DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2018-06-04 07:05:04
    • Article ID: 695496

    From Leaves to Clouds: Revealing How Trees' Emissions Shape The Air Around Us

    Data from the GoAmazon project is illuminating the connections between forests and atmosphere.

    • Credit: Photo courtesy of ARM Climate Research Facility

      Researchers on the GoAmazon project had this view from the top of the Eddy Flux Tower in the canopy, where they measured trees' emissions.

    • Credit: Photo courtesy of ARM Climate Research Facility

      To collect data on volatile organic compounds and secondary organic aerosols in the atmosphere, the GoAmazon team collected data from the top of the Eddy Flux Tower.

    As he gazed down on the Amazon from above, shining leaves formed waves of foliage. The wind rippled through them, creating eddies and pools of green. From this point of view, some people may have just seen trees. But from his lofty perch, Kolby Jardine, a researcher at the Department of Energy's (DOE) Lawrence Berkeley National Laboratory, saw more — the forest's complex ecological cycle. Starting from emissions put out by the leaves to the clouds high above, each component influences all of the others.

    Jardine was part of the DOE Office of Science's "Green Ocean Amazon" or GoAmazon project, which focused on better understanding the Amazon Basin's water cycle. By taking data on a swaying, narrow platform taller than a 10-story building, Jardine hoped to peer into one part of this system — how tropical leaves produce emissions.

    "You really feel what it's like to be a leaf in the upper canopy," he said.

    The Amazon is the world's largest and most diverse tropical rainforest, stretching over nine countries. While human-made emissions pollute the air in the dry season, the air above the Amazon in the wet season is one of the cleanest places on earth.

    That contrast makes it the perfect place for Jardine and other researchers to study how trees let off emissions and what effects those emissions have on climate.

    Trees and other plants produce hundreds to thousands of volatile organic compounds (VOCs). These carbon-based chemicals easily evaporate from a liquid or solid into air at much lower temperatures than most chemicals. For example, your nose is sensing VOCs when you smell pine trees. Other VOCs are human-made, such as ones that produce the "new car smell." While human-made VOCs dominate in urban areas, VOCs produced by trees play a major role in the Amazon.

    Within minutes to hours of trees releasing them, VOCs react with ozone and other chemicals in the atmosphere. They group together to become larger compounds or react with human-made emissions from diesel vehicles or fossil fuel-burning power plants. In both cases, they form secondary organic aerosols (SOAs), solid or liquid particles suspended in gas.

    From forming smog to influencing cloud formation, SOAs drive a number of atmospheric and climatic processes. The interactions between aerosols, VOCs, and other biological emissions create one of the biggest uncertainties in climate models. The Department of Energy's Office of Science is supporting research on VOCs from trees and the SOAs they form.

    The Big Impact of Tiny Particles

    For compounds that often last fewer than two hours before reacting with something else, VOCs have a big impact. That's especially true in the tropics, where 30 to 50 percent of the trees emit VOCs. Via the SOAs they transform into, VOCs affect weather and climate in two major ways.

    First, SOAs make up a large proportion of the tiny particles in the atmosphere. They influence how much sunlight the atmosphere absorbs or scatters, and thus the amount of light and heat that reaches Earth's surface.

    Second, water vapor condenses on SOAs. Sometimes, the particle collects enough water to become a cloud droplet. If it continues to grow, it can become a rain droplet that falls to earth. The GoAmazon project tackled the challenge of gathering data on VOCs, SOAs, and their effects on weather. The GoAmazon team took data from January 2014 to December 2015 using the Atmospheric Radiation Measurement (ARM) Climate Research Facility, an Office of Science user facility.

    What Happens When a Tree Breathes?

    To map the role of biological VOCs in the rainforest, scientists have to understand how and why trees produce them. That's easier said than done.

    The number of factors that determine VOC production is staggering. The season, species of tree, leaf age, carbon dioxide concentration in the air around the tree, light, and temperature are just a few. In addition, plants not only release VOCs; some even take certain VOCs in.

    Another challenge is simply taking data in and above the forest canopy. One of researchers' main ways to sample air is to fly custom planes stuffed full of complex instruments right over the canopy.

    In contrast to models, "the aircraft-based measurements provide [data on] the real atmosphere," said Jian Wang, a scientist at DOE's Brookhaven National Laboratory.

    To understand the levels of isoprene (a major VOC) just above the canopy, the GoAmazon team ran eight different research flights in both the wet and dry seasons. Their data showed isoprene emission rates were three times higher than satellite data had revealed and 35 percent higher than models predicted. In particular, they found that neither models nor satellites took into account different elevations or the variety of plant species in the Amazon.

    "We have to know who the players are and what their sources are," said Jardine.

