Doe Science news source
The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
  • 2018-06-19 00:00:12
  • Article ID: 696258

Scientists isolate protein data from the tiniest of caches - single human cells

Most protein info ever captured from a single cell thanks to new 'nanoPOTS' technology

  • Credit: Photo by Andrea Starr/PNNL

    Ying Zhu, a developer of the nanoPOTS technology, places a chip containing samples for analysis into the automated system.

  • Credit: Structure courtesy of RCSB PDB.

    The structure of the protein ezrin, which the PNNL team found to be highly abundant in lung epithelial cells compared to mesenchymal cells. The protein plays an important role in how the lung epithelium forms.

  • Credit: Photo courtesy of PNNL

    The chip containing multiple wells where proteins from single cells are separated out for further analysis.

  • Credit: Structure courtesy of RCSB PDB.

    The partial structure of the protein vimentin, which the PNNL team found in abundance in lung mesenchymal cells compared to epithelial cells. The protein is important in both normal lung development and in some cases of lung cancer.

  • Credit: Photo by Andrea Starr/PNNL

    A scientist places a chip into the nanoPOTS system. Once the chip is in place, a robot dispenses fluid into the wells, with an accuracy of one millionth of a meter – a precision necessary when the total fluid sample is no more than one-ten-thousandth of a teaspoon.

Scientists have obtained a slew of key information about proteins, the molecular workhorses of all cells, from single human cells for the first time.

The stockpile of information about proteins – the most such data ever collected from a single mammalian cell – gives scientists one of their clearest looks yet at the molecular happenings inside a human cell. Such data can reveal whether a cell is a rogue cancer cell, a malfunctioning pancreatic cell involved in diabetes, or a molecular player important for a preemie’s survival.

These events and many more are determined by the actions of proteins in cells. Until now, detailed information on proteins inside single cells was hard to come by. The raw “data” – the amount of each protein – in a cell is extraordinarily scant and hard to measure. That’s largely because scientists can’t amplify proteins the way they can genes or other molecular messengers.

Now, in a study published in Angewandte Chemie, scientists from the Department of Energy’s Pacific Northwest National Laboratory, working with counterparts at the University of Rochester Medical Center, show how they were able to learn an unprecedented amount of information about the proteins within samples of single human lung cells.

The scientists analyzed single cells, first from cultured cells and then from the lungs of a human donor, and detected on average more than 650 proteins in each cell – many times more than conventional techniques capture from single cells.

The team, including analytical chemists Ying Zhu and Ryan Kelly and biochemists Geremy Clair and Charles Ansong, made the findings thanks to a technology created at EMSL, the Environmental Molecular Sciences Laboratory, a DOE Office of Science user facility located at PNNL. The team developed the technology, called nanoPOTS, to measure proteins in a tiny, almost unimaginable amount of material.

“NanoPOTS is like a molecular microscope that allows us to analyze samples that are 500 times smaller than we could see before,” said Kelly, the corresponding author of the paper. “We can identify more proteins in one cell than could previously be identified from a group of hundreds of cells.”

That’s important for a couple of reasons. Some proteins exert immense influence within a cell, perhaps determining whether the cell will live, die, mutate or travel to another part of the body, even when they are at very low levels that are undetectable using today’s methods.

In addition, conventional technologies typically analyze hundreds or thousands of cells, pooling them into one batch for analysis. Those findings represent an average view of what’s happening in that tissue; there is little insight to what’s actually happening in a specific cell. That’s a problem if there’s variability from cell to cell – if some cells are behaving normally while other cells are cancerous, for instance.

In the current study, the team analyzed the proteins in a sample of fluid that is less than one-ten-thousandth of a teaspoon. Within that sample, the proteins amounted to just .15 nanograms – more than ten million times smaller than the weight of a typical mosquito.

Once scientists have their hands on such a valuable commodity – the innards of a single human cell – they put it through a battery of processing steps to prepare for analysis. But working with such a tiny sample has posed significant roadblocks to single-cell analysis. As the material is transferred from one test tube to another, from machine to machine, some of the sample is lost at every stage. When the original sample amounts to no more than a microscopic droplet, losing even a tiny bit of the sample is catastrophic.

