DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-05-10 14:05:04
    • Article ID: 712726

    Study Concludes Glassy Menagerie of Particles in Beach Sands Near Hiroshima is Fallout Debris from A-Bomb Blast

    X-ray studies at Berkeley Lab provide evidence for source of exotic assortment of melt debris

    • Credit: Ajay Suresh/Wikimedia Commons

      Researchers collected and studied beach sands from locations near Hiroshima including Japan’s Miyajima Island, home to this torii gate, which at high tide is surrounded by water. The torii and associated Itsukushima Shinto Shrine, near the city of Hiroshima, are popular tourist attractions. The sand samples contained a unique collection of particles, including several that were studied at Berkeley Lab and UC Berkeley.

    • Credit: Mario Wannier

      Sorted samples of particles found in beach sands in the Hiroshima area.

    • Credit: Anthropocene, Volume 25, March 2019, DOI: 10.1016/j.ancene.2019.100196

      Examples of the broad range of particles that were collected from beach sands in Japan’s Motoujima Peninsula.

    Mario Wannier, a career geologist with expertise in studying tiny marine life, was methodically sorting through particles in samples of beach sand from Japan’s Motoujina Peninsula when he spotted something unexpected: a number of tiny, glassy spheres and other unusual objects.

    Wannier, who is now retired, had been comparing biological debris in beach sands from different areas in an effort to gauge the health of local and regional marine ecosystems. The work involved examining each sand particle in a sample under a microscope, and with a fine brush, separating particles of interest from grains of sediment into a tray for further study.

    A surprise in the sand grains: glassy particles

    “I had seen hundreds of beach samples from Southeast Asia, and I can immediately distinguish mineral grains from the particles created by animals or plants, so that’s very easy,” he said. In the Motoujina sands, collected by Wannier’s colleague, Marc de Urreiztieta, he found familiar traces of single-celled organisms known as foraminifera, which come in a variety of forms. They typically have shells and reside in and around seafloor sediment.

    “But there was something  else … it’s so obvious when you look at the samples,” he said. “You couldn’t miss these extraneous particles. They are generally aerodynamic, glassy, rounded – these particles immediately reminded me of some spherule (rounded) particles I had seen in sediment samples from the Cretaceous-Tertiary boundary,” the so-called K-T boundary now referred to as the Cretaceous-Paleogene (K-Pg) boundary that marked a planetary mass extinction event, including the dinosaurs’ die-off, about 66 million years ago.

    In 1980, Luis Alvarez, a Nobel Laureate who worked at Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley, together with his son, geologist Walter Alvarez, proposed a theory, based on a high concentration of iridium in deposits at the K-Pg boundary, that a large meteorite impact caused this massive die-off. Coupled with more recent evidence, scientists now believe that the impact occurred in the region of the Yucatan Peninsula. In meteorite impacts, liquified ground material is ejected into the atmosphere, forming droplets of glassy material that fall back to the ground.

    Some of the glassy spheres that Wannier examined appeared to be fused together with other spheres, and others exhibited taillike features. While some of the glassy particles resembled those associated with meteorite impacts, others that Wannier found were not so familiar — among them were particles with a rubber-like composition and particles featuring a variety of materials coated in a layer or multiple layers of glass or silica. Many of the particles measured about 0.5 millimeter to 1 millimeter across.

    Wannier had no idea at the time that this glassy menagerie of particles he encountered would lead to a years-long research effort that would involve scientists and experiments at Berkeley Lab and UC Berkeley. The effort would ultimately reveal the diversity and uniqueness of the studied particles, including unusual chemical and mineral mixes; the exotic high-temperature and high-pressure environment in which they formed; and the potential for new discoveries in further explorations.

    Concentration, volume of material points to A-bomb blast

    After this initial finding in 2015, Wannier traveled to Japan to collect more beach sand samples from the same region, near the city of Hiroshima.

    In all of these samples, there were between 12.6 to 23.3 grams of these spheroids and other unusual particles for every kilogram (2.2 pounds) of sand. This odd assortment of glassy particles accounted for between 0.6 percent to 2.5 percent of all of the grains that were examined. Wannier plucked about 10,000 of these particles from the sands and sorted them into six different groups according to their physical traits.

