DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2018-03-14 11:05:29
    • Article ID: 691089

    Turbocharging Fuel Cells with a Multifunctional Catalyst

    • Credit: Nissan Motor Corporation / press handout for editorial use only

      Nissan is one automotive company investing in the development of fuel cell powered vehicles. Pictured here is a prototype that Nissan says is "the world’s first Solid Oxide Fuel-Cell (SOFC)-powered prototype vehicle that runs on bio-ethanol electric power." Credit:

    • Credit: Georgia Tech / Christopher Moore

      A new catalyst to turbocharge the processing of oxygen in fuel cells: Regents' Professor Meilin Liu (left) with postdoctoral research associate Yu Chen in Liu's Georgia Tech lab as they display a disc coated with the catalyst, which works in two phases. The new material also preserves cathodes in solid oxide fuel cells.

    • Credit: Georgia Tech / Christopher Moore

      A new boost to fuel cell technology from Georgia Tech: A nanoparticle coating on this disc turbocharges the processing of oxygen on the cathode end of solid oxide fuel cells, increasing eightfold current best performance.

    • Credit: Georgia Tech / Liu / Chen

      The new Georgia Tech fuel cell catalyst, a coating only about two dozen nanometers thick, works in two phases. First, the nanoparticles on top grab molecular oxygen from the air and make it very easy and tear apart into single oxygen ions. Then oxygen vacancies in the nanoparticle rapidly pass the oxygen ions to the second phase, a layer full of oxygen vacancies which shuttle the ions to their meeting with ionic hydrogen to complete the chemical process that powers fuel cells.

    • Credit: Georgia Tech / Christopher Moore

      A labyrinth of tubs delivers fuel, oxygen and other gases into experimental fuel cells (rear, top) in Regents' Professor Meilin Liu's lab. Liu is developing nanomaterial catalysts that turbocharge fuel cell performance in hopes of empowering the development of multiple zero-emissions renewable energy sources.

    • Credit: Smithsonian edu / The National Museum of American History / press handout for editorial use only

      A simple diagram depicts the basic functioning of a solid oxide fuel cell.

    Powering clean, efficient cars is just one way fuel cell technology could accelerate humanity into a sustainable energy future, but unfortunately, the technology has been a bit sluggish. Now, engineers may be able to essentially turbocharge fuel cells with a new catalyst.

    The sluggishness comes from a chemical bottleneck, the rate of processing oxygen, a key ingredient that helps fuel cells, which are related to batteries, produce electricity. The new catalyst, a nanotechnology material developed by engineers at the Georgia Institute of Technology, markedly speeds up oxygen processing and is the subject of a new study.

    Partly to accommodate oxygen’s limitations, fuel cells usually require pure hydrogen fuel, which reacts with the oxygen taken in from the air, but the costs of producing the hydrogen have been prohibitive. The new catalyst is a potential game-changer.

    “It can easily convert chemical fuel into electricity with high efficiency,” said Meilin Liu, who led the study and is a Regents’ Professor in Georgia Tech’s School of Material Science and Engineering.  “It can let you use readily available fuels like methane or natural gas or just use hydrogen fuel much more efficiently,” Liu said.

    Catalyst 8 times as fast

    The catalyst achieves the efficiency by rushing oxygen through a fuel cell’s system. “It’s more than eight times as fast as state-of-the-art materials doing the same thing now,” said Yu Chen, a postdoctoral research associate in Liu’s lab and the study’s first author.

    There are a few types of fuel cells, but the researchers worked to improve solid oxide fuel cells, which are found in some prototypical fuel cell cars. The research insights could also aid in honing supercapacitors and technology paired with solar panels, thus advancing sustainable energy beyond the new catalyst’s immediate potential to improve upon fuel cells.

    Liu and Chen published their study in the March issue of the journal Joule. Their research was funded by the U.S. Department of Energy and by the Guangdong Innovative and Entrepreneurial Research Program. The fuel cell work from Liu’s lab has already attracted significant energy industry and automotive industry interest.

    Naturally sluggish oxygen

    Though they work differently from fuel cells and are much less efficient and clean, combustion engines make a useful metaphor to aid in understanding how fuel cells and the new catalyst work.

