- 2019-05-08 13:30:17
- Article ID: 712570
MERF Tips the Scale Toward Efficient Materials Testing
Scaling up the manufacturing of new materials for energy storage and catalysis is notoriously difficult but unquestionably vital to improving performance and reducing costs. Energy industries, in particular, depend on the process to generate new advanced materials at quantities sufficient to test and validate their efficacy.
Yet, scale-up is difficult because of its cost and complexity; making larger quantities of advanced materials, such as catalysts or nanomaterials, often requires many processing steps that — if not carefully controlled — could alter the chemical and physical properties of the product, rendering them useless.
These challenges have left many in industry reluctant or unable to invest in risky and costly scale-up processes for new materials. To overcome this dilemma, the U.S. Department of Energy’s (DOE) Argonne National Laboratory has established its Materials Engineering Research Facility (MERF), a truly collaborative and pioneering endeavor built with funds from DOE’s Office of Energy Efficiency and Renewable Energy (EERE). Vehicle Technologies Office (VTO).
The facility is aimed at developing cost-effective manufacturing processes to scale up promising new materials. It allows industry to access recently developed, best-performing advanced materials.
Employing cutting-edge instruments and laboratories, MERF researchers develop scalable processes and produce kilogram-quantities of various advanced materials. They share the samples they produce with industry and academia for evaluation and validation and use them to advance basic research. These activities support Argonne’s Manufacturing Science and Engineering Initiative, a program to put America’s manufacturing sector — which fuels over 11 percent of U.S. gross domestic product — in a forefront of innovation and make it more competitive.
Scaling battery materials
Kris Pupek, group leader for process R&D and scale-up in Argonne’s Applied Materials division, leads many of the activities at the MERF. He and fellow researchers have successfully scaled dozens of materials, with a focus on battery materials for electrical vehicles and catalysts for fuel cells.
“Whoever makes battery materials or has an interest in developing more efficient batteries should be interested in what we’re doing,” Pupek said. “Our goal is to lower the cost of producing materials without compromising quality and performance because this is what industrial manufacturing requires.”
One way in which MERF researchers source new battery materials in need of scaling is by working closely with Argonne’s discovery scientists. Inside Argonne’s discovery laboratories, researchers prowl for new materials with desirable properties. Once such material is found, they look to MERF researchers to help them scale it up for intensive studies.
“The discovery laboratory’s function is to make as many new materials as possible in the least amount of time. The techniques it uses are very efficient for small-scale production but cannot be used to make large quantities of materials, which is why MERF is needed,” Pupek said. “The researchers in Argonne’s and other discovery laboratories turn to us to develop processes for making promising materials in quantities sufficient for full scale industrial validation and prototyping.”
“Our goal is to lower cost without compromising quality because this is what industrial manufacturing requires.” Kris Pupek, group leader for process R&D and scale-up in Argonne’s Applied Materials Division
Scaling catalysts for fuel cells
Along with battery materials, Argonne is a leader in designing and developing techniques to scale novel catalyst materials. Among the materials researchers are working to scale are platinum-free catalysts for polymer electrolyte membrane (PEM) fuel cells.
At this time, PEM fuel cells are the frontrunner among fuel cell types for powering vehicles and some stationary power systems, but the platinum-based catalysts they currently employ make them costly and less durable over time.
Recognizing this challenge, multidisciplinary teams at Argonne are working together with Los Alamos National Laboratory, Oak Ridge National Laboratory, and the National Renewable Energy Laboratory to come up with solutions. Through the Electrocatalysis Consortium (ElectroCat), which Argonne and Los Alamos co-lead, researchers are identifying and scaling high-performance, platinum-free alternatives.