Zhu and Kelly developed nanoPOTS, which stands for nanodroplet Processing in One pot for Trace Samples, to address this problem of sample loss. The technology is an automated platform for capturing, shunting, testing and measuring tiny amounts of fluid. Keys to the technology include a robot that dispenses the fluid to a location with an accuracy of one millionth of a meter, moving between tiny wells that minimize the amount of surface area onto which proteins might glom.

Within those tiny wells, scientists run several steps to isolate the proteins from the rest of the sample. Then, the material is fed into a mass spectrometer which separates out and measures each of hundreds of proteins.

All told, the technology reduces sample losses by more than 99 percent compared to other technologies, giving scientists enough of the scant material to make meaningful measurements – to tell which proteins are at high levels and which are at low levels. That’s vital information when comparing, for example, brain cells from a person with Alzheimer’s disease to those from a person not affected, or looking at cells that are cancerous compared to nearby cells that are healthy.

PNNL scientists have used NanoPOTS to get a closer look at the proteins involved in the development of type 1 diabetes in the pancreas. The group is currently developing a protein map of cancerous tumors, with funding from the National Cancer Institute under the Beau Biden Cancer Moonshot Initiative.

In addition to lead author Ying Zhu and corresponding author Ryan Kelly, PNNL authors of the paper include Geremy Clair, Charles Ansong, William Chrisler, Yufeng Shen, Rui Zhao, Anil Shukla, Ronald Moore, and Richard D. Smith. Other authors are Ravi Misra and Gloria Pryhuber from the University of Rochester. Teams from both institutions are part of a national research initiative known as the LungMAP project to develop a molecular atlas of the developing human lung during late pregnancy and early childhood.

The work was funded by the National Cancer Institute and the National Institute of Diabetes and Digestive and Kidney Diseases.

 

# # #

 

X
X
X
  • Filters

  • × Clear Filters

Two Faces Offer Limitless Possibilities

Named for the mythical god with two faces, Janus membranes -- double-sided membranes that serve as gatekeepers between two substances -- have emerged as a material with potential industrial uses.

Relax, Just Break It

Argonne scientists and their collaborators are helping to answer long-held questions about a technologically important class of materials called relaxor ferroelectrics.

Putting Bacteria to Work

Bacteria are diverse and complex creatures that are demonstrating the ability to communicate organism-to-organism and even interact with the moods and perceptions of their hosts (human or otherwise). Scientists call this behavior "bacterial cognition," a systems biology concept that treats these microscopic creatures as beings that can behave like information processing systems.

New Computer Model Predicts How Fracturing Metallic Glass Releases Energy at the Atomic Level

Metallic glasses are an exciting research target for tantalizing applications; however, the difficulties associated with predicting how much energy these materials release when they fracture is slowing down development of metallic glass-based products. Recently, researchers developed a way of simulating to the atomic level how metallic glasses behave as they fracture. This modeling technique could improve computer-aided materials design and help researchers determine the properties of metallic glasses. The duo reports their findings in the Journal of Applied Physics.

The Relationship Between Charge Density Waves and Superconductivity? It's Complicated.

For a long time, physicists have tried to understand the relationship between a periodic pattern of conduction electrons called a charge density wave (CDW), and another quantum order, superconductivity, or zero electrical resistance, in the same material. Do they compete? Co-exist? Co-operate? Do they go their separate ways?

Splitting Water: Nanoscale Imaging Yields Key Insights

In the quest to realize artificial photosynthesis to convert sunlight, water, and carbon dioxide into fuel - just as plants do - researchers need to not only identify materials to efficiently perform photoelectrochemical water splitting, but also to understand why a certain material may or may not work. Now scientists at Lawrence Berkeley National Laboratory have pioneered a technique that uses nanoscale imaging to understand how local, nanoscale properties can affect a material's macroscopic performance.

Feeding Plants to This Algae Could Fuel Your Car

The research shows that a freshwater production strain of microalgae, Auxenochlorella protothecoides, is capable of directly degrading and utilizing non-food plant substrates, such as switchgrass, for improved cell growth and lipid productivity, useful for boosting the algae's potential value as a biofuel.