    The consistently high concentrations of this strange assortment of particles in beach sands collected about 4 to 7 miles from the city of Hiroshima raised his suspicions that they may be related to the atomic bomb blast that devastated Hiroshima on the morning of Aug. 6, 1945. That bomb had instantly killed 70,000 or more people, with a final death toll accounting for the associated radiation effects possibly exceeding 145,000. The bomb and resulting firestorms mostly leveled an area measuring more than 4 square miles, and destroyed or damaged an estimated 90% of structures in the city.

    Based on the volume of the glassy debris found in the beach sands, Wannier and his colleagues estimated that a square kilometer, or roughly 0.4 square mile of beach sand in the area, collected from its surface to a depth of about 4 inches, would contain about 2,200 to 3,100 tons of the particles.

    A study detailing the analyses of the material, published in the journal Anthropocene, provides an exhaustive exploration of the many possible sources for the unusual particles, and concludes that they are A-bomb fallout from the destroyed city of Hiroshima.

    “This was the worst manmade event ever, by far,” Wannier said. “In the surprise of finding these particles, the big question for me was: You have a city, and a minute later you have no city. There was the question of: ‘Where is the city ­­– where is the material?’ It is a trove to have discovered these particles. It is an incredible story.”

    Connecting with Berkeley Lab, UC Berkeley for detailed analyses

    Wannier and de Urreiztieta wanted to learn more about the samples, so they contacted Rudy Wenk, a professor of mineralogy at UC Berkeley and a longtime Berkeley Lab affiliate – Wannier and Wenk had both studied geology at the University of Basel, Switzerland, decades earlier.

    Wenk first studied the Hiroshima-area samples using an electron microscope. This enabled a detailed exploration of their composition and structures.

    He observed a wide variety in the chemical composition of the samples, including concentrations of aluminum, silicon and calcium; microscopic globules of chromium rich iron; and microscopic branching of crystalline structures. Others were composed mostly of carbon and oxygen.

    “Some of these look similar to what we have from meteorite impacts, but the composition is quite different,” Wenk said. “There were quite unusual shapes. There was some pure iron and steel. Some of these had the composition of building materials.”

    To gather further details about the samples, Wenk turned to Berkeley Lab, where he and his students have conducted many electron microscopy and X-ray experiments over the years. He took selected samples to Berkeley Lab’s Advanced Light Source (ALS) and conducted a number of measurements there.

    Nobumichi “Nobu” Tamura, a staff scientist at the ALS who Wenk had worked with before, along with then-ALS colleagues Camelia Stan and Binbin Yue (Stan and Yue have since left Berkeley Lab), assisted in analyzing the samples at a scale of less than 1 micron, or 1 millionth of a meter, using a technique known as X-ray microdiffraction.

    Both of Tamura’s parents were born in Japan, and he said that he was personally interested in participating in the study because of his family ancestry. “My dad was 12 years old when the bombing happened, and lived just 200 miles north of Hiroshima, so he witnessed directly the news and outcomes of these terrible events,” Tamura said.

    The experiments and related analyses determined that the particles had formed in extreme conditions, with temperatures exceeding 3,300 degrees Fahrenheit (1,800 Celsius), as evidenced by the assemblage of anorthite and mullite crystals that the researchers identified.

    Tamura noted that the unique microstructure of the studied particles and the sheer volume of melt debris present also provide strong evidence for how they were formed.

    “The atomic explosion hypothesis is the only logical explanation for their origin,” he said.

    Study details researchers’ findings

    Many of the sphere-shaped particles and other bits likely formed at a high elevation around the rising fireball of the blast. The materials swept up from the ground bubbled and mixed in this turbulent environment before cooling and condensing and then raining down.

    Wannier explained the processes that likely formed the materials in an atomic cloud: “The ground material is volatized and moved into the cloud, where the high temperature changes the physical condition,” Wannier said. “There are a lot of interactions between particles. There are lots of little spheres that collide, and you get this agglomeration.”

    Researchers also found that the composition of the debris particles corresponds closely with materials that were common in Hiroshima at the time of the bombing, such as concrete, marble, stainless steel, and rubber.

    Other studies have analyzed melt debris from the Trinity test site in New Mexico – where the first nuclear explosion was triggered – and from underground nuclear test sites in Nevada. But those samples have a distinctly different composition that is associated with their local geological environment.

    The Trinity debris is dubbed trinitite, and researchers in the latest study have dubbed the melt particles they studied as Hiroshimaite to highlight their distinct characteristics and their likely origin in the Hiroshima A-bomb explosion.

