable energy.


    • Filters

    • × Clear Filters
    Renowned physicist and former diagnostics developer at PPPL wins Asia Pacific plasma physics award

    Renowned physicist and former diagnostics developer at PPPL wins Asia Pacific plasma physics award

    Hyeon Park honored with 2020 Subramanyan Chandrasekhar Prize for Plasma Physics from the Division of Plasma Physics of the Association of Asia Pacific Physical Societies. The prize recognizes Park for his work developing an essential diagnostic tool for tokamak fusion facilities throughout the world.

    The American Nuclear Society designates the groundbreaking Tokamak Fusion Test Reactor a Nuclear Historic Landmark

    The American Nuclear Society designates the groundbreaking Tokamak Fusion Test Reactor a Nuclear Historic Landmark

    The record-setting PPPL tokamak that laid the foundation for future fusion power plants receives the distinguished landmark designation from the the American Nuclear Society.

    Brian O'Neill Named New Director for the Joint Global Change Research Institute

    Brian O'Neill Named New Director for the Joint Global Change Research Institute

    O'Neill to lead organization that advances scientific understanding of the ways in which human, energy and environmental systems interact, and has provided input to the White House, Congress, United Nations and other national and international governing and advising bodies.

    SLAC's Xijie Wang wins prestigious accelerator science award

    SLAC's Xijie Wang wins prestigious accelerator science award

    Xijie Wang, an accelerator physicist at the Department of Energy's SLAC National Accelerator Laboratory, will receive the 2021 Nuclear and Plasma Science Society's Particle Accelerator Science and Technology Award. Bestowed by the Institute of Electrical and Electronics Engineers (IEEE), the prestigious award recognizes individuals who have made outstanding contributions to the development of particle accelerator science and technology.

    Argonne materials scientist Arturo Gutierrez named 2020 Luminary Honoree by HENAAC

    Argonne materials scientist Arturo Gutierrez named 2020 Luminary Honoree by HENAAC

    Argonne materials scientist Arturo Gutierrez has been recognized by HENAAC, the national organization that honors Hispanic scientists and engineers.

    DOE Funding Boosts Artificial Intelligence Research at Jefferson Lab

    DOE Funding Boosts Artificial Intelligence Research at Jefferson Lab

    Two physicists at DOE's Jefferson Lab have secured $2.16 million in funding for projects that harness the power of data analytics to make the work of studying the universe down to its smallest subatomic parts faster and more efficient.

    Argonne National Laboratory and AT&T extend climate resiliency project nationwide

    Argonne National Laboratory and AT&T extend climate resiliency project nationwide

    Argonne and AT&T have been working together to project risks from changing climate on America's Southeastern region. Today they've announced that they're extending their analysis to cover the entire contiguous U.S.

    Key Partners Mark Launch of Electron-Ion Collider Project

    Key Partners Mark Launch of Electron-Ion Collider Project

    U.S. Department of Energy (DOE) Undersecretary for Science Paul Dabbar, leaders from DOE's Brookhaven National Laboratory (Brookhaven Lab) and Thomas Jefferson National Accelerator Facility (Jefferson Lab), and elected officials from New York State and Virginia today commemorated the start of the Electron-Ion Collider project.

    Fermilab scientist Vladimir Shiltsev elected to Academia Europaea

    Fermilab scientist Vladimir Shiltsev elected to Academia Europaea

    Widely recognized for his work in accelerator beam physics, Shiltsev is one of 361 individuals elected to Academia Europaea, which promotes a wider appreciation of the value of European scholarship and research.

    PPPL physicist Hutch Neilson receives award for decades of leadership on national and international fusion experiments

    PPPL physicist Hutch Neilson receives award for decades of leadership on national and international fusion experiments

    Hutch Neilson, a physicist at PPPL who is head of ITER Projects, has received the 2020 Institute of Electrical and Electronics Engineers' (IEEE) Nuclear & Plasma Sciences Society (NPSS) Merit Award for decades of achievements, including collaborations with fusion experiments around the world from the Wendelstein 7-X (W7-X) stellarator in Germany to the international ITER experiment in the south of France.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Virtual internships for physics students present challenges, build community
    Tuesday September 15, 2020, 04:35 PM

    Virtual internships for physics students present challenges, build community

    Princeton Plasma Physics Laboratory

    Blocking the COVID-19 Virus's Exit Strategy
    Monday August 31, 2020, 04:05 PM

    Blocking the COVID-19 Virus's Exit Strategy

    Brookhaven National Laboratory

    Summer Students Tackle COVID-19
    Monday August 31, 2020, 03:35 PM

    Summer Students Tackle COVID-19

    Brookhaven National Laboratory

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory





    Showing results

    0-4 Of 2215