    In a combustion engine, fuel from a tank and oxygen from the air come together to react in an explosion, producing energy that turns a crankshaft. Adding a turbocharger speeds the process up by mixing fuel and oxygen together more quickly and rushing them to combustion.

    Currently, in fuel cells, hydrogen fuel from a tank and oxygen from the air also drive a process that produces energy, in this case, electricity. The two ingredients do come together in a reaction, but one very different from combustion, and much cleaner.

    One end of the fuel cell, the anode, removes electrons from the hydrogen atoms in what’s called oxidation and sends the electrons through an external circuit as electric current to the cathode on the other side. There, oxygen, which is notoriously electron hungry, sucks the electrons up in what’s called reduction, and that keeps the electricity flowing.

    The hydrogen, now positively charged, and the oxygen, now negatively charged, meet up to form water, which is the fuel cell’s exhaust.

    In that reaction chain, oxygen is the slow link in two ways: Oxygen’s reduction takes longer than hydrogen’s oxidation, and the reduced oxygen moves more slowly through the system to meet with hydrogen. Analogous to the turbocharger, the new catalyst pushes the oxygen forward.

    Oxygen rush nanotech

    The catalyst is applied as a sheer coating only about two dozen nanometers thick and is comprised of two connected nanotechnology solutions that break both oxygen bottlenecks.

    First, nanoparticles highly attractive to oxygen grab the O2 molecule and let inflowing electrons quickly jump onto it, easily reducing it and tearing it into two separate oxygen ions (each one an O2-). Then a series of chemical gaps called oxygen vacancies that are built into the nanoparticles’ structures suck up the oxygen ions like chains of vacuum cleaners passing the ions hand to hand to the second phase of the catalyst.

    The second phase is a coating that is full of oxygen vacancies that can pass the O2- even more rapidly toward its final destination.

    “The oxygen goes down quickly through the channels and enters the fuel cell, where it meets with the ionized hydrogen or another electron donor like methane or natural gas.”

    The ions meet to make water, which exits the fuel cell. In the case of methane fuel, pure CO2 is also emitted, which can be captured and recycled back into fuel.

    Interesting rare metals

    In the first stage, there are two different flavors of nanoparticle at work. Both have cobalt, but one contains barium and the other praseodymium, a rare-earth metal that can be pricey in high quantities.

    Praseodymium is in such very small amounts that it doesn’t impact costs,” Liu said. “And the catalyst saves lots of money on fuel and on other things.”

    High operating temperatures in existing fuel cells require expensive protective casings and cooling materials. The researchers believe the catalyst could help lower the temperatures by reducing electrical resistance inherent in current fuel cell chemistry. That could, in turn, reduce overall material costs.

    Protective cathode coating

    The second stage of the catalyst is a lattice that contains praseodymium and barium, as well as calcium and cobalt (PBCC). In addition to its catalytic function, the PBCC coating protects the cathode from degradation that can limit the lifetime of fuel cells and similar devices.

    The underlying original cathode material, which contains the metals lanthanum, strontium, cobalt, and iron (LSCF), has become an industry standard but comes with a caveat.

    “It’s very conductive, very good, but the problem is that strontium undergoes a diminishment called segregation in the material,” Liu said. “One component of our catalyst, PBCC, acts as a coating and keeps the LSCF a lot more stable.”

    LSCF manufacturing is already well-established, and adding the catalyst coating to production could be likely reasonably achieved. Liu also is considering replacing the LSCF cathode completely with the new catalyst material, and his lab is developing a yet another catalyst to boost fuel oxidation reactions at the fuel cell’s anode.

    Coauthors of the study were: Seonyoung Yoo, Yong Ding, Ruiqiang Yan, Kai Pei, Chong Qu, Lei Zhang, Ikwhang Cha, Bote Zhao, Ben deGlee, and Ryan Murphy of Georgia Tech; YongMan Choi from the SABIC Technology Center in Saudi Arabia; Yanxiang Zhang from the Harbin Institute of Technology in China; Huijun Chen, Yan Chen, Chenghao Yang and Jiang Liu from the South China University of Technology. The research was funded by the U.S. Department of Energy SECA Core Technology Program (grants FC FE0026106 and DE-FE0031201) and the Guangdong Innovative and Entrepreneurial Research Team Program (grant 2014ZT05N200). Any opinions or findings are those of the authors and not necessarily of the funding agencies.

