Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-05-15 12:05:17
  • Article ID: 694592

Producing Beneficial Propylene While Consuming a Major Greenhouse Gas

Scientists have identified a catalyst for the reaction of carbon dioxide and propane that could help meet the demand for an important chemical building block used to manufacture plastics, textiles, electronics, and more

  • Credit: Brookhaven National Laboratory

    (Left to right) Chemist Jingguang Chen, research associate Shyam Kattel, PhD candidate Elaine Gomez, and chemist Ping Liu were part of the team that identified that an iron- and nickel-based catalyst can selectively break a carbon-hydrogen bond in the reaction of carbon dioxide and propane to produce an important industrial chemical called propylene.

  • Credit: Brookhaven National Laboratory

    As shown in the schematic, carbon dioxide and propane can react on the iron-nickel (FeNi) catalyst to form propylene (left) or on the platinum-nickel (PtNi) catalyst to form syngas (right). In the case of FeNi, an oxide layer of FeO/Ni that forms during the reaction encourages C-H bond breaking. By contrast, the PtNi catalyst has no oxide phase. Color key: carbon = black, oxygen = red, hydrogen = purple, nickel = green, iron = brown, platinum = blue).

  • Credit: U.S. Department of Energy

    Producible portions of shale gas formations are located many thousands of feet below the land surface, well below underground sources of drinking water (USDW). Modern hydraulic fracturing technology involves sophisticated engineering processes designed to create distinct fracture networks in specific rock layers. Experts continually monitor these processes to ensure they comply with local, state, and federal laws and regulations.

What if a major heat-trapping greenhouse gas could be consumed to produce a valuable chemical that is in short supply? Chemists at the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory have identified a catalyst—a substance that speeds up a chemical reaction—that may be able to do just that. This “bimetallic” catalyst, made of iron and nickel, drives the reaction of the greenhouse gas carbon dioxide and the energy-rich gas propane to produce propylene. Propylene is a chemical building block used in the manufacture of many everyday items, including batteries, automobile parts, and clothing and other textiles.

The propylene production gap

Historically, propylene has been a byproduct of steam cracking—a process in which a raw material (feedstock) is mixed with steam and heated to approximately 1500 degrees Fahrenheit inside massive furnaces that “crack” apart molecular bonds—to produce ethylene, the precursor for most of the world’s plastics. However, propylene is no longer being co-produced in the quantities needed to keep up with demand. Within the past decade, shale gas, or natural gas from fine-grained sedimentary rocks, has become very inexpensive in the United States because of technological advances in fracking. Shale gas mostly consists of methane but also contains fractions of ethane and propane. Industry has taken advantage of this abundance of low-cost ethane in feedstocks for ethylene production, but at the cost of propylene production.

“The amount of propylene co-produced depends on the type of feedstock used, and ethane steam cracking is highly selective toward ethylene,” said Jingguang Chen, who holds joint appointments as a senior chemist at Brookhaven Lab and as the Thayer Lindsley Professor of Chemical Engineering at Columbia University. “Technologies that specifically target propylene production are needed to fill the gap for this important chemical.”

One of the existing technologies is propane dehydrogenation, in which two hydrogen atoms are removed from propane (C3H8) to make propylene (C3H6). But this process is very energy-intensive because of the high temperatures required to obtain substantial propylene yields. Though adding oxygen to the propane feed lowers the amount of energy required, in the presence of excess oxygen, propane burns to form water and carbon dioxide.

A new route for propylene production

In this study, the scientists found a more environmentally and energy-friendly approach by introducing carbon dioxide as a reactant, instead of a product.

“Carbon dioxide serves as the oxidant, reacting with propane to produce propylene, water, and carbon monoxide,” said Elaine Gomez, a PhD candidate in chemical engineering at Columbia University and member of Chen’s research group. Gomez is the first author on a recently published Nature Communications article describing the work.

In order for this reaction to proceed, the scientists had to design a catalyst that could perform two functions: activate carbon dioxide (a very stable molecule) and break a carbon-hydrogen (C-H) bond.

“The foundation of our catalyst is ceria, or cerium oxide, which activates carbon dioxide by freely exchanging oxygen,” explained Gomez. “On top of that support, we add the metals iron and nickel, which can break the C-H bond.”