    Jardine and his team had a complementary approach — they perched for days on end atop a narrow tower rising out of the jungle. After hiking through the forest before sunrise, they sampled gases from different levels of the tower every 10 minutes. They then analyzed the contents using a specialized instrument that uses chemicals' masses to identify them.

    Tracking the differences, they found that trees produced far more isoprene during the day than at night and during the dry season than the wet season. The more sunlight and higher the temperatures, the more isoprene plants emitted. The team also found that the more stress the leaves were under, the more isoprene they produced.

    Both studies illustrated how complex the influences on trees' VOC production are. Taking these influences into account is essential to improving the data that goes into climate models.

    The tower study also found that in particularly stressful circumstances, VOCs could react with oxygen inside of the plants themselves. Previous studies Jardine participated in with both loblolly pine needles and mango leaves show that this phenomenon extends beyond the Amazon. The fact that plants may produce secondary products themselves is another factor models need to include. In addition, it points to the potential importance of VOCs within plants themselves. They may actually help plants deal with environmental stressors.

    What It Takes to Become a Secondary Organic Aerosol

    Once trees release emissions into the air, even more interactions emerge. Which VOCs form which SOAs depends on the level of the VOCs, the gases the VOCs react with, and how much those mix together. VOCs can often react with oxygen and other chemicals several different times as they move through the atmosphere, each time producing different products. "It is important to know what will happen to the VOCs and SOAs when they're transported [away] from sources," said Alla Zelenyuk-Imre, a researcher at DOE's Pacific Northwest National Laboratory (PNNL). These transformations affect both the SOAs' characteristics and how they influence cloud formation.

    To investigate these reactions, scientists use both field and laboratory studies. Field studies, such as GoAmazon, offer real-world data. But scientists often can't fully analyze these chemical reactions in the field.

    "The fundamental lab studies can help understand and interpret the more complex observation data," said Nga Lee "Sally" Ng, a researcher at Georgia Tech. "Both the lab and the field studies really complement each other."

    A 2015 study led by Ng expanded scientists' understanding of isoprene's role in SOA formation. Previously, most scientists thought that the levels of nitrogen oxides — often produced by cars, trucks, and fossil fuel-burning power plants — determined SOA levels. Her study found that isoprene and the chemicals that form as a result of it were even more important than the nitrogen oxide levels alone. It was the complex interactions between VOCs (including isoprene) and the nitrogen oxides that had the largest effect of all on the SOA's characteristics.

    Since then, other laboratory studies have examined how VOCs interact with a variety of pollutants from fossil fuel combustion, including sulfate and ammonia produced by agriculture. In both studies, the human-made emissions coated the biological VOCs. That fundamentally changed both how the VOCs became SOAs and the SOAs' characteristics themselves.

    With these insights from the lab, the GoAmazon project examined how these interactions played out in the real world. In particular, the research team dug deep into the relationship between plants' emissions and human-made pollution.

    To go where the data were, they flew a plane right through a floating column of pollution from the city of Manaus, which is deep in the Amazon. The scientists found VOCs reacted with oxygen several times faster and more intensely inside the polluted area than outside of it. In addition, the pollution fundamentally changed the process of VOCs turning into SOAs. Researchers measured a number of chemical compounds inside the plume that were absent outside of it.

    On the ground, scientists sampled air in a large clearing surrounded by rainforest. By exposing ambient air to high concentrations of the gases that react with VOCs within a container, they simulated the results of days' or months' worth of SOA production. They found there were four to five times more SOAs during the dry season than the wet season. Surprisingly, they also found that there were significantly more SOAs than VOCs alone could produce. That result suggests that VOCs aren't the only gases playing a major role in SOA formation — yet another gap in our understanding.

    Up in the Air

    To collect data on volatile organic compounds and secondary organic aerosols in the atmosphere, the GoAmazon team collected data from the top of the Eddy Flux Tower.

    Things really take off when SOAs drift up into the atmosphere.

    "Aerosols act like a seed to form clouds," said Ng. If enough water vapor condenses on them, they can eventually become raindrops.

    But a lot has to happen before it rains. SOAs' size, what they're made of, how they move, and how long they've been in the air all determine how well they absorb or release water.

    One of the GoAmazon studies looked at how carbon-based particles (mostly natural) and non-carbon-based particles (mostly human-made) absorbed and released water differently. Previous lab studies suggested the way particles collect water vapor depends mostly on the concentrations of pollutants interacting with SOAs. But in the real world, it depended much more on the concentrations of SOAs and other aerosols themselves.

    Another GoAmazon study provided results that contradicted commonly held perceptions. Scientists didn't think the tiniest aerosols could affect cloud formation. They simply weren't big enough. But the study found that these tiny particles can actually make storms in the Amazon more intense, clouds bigger, and rain more likely to fall.