    X
    X
    X
    • Filters

    • × Clear Filters

    The Biermann Battery Effect: Spontaneous Generation of Magnetic Fields and Their Severing

    The mechanism responsible for creating intense magnetic fields in laser-driven plasmas also helps tear the fields apart.

    Compelling Evidence for Small Drops of Perfect Fluid

    Nuclear physicists analyzing data from the PHENIX detector at the Relativistic Heavy Ion Collider (RHIC) have published additional evidence that collisions of miniscule projectiles with gold nuclei create tiny specks of the perfect fluid that filled the early universe.

    Topological Matters: Toward a New Kind of Transistor

    An experiment has demonstrated, for the first time, electronic switching in an exotic, ultrathin material that can carry a charge with nearly zero loss at room temperature. Researchers demonstrated this switching when subjecting the material to a low-current electric field.

    Experiments at PPPL show remarkable agreement with satellite sightings

    Feature describes striking similarity of laboratory research findings with observations of the four-satellite Magnetospheric Multiscale Mission that studies magnetic reconnection in space.

    New X-ray imaging approach could boost nanoscale resolution for Advanced Photon Source Upgrade

    A long-standing problem in optics holds that an improved resolution in imaging is offset by a loss in the depth of focus. Now, scientists are joining computation with X-ray imaging as they develop a new and exciting technique to bypass this limitation.

    Two-dimensional materials skip the energy barrier by growing one row at a time

    News Release RICHLAND, Wash. -- A new collaborative study led by a research team at the Department of Energy's Pacific Northwest National Laboratory and University of California, Los Angeles could provide engineers new design rules for creating microelectronics, membranes, and tissues, and open up better production methods for new materials.

    Blasting Molecules with Extreme X-Rays

    To understand how damage from high-energy X-rays affects imaging studies, scientists supported by the Department of Energy shot the most powerful X-ray laser in the world at a series of atoms and molecules. Surprisingly, the atoms within the molecules acted far differently than the isolated ones.

    Scientists Enter Unexplored Territory in Superconductivity Search

    Scientists mapping out the quantum characteristics of superconductors--materials that conduct electricity with no energy loss--have entered a new regime. Using newly connected tools named OASIS at Brookhaven Lab, they've uncovered previously inaccessible details of the "phase diagram" of one of the most commonly studied "high-temperature" superconductors.

    Human Exposures and Health Effects Associated with Unconventional Oil and Gas Development

    The Health Effects Institute (HEI) convened an Energy Research Committee to help ensure the protection of public health during such development. A symposium at the 2018 Society for Risk Analysis (SRA) Annual Meeting will summarize the Committee's review approach and preliminary findings and provide initial options for future research intended to fill knowledge gaps.

    Reflecting Antiferromagnetic Arrangements

    Scientists have demonstrated an x-ray imaging technique that could enable the development of smaller, faster, and more robust electronics that exploit electron spin.


    • Filters

    • × Clear Filters

    Blast to the future

    A grant from DOE's Technology Commercialization Fund will help researchers at Argonne and industry partners seek improvements to U.S. manufacturing by making discovery and design of new materials more efficient.

    Department of Energy to Provide $24 Million for Computer-Based Materials Design

    The U.S. Department of Energy (DOE) announced plans to provide $24 million in new and renewal research awards to advance the development of sophisticated software for computer-based design of novel materials.

    Argonne scientists recognized for decades of pioneering leadership in research

    Argonne scientists Ali Erdemir and Jack Vaughey were named 2018 Fellows of the American Association for the Advancement of Science (AAAS).

    Kurfess, Smith join ORNL to lead advanced manufacturing initiatives

    Two leaders in US manufacturing innovation, Thomas Kurfess and Scott Smith, are joining the Department of Energy's Oak Ridge National Laboratory to support its pioneering research in advanced manufacturing.