On the basis of previous work conducted by Chen’s group, the team had a hunch about which catalyst to pick. Using computational resources at Brookhaven Lab’s Center for Functional Nanomaterials and Lawrence Berkeley’s National Energy Research Scientific Computing Center (both DOE Office of Science User Facilities), Brookhaven chemist Ping Liu and research associate Shyam Kattel calculated the amount of energy required for different steps of the catalytic reaction to proceed. Their calculations were based on x-ray absorption spectroscopy studies that Gomez and co-authors Bingham Yan and Siyu Yao of Brookhaven’s Chemistry Department performed at the Stanford Synchrotron Radiation Lightsource at SLAC National Accelerator Laboratory and the Advanced Photon Source at Argonne National Lab (also DOE Office of Science User Facilities) to identify the structure and composition of the catalyst’s active sites under reaction conditions. The resulting spectra revealed that the surface of the iron-nickel catalyst is oxidized during the reaction, and the calculations showed that this iron oxide–nickel interface encourages the breaking of the C-H bond.

“A computational method called density functional theory [DFT] allows us to calculate the thermodynamics and kinetics of the reaction pathway with a given catalyst to determine whether C-H bond breaking is energetically favorable,” said Kattel. “DFT predicts that the iron- and nickel-based catalyst is a good candidate.”

Gomez confirmed this prediction through flow reactor studies, in which the different reactant gases are fed from storage tanks into a single line connecting to a U-shaped glass-tube reactor. The gas mixture flows in one end of the tube and reacts with the powdered catalyst (at the temperature the catalyst is active—in this case, around 1000 degrees Fahrenheit) packed into the tube’s other end. As the products emerge, a separation technique called gas chromatography can be used to identify the type and quantities of chemicals present. By comparing the amounts of reactants consumed and products made, scientists can determine the catalyst’s selectivity toward the desired product. In this experiment, the selectivity was more than 50 percent for converting propane into propylene.

Using the same ceria support but replacing iron with platinum, the scientists promoted a different reaction pathway in which carbon-carbon bonds are broken to produce carbon monoxide and hydrogen—a combination known as synthesis gas (syngas), an intermediate for the production of ammonia, methanol, and other chemicals.

“Both catalysts are active at the same temperature, but by tuning their chemical composition, we can steer the reaction to produce propylene or syngas,” said Chen.

“We plan to use our current in-depth understanding of the reaction mechanism to further improve the conversion of propane into propylene,” said Liu. “This understanding enables the rational screening of catalysts at a theoretical level, and the promising candidates will be synthesized and tested experimentally.”

“We hope that industry and academia will consider our new route, which consumes a greenhouse gas and requires less energy than traditional propylene production methods,” said Gomez. “Translating our discovery into a commercialized technology could help meet the global demand for this high-value chemical.”

The work was supported by the DOE Office of Science.

Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

Follow @BrookhavenLab on Twitter or find us on Facebook.

X
X
X
  • Filters

  • × Clear Filters

Neutrons Produce First Direct 3D Maps of Water During Cell Membrane Fusion

New 3D maps of water distribution during cellular membrane fusion could lead to new treatments for diseases associated with cell fusion. Using neutron diffraction at Oak Ridge National Laboratory, scientists made the first direct observations of water in lipid bilayers modeling cell membrane fusion.

Chemists Demonstrate Sustainable Approach to Carbon Dioxide Capture From Air

Chemists at Oak Ridge National Laboratory have demonstrated a practical, energy-efficient method of capturing carbon dioxide directly from air. If deployed at large scale and coupled to geologic storage, the technique may bolster the portfolio of responses to global climate change.

Nucleation a boon to sustainable nanomanufacturing

Young-Shin Jun, professor of energy, environmental & chemical engineering in the School of Engineering & Applied Science, and Quingun Li, a former doctoral student in her lab, are the first to measure the activation energy and kinetic factors of calcium carbonate's nucleation, both key to predicting and controlling the process.

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Greater Than the Sum of Its Parts

Argonne scientists and their collaborators have developed a new model that merges basic electrochemical theory with theories used in different contexts, such as the study of photoelectrochemistry and semiconductor physics, to describe phenomena that occur in any electrode.

A prize-winning measurement device could aid a wide range of industries

Companies dealing with liquids ranging from wastewater to molten metals could benefit from a prize-winning device developed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University.

After 150 years, a Breakthrough in Understanding the Conversion of CO2 to Electrofuels

Using surface-enhanced Raman spectroscopy, Columbia Engineers are first to observe how CO2 is activated at the electrode-electrolyte interface; their finding shifts the catalyst design from trial-and-error paradigm to a rational approach and could lead to alternative, cheaper, and safer renewable energy storage.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

X-Rays Uncover a Hidden Property That Leads to Failure in a Lithium-Ion Battery Material

X-ray experiments at the Department of Energy's SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought.

