DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-10-28 16:50:43
    • Article ID: 721521

    PPPL findings: From new fusion developments to surprises in astrophysics at global plasma physics gathering

    • Credit: Max Planck Institute for Plasma Physics.

      Experiment in ASDEX-Upgrade referred to in, "A safer, more convenient way to improve operation of fusion facilities."

    • Credit: Jackson Matteucci and Will Fox.

      Image of collision of two magnetized plasma plumes showing Biermann battery-mediated reconnection described in, "Making Connections: Bringing Astrophysical Processes Down to Earth."

    • Credit: NSTX-U collaboration.

      New and original neutral beams installed on the NSTX-U at PPPL described in, "New theory produces ways to control pesky waves that cause fusion plasmas to leak energy."

    • Credit: Yi-Min Huang.

      Image from simulation of turbulent reconnection showing parallel current density and samples of magnetic field lines described in, "Close link between forms of plasma behavior seen throughout the universe."

    • Credit: Denis St-Onge.

      Image of the plasma dynamo described in, "Improving understanding of the vast plasma structures between galaxies." Credit: Denis St-Onge.

    More than 155 researchers and students — the largest delegation from the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL) in recent years — attended the 61st annual meeting of the American Physical Society Division of Plasma Physics (APS-DPP) in Fort Lauderdale, Florida. The October 21-25 conference drew more than 1,800 participants from around the world to meet with colleagues and present posters and talks on the range of plasma physics topics — from the latest research on astrophysical and nanotechnology plasmas to recent developments in magnetic and inertial confinement fusion experiments.

    Among events during the week was announcement of new APS Fellows, a recognition for outstanding achievement that no more than one-half of one percent of the more than 55,000 APS members receives. New Fellows this year include Stefan Gerhardt, head of research operations and deputy director of the recovery project for the National Spherical Torus Experiment Upgrade (NSTX-U), the flagship fusion facility at PPPL.

    Invited talks by PPPL scientists ranged from a method for controlling waves that limit the efficiency of fusion plasmas to a surprising discovery about astrophysical plasmas. Talks included those summarized here: 

    New theory produces ways to control pesky waves that cause fusion plasmas to leak energy

    Fusion combines light elements in the form of plasma — the hot, charged state of matter composed of free electrons and atomic nuclei — to generate massive amounts of energy. One way that scientists help heat the plasma is by injecting beams of energetic particles to provide enough energy for the particles to overcome mutual repulsion and fuse together. 

    However, the injected particles could produce waves that cause plasma energy to leak out of the magnetic fields that confine it. It is therefore beneficial to the development of fusion energy to suppress the waves that drive particles from the confining magnetic fields, cooling the plasma and helping to quench the fusion reactions.

    PPPL researchers led by physicist Jeff Lestz have developed new mathematical tools to forecast when the waves will be present and could cool the plasma. The tools predict that a second beam injected at a different angle from the original beam can suppress the effect of the waves, providing new methods for maintaining the plasma’s confinement. Such a second beam has been installed on the NSTX-U at PPPL.

    The physicists ran detailed computer simulations to model experiments in which the waves were observed. The results broadly agreed with data from experiments on the predecessor of the NSTX-U. The mathematical tools not only explain observations of the waves in past experiments, but also indicate how to turn off one type of wave using different mixtures of the two beams on NSTX-U that inject energetic particles at different angles.

    Making Connections: Bringing Astrophysical Processes Down to Earth

    Magnetic reconnection, in which magnetic field lines tear, come back together and release large amounts of energy, gives rise to auroras, solar flares and geomagnetic storms that can disrupt cell phone service and electric grids on Earth. A major challenge in the study of magnetic reconnection is bridging the gap between these large-scale astrophysical scenarios and small-scale experiments done in a lab. 

    PPPL researchers led by graduate student Jackson Matteucci have overcome this barrier through a combination of clever experiments and cutting-edge simulations. In doing so, they have uncovered a previously unknown role for a universal process called the “Biermann battery effect,” which turns out to impact magnetic reconnection in unexpected ways.

    The Biermann battery effect, a possible seed for the magnetic fields that pervade the universe, generates an electric current that produces these fields. The surprise findings, made through computer simulations show that the effect can play a significant role in the reconnection occurring when the Earth’s magnetosphere interacts with astrophysical plasmas. The effect first generates magnetic field lines, but then reverses roles and cuts them like scissors slicing a rubber band. The sliced fields then reconnect away from the original reconnection point. These results bridge the gap between laboratory experiments and astrophysical processes and can improve efforts to understand the universe. 

    Simulations of interstellar magnetic fields open new chapter in understanding star formation

    Many of the most dramatic events in the solar system — the spectacle of the Northern Lights, the explosiveness of solar flares, and the destructive impact of geomagnetic storms — are driven in part by fast magnetic reconnection.

    Astrophysicists have long puzzled over whether this mechanism can occur in the cold, relatively dense regions of interstellar space where stars are born. Such regions are filled with partially ionized plasma, a mix of free charged electrons and ions and the more familiar neutral, or whole, gas atoms. Magnetic reconnection in these regions might dissipate magnetic fields and stimulate star formation. 

