Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-05-24 16:45:35
  • Article ID: 695125

Better, Faster, Stronger: Building Batteries That Don't Go Boom

  • Credit: Sarah Bird/Michigan Tech

    The diamond-tipped probe Herbert and Hackney use for their research is incredibly sensitive and must be housed in a compartment that muffles any sort of vibrations.

  • Credit: Sarah Bird/Michigan Tech

    Stephen Hackney, professor, and Erik Herbert, assistant professor, both of materials science and engineering, reseach the properties of lithium at the nanoscale to understand how the metal reacts under pressure with an eye toward improving solid-state batteries.

  • Credit: Sarah Bird/Michigan Tech

    The Olympus microscope system Herbert and Hackney use to perform indentation procedures on lithium films. The films, because they are extremely reactive to air and water, must be handled in a sealed compartment filled with argon gas.

There’s an old saying: “You must learn to walk before you learn to run.” Despite such wisdom, numerous industries skip the basics and sign up for marathons instead, including the battery industry.

Lithium ion batteries hold incredible promise for improved storage capacity, but they are volatile. We’ve all heard the news about lithium ion batteries in phones—most notably the Samsung Galaxy 7—causing phones to catch fire.

Much of the problem arises from the use of flammable liquid electrolyte inside the battery. One approach is to use a non-flammable solid electrolyte together with a lithium metal electrode. This would increase the energy of the battery while at the same time decreasing the possibility of a fire.

Essentially, the destination is building next generation solid-state batteries that don’t go boom. The journey is to fundamentally understand lithium.

“Everybody is just looking at the energy storage components of the battery,” says Erik Herbert, assistant professor of materials science and engineering at Michigan Technological University. “Very few research groups are interested in understanding the mechanical elements. But low and behold, we’re discovering that the mechanical properties of lithium itself may be the key piece of the puzzle.”

Michigan Tech researchers contribute significantly to gaining a fundamental understanding of lithium with results published today in an invited three-paper series in the Journal of Materials Research, published jointly by the Materials Research Society and Cambridge University Press. Herbert and Stephen Hackney, professor of materials science and engineering, along with Violet Thole, a graduate student at Michigan Tech, Nancy Dudney at Oak Ridge National Laboratory and Sudharshan Phani at the International Advanced Research Centre for Powder Metallurgy and New Materials, share results that underscore the significance of lithium’s mechanical behavior in controlling the performance and safety of next generation batteries.

Like a freeze-thaw cycle damaging concrete, lithium dendrites damage batteries

Lithium is an extremely reactive metal, which makes it prone to misbehavior. But it is also very good at storing energy. We want our phones (and computers, tablets and other electronic devices) to charge as quickly as possible, and so battery manufacturers face twin pressures: Make batteries that charge very quickly, passing a charge between the cathode and anode as fast as possible, and make the batteries reliable despite being charged repeatedly. 

Lithium is a very soft metal, but it doesn’t behave as expected during battery operation. Mounting pressure that inextricably occurs during charging and discharging a battery results in microscopic fingers of lithium called dendrites to fill pre-existing and unavoidable microscopic flaws—grooves, pores and scratches—at the interface between the lithium anode and the solid electrolyte separator.

During continued cycling, these dendrites can force their way into, and eventually through, the solid electrolyte layer that physically separates the anode and cathode. Once a dendrite reaches the cathode, the device short circuits and fails, often catastrophically. Herbert and Hackney’s research focuses on how lithium mitigates the pressure that naturally develops during charging and discharging a solid-state battery. 

Their work documents the remarkable behavior of lithium at submicron length scales—drilling down into the lithium’s smallest and arguably most befuddling attributes. By indenting lithium films with a diamond-tipped probe to deform the metal, the researchers explore how the metal reacts to pressure. Their results confirm the unexpectedly high strength of lithium at small-length scales reported earlier this year by researchers at Cal Tech.

Herbert and Hackney build on that research by providing the inaugural, mechanical explanation of lithium’s surprisingly high strength.

