Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-06-04 07:05:04
  • Article ID: 695496

From Leaves to Clouds: Revealing How Trees' Emissions Shape The Air Around Us

Data from the GoAmazon project is illuminating the connections between forests and atmosphere.

  • Credit: Photo courtesy of ARM Climate Research Facility

    Researchers on the GoAmazon project had this view from the top of the Eddy Flux Tower in the canopy, where they measured trees' emissions.

  • Credit: Photo courtesy of ARM Climate Research Facility

    To collect data on volatile organic compounds and secondary organic aerosols in the atmosphere, the GoAmazon team collected data from the top of the Eddy Flux Tower.

As he gazed down on the Amazon from above, shining leaves formed waves of foliage. The wind rippled through them, creating eddies and pools of green. From this point of view, some people may have just seen trees. But from his lofty perch, Kolby Jardine, a researcher at the Department of Energy's (DOE) Lawrence Berkeley National Laboratory, saw more — the forest's complex ecological cycle. Starting from emissions put out by the leaves to the clouds high above, each component influences all of the others.

Jardine was part of the DOE Office of Science's "Green Ocean Amazon" or GoAmazon project, which focused on better understanding the Amazon Basin's water cycle. By taking data on a swaying, narrow platform taller than a 10-story building, Jardine hoped to peer into one part of this system — how tropical leaves produce emissions.

"You really feel what it's like to be a leaf in the upper canopy," he said.

The Amazon is the world's largest and most diverse tropical rainforest, stretching over nine countries. While human-made emissions pollute the air in the dry season, the air above the Amazon in the wet season is one of the cleanest places on earth.

That contrast makes it the perfect place for Jardine and other researchers to study how trees let off emissions and what effects those emissions have on climate.

Trees and other plants produce hundreds to thousands of volatile organic compounds (VOCs). These carbon-based chemicals easily evaporate from a liquid or solid into air at much lower temperatures than most chemicals. For example, your nose is sensing VOCs when you smell pine trees. Other VOCs are human-made, such as ones that produce the "new car smell." While human-made VOCs dominate in urban areas, VOCs produced by trees play a major role in the Amazon.

Within minutes to hours of trees releasing them, VOCs react with ozone and other chemicals in the atmosphere. They group together to become larger compounds or react with human-made emissions from diesel vehicles or fossil fuel-burning power plants. In both cases, they form secondary organic aerosols (SOAs), solid or liquid particles suspended in gas.

From forming smog to influencing cloud formation, SOAs drive a number of atmospheric and climatic processes. The interactions between aerosols, VOCs, and other biological emissions create one of the biggest uncertainties in climate models. The Department of Energy's Office of Science is supporting research on VOCs from trees and the SOAs they form.

The Big Impact of Tiny Particles

For compounds that often last fewer than two hours before reacting with something else, VOCs have a big impact. That's especially true in the tropics, where 30 to 50 percent of the trees emit VOCs. Via the SOAs they transform into, VOCs affect weather and climate in two major ways.

First, SOAs make up a large proportion of the tiny particles in the atmosphere. They influence how much sunlight the atmosphere absorbs or scatters, and thus the amount of light and heat that reaches Earth's surface.

Second, water vapor condenses on SOAs. Sometimes, the particle collects enough water to become a cloud droplet. If it continues to grow, it can become a rain droplet that falls to earth. The GoAmazon project tackled the challenge of gathering data on VOCs, SOAs, and their effects on weather. The GoAmazon team took data from January 2014 to December 2015 using the Atmospheric Radiation Measurement (ARM) Climate Research Facility, an Office of Science user facility.

What Happens When a Tree Breathes?

To map the role of biological VOCs in the rainforest, scientists have to understand how and why trees produce them. That's easier said than done.

The number of factors that determine VOC production is staggering. The season, species of tree, leaf age, carbon dioxide concentration in the air around the tree, light, and temperature are just a few. In addition, plants not only release VOCs; some even take certain VOCs in.

Another challenge is simply taking data in and above the forest canopy. One of researchers' main ways to sample air is to fly custom planes stuffed full of complex instruments right over the canopy.

In contrast to models, "the aircraft-based measurements provide [data on] the real atmosphere," said Jian Wang, a scientist at DOE's Brookhaven National Laboratory.

To understand the levels of isoprene (a major VOC) just above the canopy, the GoAmazon team ran eight different research flights in both the wet and dry seasons. Their data showed isoprene emission rates were three times higher than satellite data had revealed and 35 percent higher than models predicted. In particular, they found that neither models nor satellites took into account different elevations or the variety of plant species in the Amazon.