    “Hiroshimaite particles are much more complex and diverse than trinitites,” Tamura said, owing to their likely genesis in Hiroshima’s urban center.

    While there had been concerted international efforts to aid survivors suffering from radiation effects, to measure the radiation levels, and to assess the overall damage caused by the 1945 atomic bombings in Hiroshima and Nagasaki, the study noted that the melt debris associated with these bombings had apparently not been previously studied.

    The latest study encourages additional tests to find out if any samples carry radioactive elements, and to conduct further studies in the Hiroshima and Nagasaki areas.

    Plans for follow-up studies

    Wannier said he has received soil samples from ground zero at Hiroshima and may look for debris samples from deeper underground there, and he has also received a soil sample containing glassy debris from a streambed about 19 miles northwest of where the Hiroshima A-bomb struck – historic records show that area was in the path of the atomic cloud.

    He said he also hopes to explore whether the melt debris exhibits similarities to materials associated with volcanic eruptions.

    Tamura and Wenk noted that this initial study focused on just a small number of melt debris particles, and it may be worthwhile to pursue a larger study to learn more about the extreme conditions that produced the debris and to possibly reveal more unique chemistry or mineralogy.

    Wenk added, “It was quite fascinating to look at all of these materials. What we hope is to get other people interested in looking at this in more detail, and in looking for examples around the Nagasaki A-bomb site.”

    Wenk sent a copy of the latest study to Jun-Ichi Ando, a professor in the Department of Earth and Planetary Systems Science in the Graduate School of Science at Hiroshima University – they had met while Wenk was serving as a visiting professor at Hiroshima University in 1998.

    “I think this kind of research is very important for Hiroshima University, as a university located at the A-bomb site,” Ando said, noting that he shared the study with a colleague who is a mineralogist and studies the Yucatan-region’s meteorite impact. He also shared it with Rebun Kayo, a research fellow at the university who leads an outreach group that raises awareness about nuclear weapons by sharing bomb-scarred Hiroshima roof tiles and bricks with institutions around the world.

    In an unrelated effort, Ando has studied a large chunk of granite associated with the Atomic Bomb Dome structure in Hiroshima – it was the only building that remained standing near ground zero. Kayo found and recovered the piece of granite from a local riverbed near the domed building in 2017. It is also known as the Genbaku Dome or Hiroshima Peace Memorial.

    “I tried to find evidence of melting and the shock wave recorded on the surface of the granite pillar” using electron microscopy, Ando said – his own research typically focuses on microstructures of rocks in seismic faults.

    Wannier said the debris study has been an enlightening journey for him, and he hopes to continue with the research. “For 70-plus years this material has been there and was never studied in detail. We hope this raises attention among the scientific community,” he said.

    “We hope people take advantage of this opportunity.”

    The Advanced Light Source is a DOE Office of Science User Facility.

    ###

    Founded in 1931 on the belief that the biggest scientific challenges are best addressed by teams, Lawrence Berkeley National Laboratory and its scientists have been recognized with 13 Nobel Prizes. Today, Berkeley Lab researchers develop sustainable energy and environmental solutions, create useful new materials, advance the frontiers of computing, and probe the mysteries of life, matter, and the universe. Scientists from around the world rely on the Lab’s facilities for their own discovery science. Berkeley Lab is a multiprogram national laboratory, managed by the University of California for the U.S. Department of Energy’s Office of Science.

    DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit science.energy.gov.

    • other-fb
    • other-tw
    X
    X
    X
    • Filters

    • × Clear Filters
    Superconducting Films for Particle Acceleration

    Superconducting Films for Particle Acceleration

    Researchers demonstrated record accelerating cavity performance using a technique that could lead to significant cost savings.

    Electron (or 'Hole') Pairs May Survive Effort to Kill Superconductivity

    Electron (or 'Hole') Pairs May Survive Effort to Kill Superconductivity

    Scientists seeking to understand the mechanism underlying superconductivity in "stripe-ordered" cuprates--copper-oxide materials with alternating areas of electric charge and magnetism--discovered an unusual metallic state when attempting to turn superconductivity off. They found that under the conditions of their experiment, even after the material loses its ability to carry electrical current with no energy loss, it retains some conductivity--and possibly the electron (or hole) pairs required for its superconducting superpower.

    Parceling Particle Beams

    Parceling Particle Beams

    Beam chopper cuts accelerator-generated ion beams under highly demanding conditions.