    Four Berkeley Lab Scientists Named AAAS Fellows

    Four Berkeley Lab scientists - Allen Goldstein, Sung-Hou Kim, Susannah Tringe, and Katherine Yelick - have been named Fellows of the American Association for the Advancement of Science, the world's largest general scientific society.

    U.S. Department of Energy to Host Nationwide CyberForce Competition(tm) December 1

    Students from dozens of colleges/universities will participate in the U.S. Department of Energy's CyberForce Competition(tm) this weekend

    Seven ORNL researchers named 2019 INCITE award winners

    Seven researchers from the Department of Energy's Oak Ridge National Laboratory have been chosen by the Innovative and Novel Computational Impact on Theory and Experiment, also known as INCITE, program to lead scientific investigations that require the nation's most powerful computers. The ORNL-based projects span a broad range of the scientific spectrum and represent the potential of high-performance computing in ensuring America's scientific competitiveness and energy security.

    DOE Laboratories Win Gordon Bell Prize

    Two U.S. Department of Energy (DOE) National Laboratories were recently awarded the 2018 Association for Computing Machinery's (ACM's) Gordon Bell Prize.

    Department of Energy Announces 32 R&D 100 Award Winners

    DOE researchers have won 32 of the R&D 100 awards given out this year by R&D Magazine. The annual awards are given in recognition of exceptional new products or processes that were developed and introduced into the marketplace during the previous year.

    Jefferson Lab Shares 2018 R&D 100 Award for Cancer Treatment Monitoring System

    The OARtrac(r) system, built by RadiaDyne and including technologies developed by scientists at the U.S. Department of Energy's Thomas Jefferson National Accelerator Facility, has been awarded a 2018 R&D 100 Award by R&D Magazine.


    • Filters

    • × Clear Filters

    The Biermann Battery Effect: Spontaneous Generation of Magnetic Fields and Their Severing

    The mechanism responsible for creating intense magnetic fields in laser-driven plasmas also helps tear the fields apart.

    Subtlety and the Selective Art of Separating Lanthanides

    Unexpected molecular interactions involving water clusters have a subtle, yet profound, effect on extractants picking their targets.

    Review Examines the Science and Needs of Nitrogen-Based Transformations

    Advances in biochemistry and catalysis could lead to faster, greener nitrogen-rich fertilizer.

    Quickly Capture Tiny Particles Reacting

    New method takes a snapshot every millisecond of groups of light-scattering particles, showing what happens during industrially relevant reactions.

    New Technology Consistently Identifies Proteins from a Dozen Cells

    A new platform melding microfluidics and robotics allows more in-depth bioanalysis with fewer cells than ever before.

    Optimal Foraging: How Soil Microbes Adapt to Nutrient Constraints

    How microbial communities adjust to nutrient-poor soils at the genomic and proteomic level gives scientists insights into land use.

    Microbes Eat the Same in Labs and the Desert

    Analyses of natural communities forming soil crusts agree with laboratory studies of isolated microbe-metabolite relationships.

    Diverse Biofeedstocks Have High Ethanol Yields and Offer Biorefineries Flexibility

    Evidence suggests that biorefineries can accept various feedstocks without negatively impacting the amount of ethanol produced per acre.

    Opening Access to Explore the Synthetic Chemistry of Neptunium

    New, easily prepared starting material opens access to learning more about a difficult-to-control element in nuclear waste.

    Tiny Titanium Barrier Halts Big Problem in Fuel-Producing Solar Cells

    New design coats molecular components and dramatically improves stability under tough, oxidizing conditions.


    Spotlight

    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory

    Tuesday March 28, 2017, 12:05 PM

    Champions in Science: Profile of Jenica Jacobi

    Department of Energy, Office of Science

    Friday March 24, 2017, 10:40 AM

    Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

    Brookhaven National Laboratory

    Wednesday February 15, 2017, 04:05 PM

    Middle Schoolers Test Their Knowledge at Science Bowl Competition

    Argonne National Laboratory





    Showing results

    0-4 Of 2215