DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2018-12-05 11:05:46
    • Article ID: 704960

    Reflecting Antiferromagnetic Arrangements

    An x-ray imaging technique developed at Brookhaven Lab's National Synchrotron Light Source II could help scientists understand--and ultimately control--the magnetic structure of promising materials for the development of electronic devices that exploit electron spin

    • Credit: Brookhaven National Laboratory

      Brookhaven Lab physicists Claudio Mazzoli (left) and Mark Dean at the Coherent Soft X-ray Scattering (CSX) beamline at the National Synchrotron Light Source II. Mazzoli and Dean are part of the team of scientists led by Rutgers University that used the CSX beamline to image some magnetic domains in an iron-based "antiferromagnetic" material. The ability to image these domains is key to developing spintronics, or spin electronics, for practical applications.

    • Credit: Nature Communications

      A schematic of the experimental setup. Coherent x-rays are directed through a pinhole onto the sample, and a detector captures the intensity of light as it is reflected off the sample. The intensity of the signal is reduced near the domain boundaries. On the basis of this "interference," scientists can determine where the boundaries are arranged in space.

    • Credit: Nature Communications

      Images of the antiphase domain boundaries (black wavy lines) after the sample was cooled from above a certain temperature. Images (a) through (d) refer to various thermal cycles providing different magnetic domain and wall configurations each time. The blue arrows indicate the position of a stationary structural defect, used as a reference point.

    UPTON, NY—A team led by Rutgers University and including scientists from the U.S. Department of Energy’s (DOE) Brookhaven National Laboratory has demonstrated an x-ray imaging technique that could enable the development of smaller, faster, and more robust electronics.

    Described in a paper published on Nov. 27 in Nature Communications, the technique addresses a primary limitation in the emerging research field of “spintronics,” or spin electronics, using magnetic materials known as antiferromagnets (AFMs): the ability to image antiphase magnetic domains.

    Electrons in magnetic atoms point, or “spin,” in an up or down direction. In all magnetic materials, there are distinct regions—magnetic domains—in which the electron spins are arranged in a regular manner. Several configurations are possible depending on the type of magnetism. In AFMs, the spins on adjacent atoms point in opposite directions (e.g., up-down-up-down). While the spins within each domain are uniformly ordered, those within adjacent domains are aligned in a different way. For example, in AFMs, the spins in one domain may all be arranged in an up-down pattern, while down-up in a neighboring domain. Imaging these “antiphase” domains and the transitions (walls) that exist between them is the first step in being able to manipulate the magnetic state of AFMs to develop spintronic devices. 

    “Ultimately, the goal is to control the number, shape, size, and position of the domains,” said co-author Claudio Mazzoli, lead scientist at the Coherent Soft X-ray Scattering (CSX) beamline at Brookhaven Lab’s National Synchrotron Light Source II (NSLS-II)—a DOE Office of Science User Facility—where the technique was demonstrated. “In general, the electronic properties of domain walls can be different from those in the bulk of the material, and we can take advantage of this fact. Finding a way to control the domains and their walls by external perturbations is key to engineering devices that can efficiently store and process information.”

    From charge to spin

    Conventional electronics such as computer chips rely on the transport of electrical charge carriers, or electrons, to operate. As these charges move around, they dissipate energy in the form of heat, limiting device efficiency.    

    Spintronics exploits another intrinsic property of electrons: spin. Because electron spins can be flipped from one magnetic polarity to another much faster than charge can be moved around, devices based on spintronics can be intrinsically faster than today’s electronics.

    To date, most spintronic devices have been based on ferromagnets (FMs)—the type of magnets we are most familiar with, as seen on fridges and in computer hard drives. In response to an external magnetic field, the domains in FMs align in a parallel fashion according to the direction of the field.

    However, AFMs offer several advantages over FMs. For example, because the spins in AFMs cancel out, these materials have no large-scale magnetism. Thus, their spin orientation can be flipped even faster, and they do not generate stray magnetic fields that can interfere with other sources of magnetization. In addition, they are much more resilient to external magnetic fields.

    “Antiferromagnets are intrinsically better protected against losing information through interactions with the environment, including between domains,” explained senior author and Rutgers physics professor Valery Kiryukhin. “Thus, devices based on AFM materials can be made smaller, with information packed more closely together to yield higher storage capacity.”

    But the same characteristics that make AFMs appealing for spintronics also make these materials difficult to control.