"We have to know who the players are and what their sources are," said Jardine.

Jardine and his team had a complementary approach — they perched for days on end atop a narrow tower rising out of the jungle. After hiking through the forest before sunrise, they sampled gases from different levels of the tower every 10 minutes. They then analyzed the contents using a specialized instrument that uses chemicals' masses to identify them.

Tracking the differences, they found that trees produced far more isoprene during the day than at night and during the dry season than the wet season. The more sunlight and higher the temperatures, the more isoprene plants emitted. The team also found that the more stress the leaves were under, the more isoprene they produced.

Both studies illustrated how complex the influences on trees' VOC production are. Taking these influences into account is essential to improving the data that goes into climate models.

The tower study also found that in particularly stressful circumstances, VOCs could react with oxygen inside of the plants themselves. Previous studies Jardine participated in with both loblolly pine needles and mango leaves show that this phenomenon extends beyond the Amazon. The fact that plants may produce secondary products themselves is another factor models need to include. In addition, it points to the potential importance of VOCs within plants themselves. They may actually help plants deal with environmental stressors.

What It Takes to Become a Secondary Organic Aerosol

Once trees release emissions into the air, even more interactions emerge. Which VOCs form which SOAs depends on the level of the VOCs, the gases the VOCs react with, and how much those mix together. VOCs can often react with oxygen and other chemicals several different times as they move through the atmosphere, each time producing different products. "It is important to know what will happen to the VOCs and SOAs when they're transported [away] from sources," said Alla Zelenyuk-Imre, a researcher at DOE's Pacific Northwest National Laboratory (PNNL). These transformations affect both the SOAs' characteristics and how they influence cloud formation.

To investigate these reactions, scientists use both field and laboratory studies. Field studies, such as GoAmazon, offer real-world data. But scientists often can't fully analyze these chemical reactions in the field.

"The fundamental lab studies can help understand and interpret the more complex observation data," said Nga Lee "Sally" Ng, a researcher at Georgia Tech. "Both the lab and the field studies really complement each other."

A 2015 study led by Ng expanded scientists' understanding of isoprene's role in SOA formation. Previously, most scientists thought that the levels of nitrogen oxides — often produced by cars, trucks, and fossil fuel-burning power plants — determined SOA levels. Her study found that isoprene and the chemicals that form as a result of it were even more important than the nitrogen oxide levels alone. It was the complex interactions between VOCs (including isoprene) and the nitrogen oxides that had the largest effect of all on the SOA's characteristics.

Since then, other laboratory studies have examined how VOCs interact with a variety of pollutants from fossil fuel combustion, including sulfate and ammonia produced by agriculture. In both studies, the human-made emissions coated the biological VOCs. That fundamentally changed both how the VOCs became SOAs and the SOAs' characteristics themselves.

With these insights from the lab, the GoAmazon project examined how these interactions played out in the real world. In particular, the research team dug deep into the relationship between plants' emissions and human-made pollution.

To go where the data were, they flew a plane right through a floating column of pollution from the city of Manaus, which is deep in the Amazon. The scientists found VOCs reacted with oxygen several times faster and more intensely inside the polluted area than outside of it. In addition, the pollution fundamentally changed the process of VOCs turning into SOAs. Researchers measured a number of chemical compounds inside the plume that were absent outside of it.

On the ground, scientists sampled air in a large clearing surrounded by rainforest. By exposing ambient air to high concentrations of the gases that react with VOCs within a container, they simulated the results of days' or months' worth of SOA production. They found there were four to five times more SOAs during the dry season than the wet season. Surprisingly, they also found that there were significantly more SOAs than VOCs alone could produce. That result suggests that VOCs aren't the only gases playing a major role in SOA formation — yet another gap in our understanding.

Up in the Air

To collect data on volatile organic compounds and secondary organic aerosols in the atmosphere, the GoAmazon team collected data from the top of the Eddy Flux Tower.

Things really take off when SOAs drift up into the atmosphere.

"Aerosols act like a seed to form clouds," said Ng. If enough water vapor condenses on them, they can eventually become raindrops.

But a lot has to happen before it rains. SOAs' size, what they're made of, how they move, and how long they've been in the air all determine how well they absorb or release water.

One of the GoAmazon studies looked at how carbon-based particles (mostly natural) and non-carbon-based particles (mostly human-made) absorbed and released water differently. Previous lab studies suggested the way particles collect water vapor depends mostly on the concentrations of pollutants interacting with SOAs. But in the real world, it depended much more on the concentrations of SOAs and other aerosols themselves.