Lithium’s ability to diffuse or rearrange its own atoms or ions in an attempt to alleviate the pressure imposed by the indenter tip, showed researchers the importance of the speed at which lithium is deformed (which is related to how fast batteries are charged and discharged), as well as the effects of defects and deviations in the arrangement of lithium ions that comprise the anode. 

Drilling down to understand the behavior of lithium

In the article “Nanoindentation of high-purity vapor deposited lithium films: The elastic modulus,” researchers measure the elastic properties of lithium to reflect changes in the physical orientation of lithium ions. These results emphasize the necessity of incorporating lithium’s orientation-dependent elastic properties into all future simulation work. Herbert and Hackney also provide experimental evidence that indicates lithium may have an enhanced ability to transform mechanical energy into heat at length scales less than 500 nanometers.

In the article that follows, “Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of diffusion-mediated flow,” Herbert and Hackney document lithium’s remarkably high strength at length scales less than 500 nanometers, and they provide their original framework, which aims to explain how lithium’s ability to manage pressure is controlled by diffusion and the rate at which the material is deformed.

Finally, in “Nanoindentation of high-purity vapor deposited lithium films: A mechanistic rationalization of the transition from diffusion to dislocation-mediated flow,” the authors provide a statistical model that explains the conditions under which lithium undergoes an abrupt transition that further facilitates its ability to alleviate pressure. They also provide a model that directly links the mechanical behavior of lithium to the performance of the battery.

“We’re trying to understand the mechanisms by which lithium alleviates pressure at length scales that are commensurate with interfacial defects,” Herbert says. Improving our understanding of this fundamental issue will directly enable the development of a stable interface that promotes safe, long-term and high-rate cycling performance.

Says Herbert: “I hope our work has a significant impact on the direction people take trying to develop next-gen storage devices.”

X
X
X
  • Filters

  • × Clear Filters

How a Molecular Signal Helps Plant Cells Decide When to Make Oil

Scientists identify new details of how a sugar-signaling molecule helps regulate oil production in plant cells. The work could point to new ways to engineer plants to produce substantial amounts of oil for use as biofuels or in the production of other oil-based products.

Neutrons Produce First Direct 3D Maps of Water During Cell Membrane Fusion

New 3D maps of water distribution during cellular membrane fusion could lead to new treatments for diseases associated with cell fusion. Using neutron diffraction at Oak Ridge National Laboratory, scientists made the first direct observations of water in lipid bilayers modeling cell membrane fusion.

Chemists Demonstrate Sustainable Approach to Carbon Dioxide Capture From Air

Chemists at Oak Ridge National Laboratory have demonstrated a practical, energy-efficient method of capturing carbon dioxide directly from air. If deployed at large scale and coupled to geologic storage, the technique may bolster the portfolio of responses to global climate change.

Nucleation a boon to sustainable nanomanufacturing

Young-Shin Jun, professor of energy, environmental & chemical engineering in the School of Engineering & Applied Science, and Quingun Li, a former doctoral student in her lab, are the first to measure the activation energy and kinetic factors of calcium carbonate's nucleation, both key to predicting and controlling the process.

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Greater Than the Sum of Its Parts

Argonne scientists and their collaborators have developed a new model that merges basic electrochemical theory with theories used in different contexts, such as the study of photoelectrochemistry and semiconductor physics, to describe phenomena that occur in any electrode.

A prize-winning measurement device could aid a wide range of industries

Companies dealing with liquids ranging from wastewater to molten metals could benefit from a prize-winning device developed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University.

After 150 years, a Breakthrough in Understanding the Conversion of CO2 to Electrofuels

Using surface-enhanced Raman spectroscopy, Columbia Engineers are first to observe how CO2 is activated at the electrode-electrolyte interface; their finding shifts the catalyst design from trial-and-error paradigm to a rational approach and could lead to alternative, cheaper, and safer renewable energy storage.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

X-Rays Uncover a Hidden Property That Leads to Failure in a Lithium-Ion Battery Material

X-ray experiments at the Department of Energy's SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought.