No More Zigzags: Scientists Uncover Mechanism That Stabilizes Fusion Plasmas

Article describes simulation of physics behind elimination of sawtooth instabilities.

Solutions to Water Challenges Reside at the Interface

Leading Argonne National Laboratory researcher Seth Darling describes the most advanced research innovations that could address global clean water accessibility.

New Cost-Effective Instrument Measures Molecular Dynamics on a Picosecond Timescale

Studying the photochemistry has shown that ultraviolet radiation can set off harmful chemical reactions in the human body and, alternatively, can provide "photo-protection" by dispersing extra energy. To better understand the dynamics of these photochemical processes, a group of scientists irradiated the RNA base uracil with ultraviolet light and documented its behavior on a picosecond timescale. They discuss their work this week in The Journal of Chemical Physics.


  • Filters

  • × Clear Filters

Department of Energy Invests $64 Million in Advanced Nuclear Technology

The U.S. Department of Energy (DOE) has announced nearly $64 million in awards for advanced nuclear energy technology to DOE national laboratories, industry, and 39 U.S. universities in 29 states. Rensselaer Polytechnic Institute has been awarded $800,000 for analysis of nuclear power plants' accident propagation and mitigation processes.

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Miao Yu, associate professor in the Howard P. Isermann Department of Chemical and Biological Engineering at Rensselaer Polytechnic Institute, has been named the Priti and Mukesh Chatter Career Development Professor. His research focuses on developing advanced nanomaterials for energy and environmental applications.

Funding for New DOE Energy Frontier Research Center at Brookhaven Lab

UPTON, NY--The U.S. Department of Energy (DOE) has announced funding for a new Energy Frontier Research Center (EFRC) to be led by DOE's Brookhaven National Laboratory. The Brookhaven EFRC, named "Molten Salts in Extreme Environments," will focus on understanding the properties of a class of materials with potential applications in energy technologies--particularly in nuclear power.

Two Stony Brook Researchers Receive Energy Frontier Research Center Awards Totaling $21.75M

Stony Brook University received notification from the U.S. Department of Energy (DOE) that two proposals directed by SBU faculty to expand or develop Energy Frontier Research Centers (EFRCs) designed to accelerate scientific breakthroughs needed to strengthen U.S. economic leadership and energy security will receive funding totaling $21.75 million. The two Stony Brook EFRCs are the Center for Mesoscale Transport Properties (m2M), led by renowned energy storage researcher, Esther Takeuchi, PhD, which will receive a four-year $12 million grant for the existing center; and the creation of a new EFRC, A Next Generation Synthesis Center (GENESIS) led by John Parise, PhD, which will receive a four-year $9.75 million grant.

Seth Davidovits Wins 2018 Marshall N. Rosenbluth Dissertation Award

Article describes dissertation award won by Seth Davidovits.

DOE Launches New Lab Partnering Service

The U.S. Department of Energy officially launched the Lab Partnering Service (LPS), an on-line, single access point platform for investors, innovators, and institutions to identify, locate, and obtain information from DOE's 17 national laboratories.

Department of Energy Announces $75 Million for High Energy Physics Research

The U.S. Department of Energy (DOE) announced $75 million in funding for 77 university research awards on a range of topics in high energy physics to advance knowledge of how the universe works at its most fundamental level.

Thesis Prize Winner's Calculations Characterize Neutrino Interactions

Alessandro Baroni is helping demystify one of the most mysterious particles. His work is contributing to our understanding of neutrinos, and it has earned him the 2017 Jefferson Science Associates Thesis Prize for work performed on a thesis related to research at the Department of Energy's Thomas Jefferson National Accelerator Facility

10 Questions for Steven Cowley, New Director of the Princeton Plasma Physics Laboratory

Steven Cowley, a theoretical physicist and international authority on fusion energy, became the seventh Director of the Princeton Plasma Physics Laboratory (PPon July 1 and will be Princeton professor of astrophysical sciences on September 1.

Ames Laboratory to lead new Center for Advancement of Topological Semimetals

Ames Laboratory will receive $10.75 million over four yearrs for a new Center for Advancement of Topological Semimetals as one of the Department of Energy's Energy Frontier Research Centers.