    “In order to control them, we first need to answer very basic questions, such as how the domains are arranged in space and how they and their walls move in response to external perturbations like temperature changes, electric fields, and light pulses,” said Mazzoli.

    Antiferromagnetic reflections

    In this study, the scientists directed a coherent beam of x-rays from the CSX beamline through a circular pinhole to illuminate the magnetic order of an iron-based AFM sample synthesized by members of Rutgers’ Department of Physics and Astronomy, including Kiryukhin and first author and postdoctoral associate Min Gyu Kim. They set the beamline x-rays to an energy resonating with (close to) the energy of the spins in the material. A detector captured the intensity of the light as it reflected off the sample.

    “You can see the scratches on your cell phone screen when light reflects from that surface,” said Mazzoli. “We applied the same kind of principle here but relied on magnetic reflections instead of surface reflections. The magnetic reflections only appear within a very narrow boundary of scattering angles and conditions.”

    “Because the incoming beam is coherent—all the photons, or light particles, wave together in an organized fashion—we were able to directly see how two domains are different and how they interfere with one another,” said co-author Mark Dean, a physicist in Brookhaven Lab’s Condensed Matter Physics and Materials Science (CMPMS) Department. “The interference, as revealed in the detector patterns where there is a reduction in signal intensity, told us where the domain boundaries are.”

    Though this magnetic diffraction technique is well known, this study represents the first time it has been successfully applied to antiphase domain imaging in AFMs.

    “This completely new ability to image antiferromagnetic domain boundaries is only possible because of the superb coherence of the beamline,” said Ian Robinson, X-ray scattering group leader and senior physicist in the CMPMS Department. “The scattering contributions from two antiphase domains are exactly the same in magnitude. They differ only in their phase, which is picked up with coherent x-rays by interference on the detector.”

    In fractions of a second, a full picture of extended areas (hundreds of microns by hundreds of microns) of the sample is generated, without having to move any instrumentation. In other magnetic imaging techniques, a probe must be scanned over the surface at multiple points, or calculations are required to project the resulting detector patterns onto real-space images that our eyes can understand.

    “We are essentially taking a picture,” said Mazzoli. “The readout of all the pixels in the detector forms a full-field image in a single shot. Images covering even larger millimeter-size areas can be obtained by stitching together multiple images.”

    The speed of the technique makes it ideally suited for dynamic experiments. Here, the scientists studied how the magnetic domains changed in real time as they heated the sample to “melt” (remove) its antiferromagnetic order and cooled it to bring back the order in the form of the domain arrangement. They discovered that some of the domains were free to move with each thermal cycle, while others were not.    

    Going forward, the team plans to test the technique using other AFMs and different classes of materials. The team also plans to improve the current resolution of the technique to below 100 nanometers by reconfiguring the experimental setup. This improved resolution would enable them to determine domain wall thickness.

    “To design a spintronic device, you need to know the magnetic configuration of the materials,” said Dean. “Our hope is that we will eventually be able to use this technique to see how magnetism is working in close-to-device conditions.”

    The other Brookhaven co-authors are Hu Miao of the CMPMS Department and Andi Barbour, Wen Hu, and Stuart Wilkins of NSLS-II.

    The work was supported by DOE’s Office of Science.

    Brookhaven National Laboratory is supported by the Office of Science of the U.S. Department of Energy. The Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    Follow @BrookhavenLab on Twitter or find us on Facebook.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth to rapidly predict behavior of plasma that fuels fusion reactions

    Machine learning speeds modeling of experiments aimed at capturing fusion energy on Earth to rapidly predict behavior of plasma that fuels fusion reactions

    Release describes application of machine learning form of artificial intelligence to predict the behavior of fusion plasma.

    Record-shattering underwater sound

    Record-shattering underwater sound

    A team of researchers has produced a record-shattering underwater sound with an intensity that eclipses that of a rocket launch. The intensity was equivalent to directing the electrical power of an entire city onto a single square meter, resulting in sound pressures above 270 decibels.

    CosmoGAN: Training a Neural Network to Study Dark Matter

    CosmoGAN: Training a Neural Network to Study Dark Matter

    A Berkeley Lab-led research group is using a deep learning method known as generative adversarial networks to enhance the use of gravitational lensing in the study of dark matter.