Using Argonne's High-Throughput Research Lab, ElectroCat scientists have synthesized dozens of promising catalytic materials and tested both their catalytic activity and performance in a fuel cell environment. The most promising are delivered to the MERF, which develops the processes to take the materials from gram- to kilogram-sized quantities for evaluation at the device level.
Evaluating new manufacturing technologies
Existing techniques are not always adequate to manufacture advanced materials at large scales. In these instances, new approaches are needed. So Pupek and other researchers at the MERF invest in developing, evaluating and applying new manufacturing technologies.
One new technique the MERF researchers are evaluating is flame spray pyrolysis (FSP), a type of aerosol synthesis that exploits the science of combustion and the properties of materials to engineer particles with a specific set of desired characteristics.
Until now, techniques for FSP have been limited to the production of simple compounds. But MERF researchers have come up with a new approach that simplifies the manufacture of nanomaterials with advanced architecture at high volumes, which could widen industry applications for FSP.
Argonne’s FSP technology is equipped with controls and diagnostic tools to make it easier for manufacturers to develop more complex materials and for researchers to understand the fundamental processes taking place. These tools enable users to monitor various features that shape the chemical and physical properties of resulting materials. They also help us understand the relationship between process parameters and the desired outcomes.
“These tools give us greater visibility into the process. The more visibility we have, the greater opportunity we have to optimize the product in real time,” said Joe Libera, a principal materials scientist who leads Argonne’s FSP program.
The laboratory’s FSP technology is being tested on catalysts and battery materials, including the solid electrolyte LLZO, as well as battery cathode active materials, such as lithium manganese oxide and lithium manganese niobium oxide.
Argonne also is evaluating the continuous flow reactor (CFR), a technique that can dramatically improve the consistency and efficiency of manufacturing fine chemicals and nanomaterials. In CFR processing, reactions that lead to material production all take place within a single microfluidic, or low volume, reactor, regardless of the production scale. This eliminates variation between batches. Fully implemented, the technology could alleviate some of the struggles industries face when producing fine materials and nanomaterials at commercial scales.
Integrating Argonne Capabilities
Part of the process of evaluating manufacturing techniques like CFR and FSP is developing ways to optimize their performance. To do this, researchers at the MERF integrate their capabilities with those of others at the laboratory.
Along with the MERF, researchers tap into Argonne’s world-class on-site diagnostics, data analysis and supercomputing resources, and well as laboratory experts in combustion engineering and aerosol and materials sciences, to make catalysts and other materials in more efficient and scalable ways.
The DOE Office of Science User Facilities at Argonne are among the value-added resources to which researchers can also gain access through a competitive application process based on peer review. The high-energy X-ray beams at Argonne’s Advanced Photon Source, for example, can help researchers visualize materials at fine time and resolution scales to understand what happens during material production. Meanwhile the high-performance computing resources at the Argonne Leadership Computing Facility allow MERF researchers to model and simulate manufacturing processes for further optimization.
Researchers at Argonne’s MERF are leveraging these facilities and the energy storage expertise that resides at the laboratory to make the notoriously difficult process of scaling up new materials production for energy storage and catalysis a reality.
Research at the facility is funded, in part, by several offices within DOE’s Office of Energy Efficiency and Renewable Energy, including the Vehicle Technologies Office, the Building Technologies Office, the Bioenergy Technologies Office and the Fuel Cell Technologies Office.
The Office of Energy Efficiency and Renewable Energy supports early-stage research and development of energy efficiency and renewable energy technologies to strengthen U.S. economic growth, energy security, and environmental quality.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.
The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit the Office of Science website.