  • Filters

  • × Clear Filters

Steering Light with Dynamic Lens-on-MEMS

Scientists add active control to design capabilities for new lightweight flat optical devices.

Sugar-Coated Sheets Selectively Target Pathogens

Researchers design self-assembling nanosheets that mimic the surface of cells.

Tracking Down Helium-4's Quarks and Gluons

Scientists obtain the first exclusive measurement of deeply virtual Compton scattering of electrons off helium-4, vital to obtaining an unambiguous 3-D view of quarks and gluons within nuclei.

Predicting Magnetic Explosions: From Plasma Current Sheet Disruption to Fast Magnetic Reconnection

Supercomputer simulations and theoretical analysis shed new light on when and how fast reconnection occurs.

Is Nature Exclusively Left Handed? Using Chilled Atoms to Find Out

Elegant techniques of trapping and polarizing atoms open vistas for beta-decay tests of fundamental symmetries, key to understanding the most basic forces and particles constituting our universe.

As Future Batteries, Hybrid Supercapacitors Are Super-Charged

A new supercapacitor could be a competitive alternative to lithium-ion batteries.

Forever Young Catalyst Reduces Diesel Emissions

Atom probe tomography reveals key explanations for stable performance over a cutting-edge diesel-exhaust catalyst's lifetime.

Sense Like a Shark: Saltwater-Submersible Films

A nickelate thin film senses electric field changes analogous to the electroreception sensing organ in sharks, which detects the bioelectric fields of prey.

A Bit of Quantum Logic--What Did the Atom Say to the Quantum Dot?

Let's talk! Scientists demonstrate coherent coupling between a quantum dot and a donor atom in silicon, vital for moving information inside quantum computers.

New Tech Uses Isomeric Beams to Study How and Where the Galaxy Makes One of Its Most Common Elements

A new measurement using a beam of aluminum-26 prepared in a metastable state allows researchers to better understand the creation of the elements in our galaxy.


Spotlight

Friday July 20, 2018, 03:00 PM

Department of Energy Invests $64 Million in Advanced Nuclear Technology

Rensselaer Polytechnic Institute (RPI)

Thursday July 19, 2018, 05:00 PM

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

Rensselaer Polytechnic Institute (RPI)

Tuesday July 03, 2018, 11:05 AM

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

Brookhaven National Laboratory

Friday June 29, 2018, 06:05 PM

Argonne welcomes The Martian author Andy Weir

Argonne National Laboratory

Monday June 18, 2018, 09:55 AM

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

Illinois Mathematics and Science Academy (IMSA)

Friday June 15, 2018, 10:00 AM

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

Rensselaer Polytechnic Institute (RPI)

Thursday June 07, 2018, 03:05 PM

Celebrating 40 years of empowerment in science

Argonne National Laboratory

Monday May 07, 2018, 10:30 AM

Introducing Graduate Students Across the Globe to Photon Science

Brookhaven National Laboratory

Wednesday May 02, 2018, 04:05 PM

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

Department of Energy, Office of Science

Thursday April 12, 2018, 07:05 PM

The Race for Young Scientific Minds

Argonne National Laboratory

Wednesday March 14, 2018, 02:05 PM

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

SLAC National Accelerator Laboratory

Thursday February 15, 2018, 12:05 PM

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

University of Virginia Darden School of Business

Friday February 09, 2018, 11:05 AM

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

California State University, Channel Islands

Wednesday January 17, 2018, 12:05 PM

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

Fermi National Accelerator Laboratory (Fermilab)

Wednesday January 17, 2018, 12:05 PM

Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

Fermi National Accelerator Laboratory (Fermilab)

Wednesday December 20, 2017, 01:05 PM

Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

SLAC National Accelerator Laboratory

Monday December 18, 2017, 01:05 PM

The Future of Today's Electric Power Systems

Rensselaer Polytechnic Institute (RPI)

Monday December 18, 2017, 12:05 PM

Supporting the Development of Offshore Wind Power Plants

Rensselaer Polytechnic Institute (RPI)