    "This study opens a new door to understanding how aerosols affect clouds and weather in those warm and humid regions," said Jiwen Fan, another PNNL scientist.

    While the study didn't determine if these tiny aerosols developed from VOCs, a follow-up study is looking at this issue. Expanding scientists' knowledge of SOAs' effects on cloud formation helps scientists trace how weather and climate systems change over time.

    The Amazon's intertwined ecological relationships, ranging from the trees to the clouds, continues to surprise scientists.

    As Jardine said, "Looking at the interfaces of these systems is very challenging, but it's also where most of the opportunity is."

     

    The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information please visit https://science.energy.gov.

    Shannon Brescher Shea is a senior writer/editor in the Office of Science, shannon.shea@science.doe.gov.

    X
    X
    X
    • Filters

    • × Clear Filters

    Missing gamma-ray blobs shed new light on dark matter, cosmic magnetism

    Scientists, including researchers from the Department of Energy's SLAC National Accelerator Laboratory, have compiled the most detailed catalog of such blobs using eight years of data collected with the Large Area Telescope (LAT) on NASA's Fermi Gamma-Ray Space Telescope. The blobs, including 19 gamma-ray sources that weren't known to be extended before, provide crucial information on how stars are born, how they die, and how galaxies spew out matter trillions of miles into space.

    Applying Auto Industry's Fuel-Efficiency Standards to Agriculture Could Net Billions in Corn Sector, Researchers Conclude

    Adopting benchmarks similar to the fuel-efficiency standards used by the auto industry in the production of fertilizer could yield $5-8 billion in economic benefits for the U.S. corn sector alone, researchers have concluded in a new analysis.

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    A paper published in Nature Communications by Sufei Shi, assistant professor of chemical and biological engineering at Rensselaer, increases our understanding of how light interacts with atomically thin semiconductors and creates unique excitonic complex particles, multiple electrons, and holes strongly bound together.

    Next-Gen Ultrafast Optical Fiber-Based Electron Gun to Reveal Atomic Motions During Transition State

    A new method enables researchers to directly observe and capture atomic motions at surfaces and interfaces in real time.

    Intense Microwave Pulse Ionizes Its Own Channel Through Plasma

    Researchers experimentally observed the ionization-induced channeling of an intense microwave beam propagating through a neutral gas (>103 Pa).

    Ancient Pigment Can Boost Energy Efficiency

    Egyptian blue, derived from calcium copper silicate, was routinely used on ancient depictions of gods and royalty. Previous studies have shown that when Egyptian blue absorbs visible light, it then emits light in the near-infrared range. Now a team led by researchers at Lawrence Berkeley National Laboratory has confirmed the pigment's fluorescence can be 10 times stronger than previously thought.

    Expanding Fungal Diversity, One Cell at a Time

    Reported October 8, 2018, in Nature Microbiology, a team led by U.S. Department of Energy Joint Genome Institute researchers developed a pipeline to generate genomes from single cells of uncultivated fungi. The approach was tested on several uncultivated species representing early diverging fungi.

    Columbia Engineers Build Smallest Integrated Kerr Frequency Comb Generator

    Optical frequency combs can enable ultrafast processes in physics, biology, and chemistry, as well as improve communication and navigation, medical testing, and security. Columbia Engineers have built a Kerr frequency comb generator that, for the first time, integrates the laser with the microresonator, significantly shrinking the system's size and power requirements. They no longer need to connect separate devices using fiber--they can now integrate it all on compact and energy efficient photonic chips.

    Scientists Present New Clues to Cut Through the Mystery of Titan's Atmospheric Haze

    Experiments at Berkeley Lab helped scientists zero in on a low-temperature chemical mechanism that may help to explain the complex molecular compounds that make up the nitrogen-rich haze layer surrounding Titan, Saturn's largest moon.

    Consumers willing to pay more for sustainably brewed beer, study finds

    More and more breweries are investing in practices to save energy and reduce greenhouse gases. Will it pay off? A study by Indiana University researchers suggests it may.


    • Filters

    • × Clear Filters

    Prototype Solar Energy, Battery Systems to Fuel Commercialization

    Designing, building and testing prototype systems that show how renewable energy can power devices, such as a weather and soil sensor station, can help bridge the gap between basic science research and commercialization.

    "Invisible Glass" Wins 2018 Create the Future Design Contest Grand Prize

    Scientists from the Center for Functional Nanomaterials developed a technique for making nonreflecting glass, silicon, and plastic surfaces.

    Missouri S&T researchers win multimillion dollar grant to build fast-charging stations for electric cars

    Researchers from Missouri S&T and three private companies will combine their expertise to create charging stations for electric vehicles that could charge a car in less than 10 minutes - matching the time it takes to fill up a conventional vehicle with gasoline."The big problem with electric vehicles is range, and it's not so much range as range anxiety.