    Breakthrough Technique for Studying Gene Expression Takes Root in Plants

    Breakthrough Technique for Studying Gene Expression Takes Root in Plants

    An open-source RNA analysis platform has been successfully used on plant cells for the first time - an advance that could herald a new era of fundamental research and bolster efforts to engineer more efficient food and biofuel crop plants. The technology, called Drop-seq, is a method for measuring the RNA present in individual cells, allowing scientists to see what genes are being expressed and how this relates to the specific functions of different cell types.

    Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy

    Bio-inspired material targets oceans' uranium stores for sustainable nuclear energy

    Scientists have demonstrated a new bio-inspired material for an eco-friendly and cost-effective approach to recovering uranium from seawater. The low-cost polymer adsorbent could help push past bottlenecks in the cost and efficiency of extracting uranium resources from oceans for sustainable energy production.

    Study Concludes Glassy Menagerie of Particles in Beach Sands Near Hiroshima is Fallout Debris from A-Bomb Blast

    Study Concludes Glassy Menagerie of Particles in Beach Sands Near Hiroshima is Fallout Debris from A-Bomb Blast

    A years-long study that involved scientists and experiments at Berkeley Lab and UC Berkeley concluded that an odd assortment of particles found in beach sands in Japan are most likely fallout debris from the 1945 Hiroshima A-bomb blast.

    New technique merging sound and math could help prevent plasma disruptions in fusion facilities

    New technique merging sound and math could help prevent plasma disruptions in fusion facilities

    Scientists have created a novel method for measuring the stability of plasma in fusion facilities called "tokamaks." Involving an innovative use of a mathematical tool, the method might lead to a technique for stabilizing plasma and making fusion reactions more efficient.

    2D insulators with ferromagnetic properties are rare; researchers just identified a new one

    2D insulators with ferromagnetic properties are rare; researchers just identified a new one

    Collaborating scientists at the U.S. Department of Energy's Ames Laboratory, Brookhaven National Laboratory, and Princeton University have discovered a new layered ferromagnetic semiconductor, a rare type of material that holds great promise for next-generation electronic technologies.

    Assessing battery performance: Compared to what?

    Assessing battery performance: Compared to what?

    A team from the U.S. Department of Energy's (DOE) Argonne National Laboratory, University of Warwick, OVO Energy, Hawaii National Energy Institute, and Jaguar Land Rover reviewed the literature on the various methods used around the world to characterize the performance of lithium-ion batteries to provide insight on best practices. Their results may one day lead to more reliably comparable methods for testing lithium-ion batteries tailored to different applications.

    Probing battery hotspots for safer energy storage

    Probing battery hotspots for safer energy storage

    For the first time, a team of researchers has studied the effects of tiny areas within lithium metal batteries that are much hotter than their surroundings. These hotspots, the researchers find, can make batteries grow spiky tumors of metal called dendrites that could cause short circuits, and potentially lead to fires.


    • Filters

    • × Clear Filters
    Cryogenics equipment maker licenses ORNL auto-fill method for more efficient liquid helium use

    Cryogenics equipment maker licenses ORNL auto-fill method for more efficient liquid helium use

    Advanced Research Systems has licensed an ORNL technology designed to automatically refill liquid helium used in laboratory equipment for low-temperature scientific experiments, which will reduce downtime, recover more helium and increase overall efficiency.

    New Argonne coating could have big implications for lithium batteries

    New Argonne coating could have big implications for lithium batteries

    In a new discovery, scientists at the U.S. Department of Energy's (DOE) Argonne National Laboratory have developed a new cathode coating by using an oxidative chemical vapor deposition technique. The new coating can keep the battery's cathode electrically and ionically conductive and ensures that the battery stays safe after many cycles.

    Argonne's Chain Reaction Innovations appoints first advisory council

    Argonne's Chain Reaction Innovations appoints first advisory council

    World-class energy leaders will offer their expertise to Chain Reaction Innovations (CRI), the entrepreneurship program at the U.S. Department of Energy's Argonne National Laboratory, as part of a new Advisory Council announced today. CRI has named 14 Advisory Council members, including investors, industry experts and business executives, to help guide its growth and strategy.

    ORNL, Lincoln Electric to Advance Large-Scale Metal Additive Manufacturing Technology

    ORNL, Lincoln Electric to Advance Large-Scale Metal Additive Manufacturing Technology

    The new agreement builds upon ORNL and Lincoln Electric's previous developments by extending additive technology to new materials, leveraging data analytics and enabling rapid manufacture of metal components in excess of 100 pounds per hour.