Tuesday October 03, 2017, 01:05 PM

Stairway to Science

Argonne National Laboratory

Thursday September 28, 2017, 12:05 PM

After-School Energy Rush

Argonne National Laboratory

Thursday September 28, 2017, 10:05 AM

Bringing Diversity Into Computational Science Through Student Outreach

Brookhaven National Laboratory

Thursday September 21, 2017, 03:05 PM

From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

SLAC National Accelerator Laboratory

Thursday September 07, 2017, 02:05 PM

Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

SLAC National Accelerator Laboratory

Thursday August 31, 2017, 05:05 PM

Binghamton University Opens $70 Million Smart Energy Building

Binghamton University, State University of New York

Wednesday August 23, 2017, 05:05 PM

Widening Horizons for High Schoolers with Code

Argonne National Laboratory

Saturday May 20, 2017, 12:05 PM

Rensselaer Polytechnic Institute Graduates Urged to Embrace Change at 211th Commencement

Rensselaer Polytechnic Institute (RPI)

Monday May 15, 2017, 01:05 PM

ORNL, University of Tennessee Launch New Doctoral Program in Data Science

Oak Ridge National Laboratory

Friday April 07, 2017, 11:05 AM

Champions in Science: Profile of Jonathan Kirzner

Department of Energy, Office of Science

Wednesday April 05, 2017, 12:05 PM

High-Schooler Solves College-Level Security Puzzle From Argonne, Sparks Interest in Career

Argonne National Laboratory

Tuesday March 28, 2017, 12:05 PM

Champions in Science: Profile of Jenica Jacobi

Department of Energy, Office of Science

Friday March 24, 2017, 10:40 AM

Great Neck South High School Wins Regional Science Bowl at Brookhaven Lab

Brookhaven National Laboratory

Wednesday February 15, 2017, 04:05 PM

Middle Schoolers Test Their Knowledge at Science Bowl Competition

Argonne National Laboratory

Friday January 27, 2017, 04:00 PM

Haslam Visits ORNL to Highlight State's Role in Discovering Tennessine

Oak Ridge National Laboratory

Tuesday November 08, 2016, 12:05 PM

Internship Program Helps Foster Development of Future Nuclear Scientists

Oak Ridge National Laboratory

Friday May 13, 2016, 04:05 PM

More Than 12,000 Explore Jefferson Lab During April 30 Open House

Thomas Jefferson National Accelerator Facility

Monday April 25, 2016, 05:05 PM

Giving Back to National Science Bowl

Ames Laboratory

Friday March 25, 2016, 12:05 PM

NMSU Undergrad Tackles 3D Particle Scattering Animations After Receiving JSA Research Assistantship

Thomas Jefferson National Accelerator Facility

Tuesday February 02, 2016, 10:05 AM

Shannon Greco: A Self-Described "STEM Education Zealot"

Princeton Plasma Physics Laboratory

Monday November 16, 2015, 04:05 PM

Rare Earths for Life: An 85th Birthday Visit with Mr. Rare Earth

Ames Laboratory

Tuesday October 20, 2015, 01:05 PM

Meet Robert Palomino: 'Give Everything a Shot!'

Brookhaven National Laboratory

Tuesday April 22, 2014, 11:30 AM

University of Utah Makes Solar Accessible

University of Utah

Wednesday March 06, 2013, 03:40 PM

Student Innovator at Rensselaer Polytechnic Institute Seeks Brighter, Smarter, and More Efficient LEDs

Rensselaer Polytechnic Institute (RPI)

Friday November 16, 2012, 10:00 AM

Texas Tech Energy Commerce Students, Community Light up Tent City

Texas Tech University

Wednesday November 23, 2011, 10:45 AM

Don't Get 'Frosted' Over Heating Your Home This Winter

Temple University

Wednesday July 06, 2011, 06:00 PM

New Research Center To Tackle Critical Challenges Related to Aircraft Design, Wind Energy, Smart Buildings

Rensselaer Polytechnic Institute (RPI)

Friday April 22, 2011, 09:00 AM

First Polymer Solar-Thermal Device Heats Home, Saves Money

Wake Forest University

Friday April 15, 2011, 12:25 PM

Like Superman, American University Will Get Its Energy from the Sun

American University





Showing results

0-4 Of 2215