    Making batteries store more energy, last longer

    A new solid polymer electrolyte may help make cell phone batteries store more energy and last longer.

    Three Brookhaven Lab Scientists Named Fellows of American Physical Society

    The American Physical Society (APS), the world's largest physics organization, has elected three scientists from the U.S. Department of Energy's (DOE) Brookhaven National Laboratory as 2018 APS fellows.

    Southern Research first to win accreditation under ISO 14034

    Southern Research has become the first organization in the United States to earn accreditation under ISO 14034, a new international standard for evaluating and verifying environmental technologies that was recently adopted by the American National Standards Institute.

    Kawtar Hafidi to head Physical Sciences and Engineering directorate at Argonne

    Physicist Kawtar Hafidi has been appointed Associate Laboratory Director, Physical Sciences and Engineering at the U.S. Department of Energy's (DOE) Argonne National Laboratory.

    Argonne researchers honored by Energy Secretary's awards program

    A select group of researchers from the U.S. Department of Energy's (DOE) Argonne National Laboratory was recently recognized for their contributions to infrastructure security and nuclear nonproliferation at the Secretary's Honor Awards ceremony in Washington, D.C., on August 29.

    PPPL's Sam Cohen earns award at meeting of U.S. government-funded laboratories hosted by PPPL

    PPPL physicist Sam Cohen and a local company win a Federal Laboratory Consortium award for a rocket propulsion technology.

    ORNL researchers advance quantum computing, science through six DOE awards

    The Department of Energy's Oak Ridge National Laboratory is the recipient of six awards from DOE's Office of Science aimed at accelerating quantum information science (QIS), a burgeoning field of research increasingly seen as vital to scientific innovation and national security. The awards, which represent three Office of Science programs, were made in conjunction with the White House Summit on Advancing American Leadership in QIS and will leverage and strengthen ORNL's established programs in quantum information processing and quantum computing.


    • Filters

    • × Clear Filters

    How to Make Soot and Stardust

    Scientists unlock mystery that could help reduce emissions of fine particles from combustion engines and other sources.

    Breaking the Symmetry Between Fundamental Forces

    Scientists improve our understanding of the relationship between fundamental forces by re-creating the earliest moments of the universe.

    Water Plays Unexpected Role in Forming Minerals

    Water molecules line up tiny particles to attach and form minerals; understanding how this happens impacts energy extraction and storage along with waste disposal.

    Heavy Particles Get Caught Up in the Flow

    First direct measurement show how heavy particles containing a charm quark get caught up in the flow of early universe particle soup.

    Seeing Between the Atoms

    New detector enables electron microscope imaging at record-breaking resolution.

    Scaling Up Single-Crystal Graphene

    New method can make films of atomically thin carbon that are over a foot long.

    Discovered: Optimal Magnetic Fields Suppress Instabilities in Tokamak Plasmas

    U.S. and Korean scientists show how to find and use beneficial 3-D field perturbations to stabilize dangerous edge-localized modes in plasma.

    New Electron Glasses Sharpen Our View of Atomic-Scale Features

    A new approach to atom probe tomography promises more precise and accurate measurements vital to semiconductors used in computers, lasers, detectors, and more.

    Getting an Up-Close, 3-D View of Gold Nanostars

    Scientists can now measure 3-D structures of tiny particles with properties that hold promise for advanced sensors and diagnostics.

    Small, Short-Lived Drops of Early Universe Matter

    Particle flow patterns suggest even small-scale collisions create drops of early universe quark-gluon plasma.


    Spotlight

    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory

    Thursday August 31, 2017, 05:05 PM

    Binghamton University Opens $70 Million Smart Energy Building

    Binghamton University, State University of New York

    Wednesday August 23, 2017, 05:05 PM

    Widening Horizons for High Schoolers with Code

    Argonne National Laboratory

    Saturday May 20, 2017, 12:05 PM

    Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

    Rensselaer Polytechnic Institute (RPI)

    Monday May 15, 2017, 01:05 PM

    ORNL, University of Tennessee Launch New Doctoral Program in Data Science

    Oak Ridge National Laboratory

    Friday April 07, 2017, 11:05 AM

    Champions in Science: Profile of Jonathan Kirzner

    Department of Energy, Office of Science

    Wednesday April 05, 2017, 12:05 PM

    High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

    Argonne National Laboratory

    Tuesday March 28, 2017, 12:05 PM

    Champions in Science: Profile of Jenica Jacobi

    Department of Energy, Office of Science

    Friday March 24, 2017, 10:40 AM

    Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

    Brookhaven National Laboratory

    Wednesday February 15, 2017, 04:05 PM

    Middle Schoolers Test Their Knowledge at Science Bowl Competition

    Argonne National Laboratory





    Showing results

    0-4 Of 2215