MORE NEWS FROM
Argonne National LaboratoryParticipating Labs
- DOE Office of Science
- Argonne National Laboratory
- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory
- Iowa State University, Ames Laboratory
- Brookhaven National Laboratory
- Princeton Plasma Physics Laboratory
- Lawrence Berkeley National Laboratory
- Thomas Jefferson National Accelerator Facility
- Fermi National Accelerator Laboratory (Fermilab)
- SLAC National Accelerator Laboratory

Quenching Water Scarcity with a Good Pore
Researchers at UC San Diego and MIT linked theory and experiment to move closer to developing materials that address global water scarcity.

Tiny Quantum Sensors Watch Materials Transform Under Pressure
Scientists at Berkeley Lab have developed a diamond anvil sensor that could lead to a new generation of smart, designer materials, as well as the synthesis of new chemical compounds, atomically fine-tuned by pressure.

Scientists harvest energy from light using bio-inspired artificial cells
By replicating biological machinery with non-biological components, scientists have created artificial cells that convert light into chemical energy.

Argonne's debt to 2019 Nobel Prize for lithium-ion battery
A roar of approval rang out at the U.S. Department of Energy's (DOE's) Argonne National Laboratory upon the announcement in October that John B. Goodenough, M. Stanley Whittingham and Akira Yoshino had won the 2019 Nobel Prize in Chemistry. On December 10th in Stockholm, they received this highly coveted prize for their major contributions to the invention of the lithium-ion battery, which is a long-standing major focus of research at Argonne.

Battery collaboration meeting discusses new pathways to recycle lithium-ion batteries
At a conference held by the ReCell Center, an advanced battery recycling collaboration based at Argonne, representatives from industry, government, and academia discussed innovative approaches for lithium-ion battery recycling.

New Function for Plant Enzyme Could Lead to Green Chemistry
Scientists at Brookhaven National Laboratory have discovered a new function in a plant enzyme that could inspire the design of new chemical catalysts. The enzyme catalyzes, or initiates, one of the cornerstone chemical reactions needed to synthesize a wide array of organic molecules, including those found in lubricants, cosmetics, and those used as raw materials for making plastics.

Freeze Frame: Scientists Capture Atomic-Scale Snapshots of Artificial Proteins
Scientists at Berkeley Lab are the first to use cryo-EM (cryogenic electron microscopy), a Nobel Prize-winning technique originally designed to image proteins in solution, to image atomic changes in a synthetic soft material.

Argonne Collaboration Shows Benefits of Better Corn Residue Management Strategies
Sustainable corn stover removal can maintain soil carbon stock, according a new Argonne-led study.

Study Sheds Light on the Really Peculiar 'Normal' Phase of High-Temperature Superconductors
Experiments at SLAC and Stanford probe the normal state more accurately than ever before and discover an abrupt shift in the behavior of electrons in which they suddenly give up their individuality and behave like an electron soup.

Scientists devise catalyst that uses light to turn carbon dioxide to fuel
In a recent study from Argonne, scientists have used sunlight and a catalyst largely made of copper to transform carbon dioxide to methanol.

James Wilson Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran, experienced federal administrator, and active member of the Princeton community
James W. Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran with a long career in public service, who died Aug. 6. A memorial service in his honor will be held Dec. 21.
Department of Energy to Provide $24 Million in EPSCoR Grants for Energy-Related Research
The U.S. Department of Energy (DOE) announced a funding opportunity for up to $24 million for new grants under the Established Program to Stimulate Competitive Research (DOE EPSCoR).

University of Kentucky Grant Seeks to Turn Coal Into Carbon Fiber
UK's Center for Applied Energy Research (CAER) has received a $1.8 million U.S. Department of Energy (DOE) grant to transform coal tar pitch into high-value carbon fiber for use in aircraft, automobiles, sporting goods and other high-performance materials.

Six Berkeley Lab Scientists Named AAAS Fellows
Six scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have been named Fellows of the American Association for the Advancement of Science (AAAS).

PPPL is recognized for being green
The U.S. Department of Energy's Princeton Plasma Physics Laboratory was recognized by the U.S. Environmental Protection Agency for its green practices in reducing waste, energy, and water, and transportation, and for green purchasing and electronics recycling.

Dmitri Zakharov Recognized with the 2019 Chuck Fiori Award
The award honors Dmitri Zakharov's contributions to environmental transmission electron microscopy at Brookhaven Lab's Center for Functional Nanomaterials.