Another GoAmazon study provided results that contradicted commonly held perceptions. Scientists didn't think the tiniest aerosols could affect cloud formation. They simply weren't big enough. But the study found that these tiny particles can actually make storms in the Amazon more intense, clouds bigger, and rain more likely to fall.

"This study opens a new door to understanding how aerosols affect clouds and weather in those warm and humid regions," said Jiwen Fan, another PNNL scientist.

While the study didn't determine if these tiny aerosols developed from VOCs, a follow-up study is looking at this issue. Expanding scientists' knowledge of SOAs' effects on cloud formation helps scientists trace how weather and climate systems change over time.

The Amazon's intertwined ecological relationships, ranging from the trees to the clouds, continues to surprise scientists.

As Jardine said, "Looking at the interfaces of these systems is very challenging, but it's also where most of the opportunity is."


The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information please visit

Shannon Brescher Shea is a senior writer/editor in the Office of Science,

  • Filters

  • × Clear Filters

How a Molecular Signal Helps Plant Cells Decide When to Make Oil

Scientists identify new details of how a sugar-signaling molecule helps regulate oil production in plant cells. The work could point to new ways to engineer plants to produce substantial amounts of oil for use as biofuels or in the production of other oil-based products.

Neutrons Produce First Direct 3D Maps of Water During Cell Membrane Fusion

New 3D maps of water distribution during cellular membrane fusion could lead to new treatments for diseases associated with cell fusion. Using neutron diffraction at Oak Ridge National Laboratory, scientists made the first direct observations of water in lipid bilayers modeling cell membrane fusion.

Chemists Demonstrate Sustainable Approach to Carbon Dioxide Capture From Air

Chemists at Oak Ridge National Laboratory have demonstrated a practical, energy-efficient method of capturing carbon dioxide directly from air. If deployed at large scale and coupled to geologic storage, the technique may bolster the portfolio of responses to global climate change.

Nucleation a boon to sustainable nanomanufacturing

Young-Shin Jun, professor of energy, environmental & chemical engineering in the School of Engineering & Applied Science, and Quingun Li, a former doctoral student in her lab, are the first to measure the activation energy and kinetic factors of calcium carbonate's nucleation, both key to predicting and controlling the process.

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Greater Than the Sum of Its Parts

Argonne scientists and their collaborators have developed a new model that merges basic electrochemical theory with theories used in different contexts, such as the study of photoelectrochemistry and semiconductor physics, to describe phenomena that occur in any electrode.

A prize-winning measurement device could aid a wide range of industries

Companies dealing with liquids ranging from wastewater to molten metals could benefit from a prize-winning device developed by researchers at the U.S. Department of Energy's (DOE) Princeton Plasma Physics Laboratory (PPPL) and Princeton University.

After 150 years, a Breakthrough in Understanding the Conversion of CO2 to Electrofuels

Using surface-enhanced Raman spectroscopy, Columbia Engineers are first to observe how CO2 is activated at the electrode-electrolyte interface; their finding shifts the catalyst design from trial-and-error paradigm to a rational approach and could lead to alternative, cheaper, and safer renewable energy storage.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

X-Rays Uncover a Hidden Property That Leads to Failure in a Lithium-Ion Battery Material

X-ray experiments at the Department of Energy's SLAC National Accelerator Laboratory and Lawrence Berkeley National Laboratory have revealed that the pathways lithium ions take through a common battery material are more complex than previously thought.

  • Filters

  • × Clear Filters

Berkeley Lab to Build an Advanced Quantum Computing Testbed

Lawrence Berkeley National Laboratory (Berkeley Lab) will receive $30 million over five years from the U.S. Department of Energy to build and operate an Advanced Quantum Testbed (AQT) allowing researchers to explore superconducting quantum processors to advance scientific research

Cheng wins Midwest Energy News' 40 Under 40 Award

Lei Cheng, an assistant chemist in the Materials Science division at the U.S. Department of Energy's (DOE) Argonne National Laboratory, has received a Midwest Energy News 40 Under 40 Award.

JCESR renewed for another five years

The U.S. Department of Energy (DOE) today announced its decision to renew the Joint Center for Energy Storage Research (JCESR), a DOE Energy Innovation Hub led by Argonne National Laboratory and focused on advancing battery science and technology.