Graphene helps protect photocathodes for physics experiments

Argonne researchers have used thin sheets of graphene to prevent photocathode materials from interacting with air, which increases their lifetimes. Photocathodes are used to convert light to electricity in accelerators and other physics experiments.


  • Filters

  • × Clear Filters

Cheng wins Midwest Energy News' 40 Under 40 Award

Lei Cheng, an assistant chemist in the Materials Science division at the U.S. Department of Energy's (DOE) Argonne National Laboratory, has received a Midwest Energy News 40 Under 40 Award.

JCESR renewed for another five years

The U.S. Department of Energy (DOE) today announced its decision to renew the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne National Laboratory and focused on advancing battery science and technology.

Binghamton designated as NextFlex New York Node for flexible hybrid electronics initiative

NextFlex has designated Binghamton University to be the New York "Node" for its flexible hybrid electronics (FHE) initiative. As the NextFlex New York Node, Binghamton will design, develop and manufacture tools; process materials and products for flexible hybrid electronics; and attract, train and employ an advanced manufacturing workforce, building on the region's existing electronics manufacturing base.

First Particle Tracks Seen in Prototype for International Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE). DUNE's scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe.

Tais Gorkhover Wins LCLS Young Investigator Award for Pioneering Novel X-ray Imaging Methods

Tais Gorkhover, a principal investigator with the Stanford PULSE Institute, will receive the 2018 LCLS Young Investigator Award, granted to early-career scientists in recognition of exceptional research using the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy's SLAC National Accelerator Laboratory.

ORNL, United Kingdom Lab Partner on Nuclear Energy Research

The United Kingdom's National Nuclear Laboratory and the U.S. Department of Energy's Oak Ridge National Laboratory have agreed to cooperate on a wide range of nuclear energy research and development efforts that leverage both organizations' unique expertise and capabilities.

Nat Fisch receives Fusion Power Associates' Distinguished Career Award

Feature describes lifetime career award for PPPL physicist and professor Nat Fisch.

Wells Fargo Innovation Incubator Expands Focus to Include the Food-Water-Energy Interconnection

The Wells Fargo Innovation Incubator (IN2), a technology incubator and platform funded by the Wells Fargo Foundation and administered by the National Renewable Energy Laboratory (NREL), is expanding its program to advance technologies that address the interconnection of food, water and energy.

Graham George receives Lytle Award for contributions to X-ray absorption spectroscopy

Graham Neil George, professor and Canada Research Chair in X-ray Absorption Spectroscopy (XAS) at the University of Saskatchewan, has been chosen to receive the 2018 Farrel W. Lytle Award for his outstanding contributions to synchrotron science at the Department of Energy's SLAC National Accelerator Laboratory.

UIC company develops hybrid air-conditioning system with help from DOE

NETenergy, a clean tech startup company based on technology developed at the University of Illinois at Chicago and licensed from UIC, will commercialize its unique hybrid, super-efficient air-conditioning system with funding from the U.S. Department of Energy.The $500,000 grant was awarded to NETenergy's partner, National Renewable Energy Laboratory, as part of the DOE's Technology Commercialization Fund.


  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

Scaling Up Single-Crystal Graphene

New method can make films of atomically thin carbon that are over a foot long.

Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

New Electron Glasses Sharpen Our View of Atomic-Scale Features

A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

Getting an Up-Close, 3-D View of Gold Nanostars

Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

Small, Short-Lived Drops of Early Universe Matter

Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.

Tuning Terahertz Beams with Nanoparticles

Scientists uncover a way to control terahertz radiation using tiny engineered particles in a magnetic field, potentially opening the doors for better medical and environmental sensors.


Spotlight

Thursday September 06, 2018, 01:05 PM

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

Tuesday September 04, 2018, 11:30 AM

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

Friday August 31, 2018, 06:05 PM

The Gridlock State

California State University (CSU) Chancellor's Office

Friday August 31, 2018, 02:05 PM

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Friday August 24, 2018, 11:05 AM

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Wednesday August 22, 2018, 01:05 PM

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Wednesday August 22, 2018, 10:05 AM

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Monday August 20, 2018, 12:05 PM

Changing How Buildings Are Made

Washington University in St. Louis

Thursday August 16, 2018, 12:05 PM

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory





Showing results

0-4 Of 2215