Two Argonne projects earn Secretary of Energy Honor Awards
With this year's Nobel Prize in Chemistry awarded for the development of lithium-ion batteries, directors of the Joint Center for Energy Storage Research share perspectives on the future of energy storage.

Argonne teams up with Altair to manage use of upcoming Aurora supercomputer
Argonne National Laboratory and Altair, a global technology company, have created a new scheduling system that will be employed on the Aurora supercomputer.

University of Maryland, Baltimore County wins DOE's 2019 CyberForce Competition(tm)
After a long suspenseful day, University of Maryland, Baltimore County earned the top spot as national winner of the U.S. Department of Energy's CyberForce Competition.

In its 15th year, INCITE advances open science with supercomputer grants to 47 projects
The U.S. Department of Energy's Office of Science announced allocations of supercomputer access to 47 science projects for 2020--awarding 60 percent of the available time on some of the nation's most powerful supercomputers, with the ultimate goal of accelerating discovery and innovation. In 2020, 14 projects will run on Theta and 39 projects on Summit, where six of these projects will receive an allocation on both systems.

Harvesting Energy from Light using Bio-inspired Artificial Cells
Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

Engineering Living Scaffolds for Building Materials
Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

Excavating Quantum Information Buried in Noise
Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

How Electrons Move in a Catastrophe
Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

When Ions and Molecules Cluster
How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

Tune in to Tetrahedral Superstructures
Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

Tracing Interstellar Dust Back to the Solar System's Formation
This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

Investigating Materials that Can Go the Distance in Fusion Reactors
Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

Better 3-D Imaging of Tumors in the Breast with Less Radiation
In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

Microbes are Metabolic Specialists
Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.
Spotlight

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Princeton Plasma Physics Laboratory

Argonne organization's scholarship fund blazes STEM pathway
Argonne National Laboratory

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Brookhaven National Laboratory

From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns
Princeton Plasma Physics Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Brookhaven National Laboratory
Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
Department of Energy, Office of Science
DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
Department of Energy, Office of Science

Young Women's Conference in STEM seeks to change the statistics one girl at a time
Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Argonne National Laboratory

Chemistry intern inspired by Argonne's real-world science
Argonne National Laboratory

Argonne intern streamlines the beamline
Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
University of Alabama at Birmingham

"Model" students enjoy Argonne campus life
Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Princeton Plasma Physics Laboratory

The Gridlock State
California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Argonne National Laboratory

Undergraduate Students Extoll Benefits of National Laboratory Research Internships in Fusion and Plasma Science
Princeton Plasma Physics Laboratory

Students affected by Hurricane Maria bring their research to SLAC
SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Brookhaven National Laboratory

CSUMB Selected to Host Architecture at Zero Competition in 2019
California State University, Monterey Bay

From Hurricane Katrina Victim to Presidential Awardee: A SUNO Professor's Award-Winning Mentoring Efforts
Brookhaven National Laboratory

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Brookhaven National Laboratory

High-School Students Studying Carbon-Based Nanomaterials for Cancer Drug Delivery Visit Brookhaven Lab's Nanocenter
Brookhaven National Laboratory

Argonne welcomes The Martian author Andy Weir
Argonne National Laboratory

UW Professor and Clean Energy Institute Director Daniel Schwartz Wins Highest U.S. Award for STEM Mentors
University of Washington

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Illinois Mathematics and Science Academy (IMSA)

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
Rensselaer Polytechnic Institute (RPI)

Celebrating 40 years of empowerment in science
Argonne National Laboratory

Introducing Graduate Students Across the Globe to Photon Science
Brookhaven National Laboratory

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
Department of Energy, Office of Science

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
SLAC National Accelerator Laboratory

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
University of Virginia Darden School of Business

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
California State University, Channel Islands

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
Fermi National Accelerator Laboratory (Fermilab)
Showing results
0-4 Of 2215