Binghamton designated as NextFlex New York Node for flexible hybrid electronics initiative

NextFlex has designated Binghamton University to be the New York "Node" for its flexible hybrid electronics (FHE) initiative. As the NextFlex New York Node, Binghamton will design, develop and manufacture tools; process materials and products for flexible hybrid electronics; and attract, train and employ an advanced manufacturing workforce, building on the region's existing electronics manufacturing base.

First Particle Tracks Seen in Prototype for International Neutrino Experiment

The largest liquid-argon neutrino detector in the world has just recorded its first particle tracks, signaling the start of a new chapter in the story of the international Deep Underground Neutrino Experiment (DUNE). DUNE's scientific mission is dedicated to unlocking the mysteries of neutrinos, the most abundant (and most mysterious) matter particles in the universe.

Tais Gorkhover Wins LCLS Young Investigator Award for Pioneering Novel X-ray Imaging Methods

Tais Gorkhover, a principal investigator with the Stanford PULSE Institute, will receive the 2018 LCLS Young Investigator Award, granted to early-career scientists in recognition of exceptional research using the Linac Coherent Light Source (LCLS) X-ray free-electron laser at the Department of Energy's SLAC National Accelerator Laboratory.

ORNL, United Kingdom Lab Partner on Nuclear Energy Research

The United Kingdom's National Nuclear Laboratory and the U.S. Department of Energy's Oak Ridge National Laboratory have agreed to cooperate on a wide range of nuclear energy research and development efforts that leverage both organizations' unique expertise and capabilities.

Nat Fisch receives Fusion Power Associates' Distinguished Career Award

Feature describes lifetime career award for PPPL physicist and professor Nat Fisch.

Wells Fargo Innovation Incubator Expands Focus to Include the Food-Water-Energy Interconnection

The Wells Fargo Innovation Incubator (IN2), a technology incubator and platform funded by the Wells Fargo Foundation and administered by the National Renewable Energy Laboratory (NREL), is expanding its program to advance technologies that address the interconnection of food, water and energy.

Graham George receives Lytle Award for contributions to X-ray absorption spectroscopy

Graham Neil George, professor and Canada Research Chair in X-ray Absorption Spectroscopy (XAS) at the University of Saskatchewan, has been chosen to receive the 2018 Farrel W. Lytle Award for his outstanding contributions to synchrotron science at the Department of Energy's SLAC National Accelerator Laboratory.

  • Filters

  • × Clear Filters

Breaking the Symmetry Between Fundamental Forces

Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

Water Plays Unexpected Role in Forming Minerals

Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

Heavy Particles Get Caught Up in the Flow

First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

Seeing Between the Atoms

New detector enables electron microscope imaging at record-breaking resolution.

Scaling Up Single-Crystal Graphene

New method can make films of atomically thin carbon that are over a foot long.

Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

New Electron Glasses Sharpen Our View of Atomic-Scale Features

A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

Getting an Up-Close, 3-D View of Gold Nanostars

Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

Small, Short-Lived Drops of Early Universe Matter

Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.

Tuning Terahertz Beams with Nanoparticles

Scientists uncover a way to control terahertz radiation using tiny engineered particles in a magnetic field, potentially opening the doors for better medical and environmental sensors.


Friday September 21, 2018, 01:05 PM

"Model" students enjoy Argonne campus life

Argonne National Laboratory

Thursday September 06, 2018, 01:05 PM

Writing Code for a More Skilled and Diverse STEM Workforce

Brookhaven National Laboratory

Tuesday September 04, 2018, 11:30 AM

New graduate student summer school launches at Princeton Plasma Physics Laboratory

Princeton Plasma Physics Laboratory

Friday August 31, 2018, 06:05 PM

The Gridlock State

California State University (CSU) Chancellor's Office

Friday August 31, 2018, 02:05 PM

Meet Jasmine Hatcher and Trishelle Copeland-Johnson

Brookhaven National Laboratory

Friday August 24, 2018, 11:05 AM

Argonne hosts Modeling, Experimentation and Validation Summer School

Argonne National Laboratory

Wednesday August 22, 2018, 01:05 PM

Students affected by Hurricane Maria bring their research to SLAC

SLAC National Accelerator Laboratory

Wednesday August 22, 2018, 10:05 AM

Brookhaven Lab Pays Tribute to 2018 Summer Interns

Brookhaven National Laboratory

Monday August 20, 2018, 12:05 PM

Changing How Buildings Are Made

Washington University in St. Louis

Thursday August 16, 2018, 12:05 PM

CSUMB Selected to Host Architecture at Zero Competition in 2019

California State University, Monterey Bay

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Showing results

0-4 Of 2215