    An Interaction of Slipping Beams

    An Interaction of Slipping Beams

    Successful models of the fraught dynamics of two particle beams in close contact lead to smoother sailing in an area of particle acceleration.

    Hybrid Nanostructure Steps Up Light-Harvesting Efficiency

    Hybrid Nanostructure Steps Up Light-Harvesting Efficiency

    Energy is transferred through the structure in a way that boosts its response to light, showing promise for solar cell applications.

    Pulsed Electron Beams Shed Light on Plastics Production

    Pulsed Electron Beams Shed Light on Plastics Production

    Researchers at Berkeley Lab have developed a pulsed electron beam technique that enables high-resolution imaging of magnesium chloride without damage. This approach could apply to a vast range of beam-sensitive materials, and help to create a path toward sustainable plastics.

    Tracking major sources of energy loss in compact fusion facilities

    Tracking major sources of energy loss in compact fusion facilities

    Analysis of energy loss in low-aspect ratio tokamaks opens a new chapter in the development of predictions of transport in such facilities.

    Computer Simulation Shows Astrophysical Particle Acceleration

    Computer Simulation Shows Astrophysical Particle Acceleration

    Particles act in a way that justifies extrapolating simulation results to astrophysical scales.

    How Cryptocurrency Discussions Spread

    How Cryptocurrency Discussions Spread

    PNNL's Dr. Svitlana Volkova and her the team analyzed three years worth of discussions on Reddit from January 2015 to January 2018 measuring the speed and scale of discussion spread related to Bitcoin, Ethereum, and Monero cryptocurrencies.

    What if Dark Matter is Lighter? Report Calls for Small Experiments to Broaden the Hunt

    What if Dark Matter is Lighter? Report Calls for Small Experiments to Broaden the Hunt

    Theorized dark matter particles haven't yet shown up where scientists had expected them. So Berkeley Lab researchers are now designing new and nimble experiments that can look for dark matter in previously unexplored ranges of particle mass and energy, and using previously untested methods.


    • Filters

    • × Clear Filters

    Energy Department to Invest $32 Million in Computer Design of Materials

    The U.S. Department of Energy announced that it will invest $32 million over the next four years to accelerate the design of new materials through use of supercomputers.

    Demarteau to head ORNL Physics Division

    Demarteau to head ORNL Physics Division

    The Department of Energy's Oak Ridge National Laboratory has named Marcel Demarteau as Physics Division Director, effective June 17.

    PPPL and Oak Ridge manage new DOE program designed to speed development of fusion energy with private-public partnerships

    PPPL and Oak Ridge manage new DOE program designed to speed development of fusion energy with private-public partnerships

    Feature describes PPPL role in innovative DOE program to promote public-private partnerships to speed development of fusion energy.

    ORNL welcomes seven new research fellows to Innovation Crossroads

    ORNL welcomes seven new research fellows to Innovation Crossroads

    Oak Ridge National Laboratory welcomed seven technology innovators to join the third cohort of Innovation Crossroads, the Southeast's only entrepreneurial research and development program based at a U.S. Department of Energy national laboratory.

    New DOE program connects fusion companies with national labs, taps ORNL to lead

    New DOE program connects fusion companies with national labs, taps ORNL to lead

    The Department of Energy has established the Innovation Network for Fusion Energy program, or INFUSE, to encourage private-public research partnerships for overcoming challenges in fusion energy development.

    Department of Energy Announces $75 Million for High Energy Physics Research

    The U.S. Department of Energy (DOE) announced $75 million in funding for 66 university research awards on a range of topics in high energy physics to advance knowledge of how the universe works at its most fundamental level.

    Ames Laboratory names James Morris Chief Research Officer

    Ames Laboratory names James Morris Chief Research Officer

    Dr. James Morris has been named Chief Research Officer at the Department of Energy's (DOE) Ames Laboratory. His appointment follows an extensive search and will be effective June 17, 2019.

    Four scientists at PPPL awarded national and international honors

    Four scientists at PPPL awarded national and international honors

    Feature profiles four PPPL scientists who have received high honors.

    Brookhaven's Mircea Cotlet Named a Battelle "Inventor of the Year"

    Brookhaven's Mircea Cotlet Named a Battelle "Inventor of the Year"

    The global science and technology organization Battelle recognized materials scientist Mircea Cotlet of Brookhaven Lab's Center for Functional Nanomaterials for his research in applying self-assembly methods to control the interfaces between nanomaterials and other light-interacting components.