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Students from Wayzata High School in Plymouth, Minnesota, won the 2019 U.S. Department of Energy (DOE) National Science Bowl(r) (NSB) today in Washington, D.C. In the middle school competition, students from Jonas Clarke Middle School in Lexington, Massachusetts, took home first place.

    Five new innovators join Chain Reaction Innovations in third cohort

    Five new innovators join Chain Reaction Innovations in third cohort

    Five new innovators will be joining Chain Reaction Innovations (CRI), the entrepreneurship program at the U.S. Department of Energy's (DOE's) Argonne National Laboratory, as part of the elite program's third cohort. Announced on Monday, April 22, these innovators were selected following an extensive national solicitation process and two-part pitch competition, with reviews from industry experts, investors, scientists and engineers.

    Department of Energy Announces $20 Million for Artificial Intelligence Research

    Today, the U.S. Department of Energy (DOE) announced a total of $20 million in funding for innovative research and development in artificial intelligence (A.I.) and machine learning.

    Tim Knewitz named Argonne National Laboratory's Chief Financial Officer

    Tim Knewitz named Argonne National Laboratory's Chief Financial Officer

    The U.S. Department of Energy's Argonne National Laboratory has named Tim Knewitz at its Chief Financial Officer.

    Department of Energy Announces $95 Million for Small Business Research and Development Grants

    U.S. Energy Secretary Rick Perry today announced that the Department of Energy will award 86 grants totaling $95 million to 74 small businesses in 21 states.

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    The Department of Energy's (DOE's) Office of Science has selected 70 graduate students from across the nation for its 2018 Solicitation 2 cycle for Office of Science Graduate Student Research (SCGSR) Program.


    • Filters

    • × Clear Filters
    Slow Charge Generation Plays Big Role in Model Material for Solar Cells

    Slow Charge Generation Plays Big Role in Model Material for Solar Cells

    Insight about energy flow in copper-based material could aid in creating efficient molecular electronics.

    Capturing Energy Flow in a Plasma by Measuring Scattered Light

    Capturing Energy Flow in a Plasma by Measuring Scattered Light

    First measurements of heat flux in plasmas experientially sheds light on models relying on classical thermal transport.

    Artificial Intelligence and Deep Learning Accelerate Efforts to Develop Clean, Virtually Limitless Fusion Energy

    Artificial Intelligence and Deep Learning Accelerate Efforts to Develop Clean, Virtually Limitless Fusion Energy

    The Fusion Recurrent Neural Network reliably forecasts disruptive and destructive events in tokamaks.

    Spin Flipper Upends Protons

    Spin Flipper Upends Protons

    The spin direction of protons was reversed, for the first time, using a nine-magnet device, potentially helping tease out details about protons that affect medical imaging and more.

    Splitting Water Fast! Catalyst Works Faster than Mother Nature

    Splitting Water Fast! Catalyst Works Faster than Mother Nature

    Design principles lead to a catalyst that splits water in a low pH environment, vital for generating solar fuels.

    Sea Quark Spin Surprise!

    Sea Quark Spin Surprise!

    Antiquark spin contribution to proton spin depends on flavor, which could help unlock secrets about the nuclear structure of atoms that make up nearly all visible matter in our universe.

    The Weak Side of the Proton

    The Weak Side of the Proton

    A precision measurement of the proton's weak charge narrows the search for new physics.

    Fast-Moving Pairs May Solve 35-Year-Old Mystery

    Fast-Moving Pairs May Solve 35-Year-Old Mystery

    Physicists develop a universal mathematical description that suggests that proton-neutron pairs in a nucleus may explain why their associated quarks have lower average momenta than predicted.

    Team Takes Fluoride from Taps and Toothpaste to Batteries

    Team Takes Fluoride from Taps and Toothpaste to Batteries

    With user facilities, researchers devise novel battery chemistries to help make fluoride batteries a reality.

    Quarks Under Pressure in the Proton

    Quarks Under Pressure in the Proton

    Pressure in the middle of a proton is about 10 times higher than in a neutron star.


    Spotlight

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code
    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom
    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    The Future of Today's Electric Power Systems
    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Supporting the Development of Offshore Wind Power Plants
    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Stairway to Science
    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    After-School Energy Rush
    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Bringing Diversity Into Computational Science Through Student Outreach
    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM
    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute
    Thursday September 07, 2017, 02:05 PM

    Students Discuss 'Cosmic Opportunities' at 45th Annual SLAC Summer Institute

    SLAC National Accelerator Laboratory





    Showing results

    0-4 Of 2215