  • Filters

  • × Clear Filters

Berkeley Lab to Build an Advanced Quantum Computing Testbed

Lawrence Berkeley National Laboratory (Berkeley Lab) will receive $30 million over five years from the U.S. Department of Energy to build and operate an Advanced Quantum Testbed (AQT) allowing researchers to explore superconducting quantum processors to advance scientific research

Cheng wins Midwest Energy News' 40 Under 40 Award

Lei Cheng, an assistant chemist in the Materials Science division at the U.S. Department of Energy's (DOE) Argonne National Laboratory, has received a Midwest Energy News 40 Under 40 Award.

JCESR renewed for another five years

The U.S. Department of Energy (DOE) today announced its decision to renew the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne National Laboratory and focused on advancing battery science and technology.

Binghamton designated as NextFlex New York Node for flexible hybrid electronics initiative

NextFlex has designated Binghamton University to be the New York "Node" for its flexible hybrid electronics (FHE) initiative. As the NextFlex New York Node, Binghamton will design, develop and manufacture tools; process materials and products for flexible hybrid electronics; and attract, train and employ an advanced manufacturing workforce, building on the region's existing electronics manufacturing base.

First Particle Tracks Seen in Prototype for International Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE). DUNE's scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe.

Tais Gorkhover Wins LCLS Young Investigator Award for Pioneering Novel X-ray Imaging Methods

Tais Gorkhover, a principal investigator with the Stanford PULSE Institute, will receive the 2018 LCLS Young Investigator Award, granted to early-career scientists in recognition of exceptional research using the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy's SLAC National Accelerator Laboratory.

ORNL, United Kingdom Lab Partner on Nuclear Energy Research

The United Kingdom's National Nuclear Laboratory and the U.S. Department of Energy's Oak Ridge National Laboratory have agreed to cooperate on a wide range of nuclear energy research and development efforts that leverage both organizations' unique expertise and capabilities.

Nat Fisch receives Fusion Power Associates' Distinguished Career Award

Feature describes lifetime career award for PPPL physicist and professor Nat Fisch.

Wells Fargo Innovation Incubator Expands Focus to Include the Food-Water-Energy Interconnection

The Wells Fargo Innovation Incubator (IN2), a technology incubator and platform funded by the Wells Fargo Foundation and administered by the National Renewable Energy Laboratory (NREL), is expanding its program to advance technologies that address the interconnection of food, water and energy.

Graham George receives Lytle Award for contributions to X-ray absorption spectroscopy

Graham Neil George, professor and Canada Research Chair in X-ray Absorption Spectroscopy (XAS) at the University of Saskatchewan, has been chosen to receive the 2018 Farrel W. Lytle Award for his outstanding contributions to synchrotron science at the Department of Energy's SLAC National Accelerator Laboratory.


  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

Scaling Up Single-Crystal Graphene

New method can make films of atomically thin carbon that are over a foot long.

Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

New Electron Glasses Sharpen Our View of Atomic-Scale Features

A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

Getting an Up-Close, 3-D View of Gold Nanostars

Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

Small, Short-Lived Drops of Early Universe Matter

Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.

Tuning Terahertz Beams with Nanoparticles

Scientists uncover a way to control terahertz radiation using tiny engineered particles in a magnetic field, potentially opening the doors for better medical and environmental sensors.


Spotlight

Friday September 21, 2018, 01:05 PM

"Model" students enjoy Argonne campus life

Argonne National Laboratory

Thursday September 06, 2018, 01:05 PM

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

Tuesday September 04, 2018, 11:30 AM

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

Friday August 31, 2018, 06:05 PM

The Gridlock State

California State University (CSU) Chancellor's Office

Friday August 31, 2018, 02:05 PM

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Friday August 24, 2018, 11:05 AM

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Wednesday August 22, 2018, 01:05 PM

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Wednesday August 22, 2018, 10:05 AM

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Monday August 20, 2018, 12:05 PM

Changing How Buildings Are Made

Washington University in St. Louis

Thursday August 16, 2018, 12:05 PM

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility





Showing results

0-4 Of 2215