    Berkeley Lab Project to Pinpoint Methane 'Super Emitters'

    Berkeley Lab Project to Pinpoint Methane 'Super Emitters'

    Methane, a potent greenhouse gas that traps about 30 times more heat than carbon dioxide, is commonly released from rice fields, dairies, landfills, and oil and gas facilities - all of which are plentiful in California. Now Berkeley Lab has been awarded $6 million by the state to find "super emitters" of methane in an effort to quantify and potentially mitigate methane emissions.


    • Filters

    • × Clear Filters
    Superconducting Films for Particle Acceleration

    Superconducting Films for Particle Acceleration

    Researchers demonstrated record accelerating cavity performance using a technique that could lead to significant cost savings.

    Parceling Particle Beams

    Parceling Particle Beams

    Beam chopper cuts accelerator-generated ion beams under highly demanding conditions.

    An Interaction of Slipping Beams

    An Interaction of Slipping Beams

    Successful models of the fraught dynamics of two particle beams in close contact lead to smoother sailing in an area of particle acceleration.

    Computer Simulation Shows Astrophysical Particle Acceleration

    Computer Simulation Shows Astrophysical Particle Acceleration

    Particles act in a way that justifies extrapolating simulation results to astrophysical scales.

    High-Fidelity Multiphysics Simulations to Improve Nuclear Reactor Safety and Economics

    High-Fidelity Multiphysics Simulations to Improve Nuclear Reactor Safety and Economics

    Engineers can model heat distribution in reactor designs with fewer or no approximations.

    Simulations Shed Light on Self-Healing Cement

    Simulations Shed Light on Self-Healing Cement

    A first-of-its-kind computer simulation reveals self-healing cement for geothermal and oil and gas wells performs better than originally thought.

    Solving a Beta Decay Puzzle

    Solving a Beta Decay Puzzle

    Researchers use advanced nuclear models to explain 50-year mystery surrounding the process stars use to transform elements.

    Why Are These Extremely Light Calcium Isotopes So Small?

    Why Are These Extremely Light Calcium Isotopes So Small?

    The radii of three proton-rich calcium isotopes are smaller than previously predicted because models didn't account for two nuclear interactions.

    Tiny Vortices Could One Day Haul Microscopic Cargo

    Tiny Vortices Could One Day Haul Microscopic Cargo

    The behavior of active magnetic liquids suggests new pathways to transport particles across surfaces and build materials that self-heal.

    Raised on Copper: A New Material for Tougher Devices

    Raised on Copper: A New Material for Tougher Devices

    Discovery of new boron-containing phase opens the door for resilient flexible electronics.


    Spotlight

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
    Wednesday January 17, 2018, 12:05 PM

    Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018

    Fermi National Accelerator Laboratory (Fermilab)

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code
    Wednesday January 17, 2018, 12:05 PM

    Fermilab Computing Partners with Argonne, Local Schools for Hour of Code

    Fermi National Accelerator Laboratory (Fermilab)

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom
    Wednesday December 20, 2017, 01:05 PM

    Q&A: Sam Webb Teaches X-Ray Science from a Remote Classroom

    SLAC National Accelerator Laboratory

    The Future of Today's Electric Power Systems
    Monday December 18, 2017, 01:05 PM

    The Future of Today's Electric Power Systems

    Rensselaer Polytechnic Institute (RPI)

    Supporting the Development of Offshore Wind Power Plants
    Monday December 18, 2017, 12:05 PM

    Supporting the Development of Offshore Wind Power Plants

    Rensselaer Polytechnic Institute (RPI)

    Stairway to Science
    Tuesday October 03, 2017, 01:05 PM

    Stairway to Science

    Argonne National Laboratory

    After-School Energy Rush
    Thursday September 28, 2017, 12:05 PM

    After-School Energy Rush

    Argonne National Laboratory

    Bringing Diversity Into Computational Science Through Student Outreach
    Thursday September 28, 2017, 10:05 AM

    Bringing Diversity Into Computational Science Through Student Outreach

    Brookhaven National Laboratory

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM
    Thursday September 21, 2017, 03:05 PM

    From Science to Finance: SLAC Summer Interns Forge New Paths in STEM

    SLAC National Accelerator Laboratory





    Showing results

    0-4 Of 2215