    PPPL physicists led by Jonathan Jara-Almonte have developed a model and simulation that show that fast reconnection can indeed occur in partially ionized systems. These findings can help guide the understanding of how reconnection may differ between fully ionized and partially ionized plasma, and how it might affect the formation of stars. 

    Discovered: An improved method for producing fusion in compact devices 

    A major factor in the size and cost of a fusion reactor is how fast the hot plasma that fuels fusion reactions leaks away its energy. Experiments on the National Spherical Torus Experiment (NSTX) at PPPL have produced the Enhanced Pedestal (EP) H-mode, a high-energy confinement regime that is desirable for a future compact reactor. 

    The EP H-mode has excellent confinement, is free of edge localized mode (ELM) instabilities, and demonstrates improved control over the purity of the plasma compared with other H-mode regimes on NSTX that also are free of ELMs. In this talk, physicist Devon Battaglia describes how an increase in the loss of colder particles from the plasma can be a good thing that leads to the desirable EP H-mode. The increased loss significantly slows the loss of the highest-energy ions, improving overall energy confinement. 

    Researchers most often observed the EP H-mode on NSTX following a positive feedback loop initiated by an ELM instability. These observations provide the first description of the mechanisms that produce the EP H-mode, enabling the projection of this attractive scenario to the NSTX Upgrade (NSTX-U) and future compact fusion reactors.

    A safer, more convenient way to improve operation of fusion facilities

     Before performing experiments in doughnut-shaped fusion facilities called tokamaks, physicists apply boron-rich gas to a tokamak’s interior surfaces to prevent impurities from interfering with fusion reactions. This technique involves risk — the gas is both toxic and explosive, forcing evacuation of the buildings that house tokamaks before the process can begin. 

    Experiments conducted on the DIII-D National Fusion Facility that General Atomics operates, and on the ASDEX-Upgrade in Germany, have demonstrated what could be a better way to prevent impurities. The experiments show that injection of boron powder coats the interior surfaces of a tokamak as thickly as does boron gas, with similar benefits but without the dangers, says PPPL physicist Alessandro Bortolon who is stationed at DIII-D. 

    Use of the powder can also be far more convenient. The solid material can be applied at the time of experiments, whereas application of the gas must be done well in advance.

    Preventing damaging instabilities in the crucial ITER project  

    The success of the multinational ITER project, which aims to demonstrate the practicality of fusion energy, hinges on the ability of researchers to suppress Edge Localized Modes (ELMs), a type of plasma instability. These ELMS can be so violent as to damage the inner, plasma-facing walls of the ITER tokamak. 

    To avoid ELMs, ITER plans to apply what are called resonant magnetic perturbations (RMPs) to the magnetic field that confines the superhot plasma. While RMPs have been tested in several current tokamaks, a full understanding of the impact of the perturbations remains elusive.

    Scientists at PPPL have now performed large-scale computer simulations to improve this understanding and develop predictive capabilities to guide experiments. Recent findings by physicist Robert Hager have demonstrated with unprecedented fidelity how RMPs influence the transport of particles and heat in the plasma and the deposit of energy on the reactor walls. These findings allow detailed comparison with experimental data to support development of more accurate models for RMP-driven plasma transport and improve guidance for the suppression of ELMs in ITER. 

    State-of-the-art simulations project the performance of future compact fusion devices 

    Accurate prediction of the escape of heat from the superhot core of fusion plasmas will be needed for next-generation fusion reactors based on the spherical tokamak design. Spherical reactors are shaped like cored apples rather than the doughnut-like shape of more widely used conventional tokamaks, and tend to produce higher beta —a key measure of plasma performance.

    Using state-of-the-art simulations, physicist Juan Ruiz Ruiz has predicted heat loss in the National Spherical Torus Experiment (NSTX). These predictions agree well with the heat loss measured in actual NSTX experiments. Further agreement with experiments on the upgraded NSTX-U and the Mega Ampere Spherical Tokamak (MAST) in the United Kingdom could demonstrate the ability of the simulations to forecast the loss of heat — and therefore the performance — of future spherical tokamaks. 

    Close link between forms of plasma behavior seen throughout the universe 

    Two phenomena that occur often in plasma — turbulence and magnetic reconnection — would seem to have little in common. Turbulence is unsteady motion that stirs up plasma in irregular ways; magnetic reconnection breaks apart and reattaches magnetic field lines, releasing enormous amounts of energy.

    However, PPPL scientists have recently discovered that turbulence and magnetic reconnection can be intimately related. Using computer simulations, physicist Yi-Min Huang and colleagues have shown that turbulence can help cause magnetic reconnection. 

    This is because turbulent behavior in thin layers of electric current brings magnetic field lines closer together and increases the chances for reconnection to occur. Understanding this previously unsuspected relationship could provide insight into solar phenomena such as coronal mass ejections that arise from magnetic reconnection and can threaten communications systems on Earth.

    Improving understanding of the vast plasma structures between galaxies 

    Magnetic fields occur throughout the universe, including within the intracluster medium (ICM), the vast plasma structures that permeate clusters of galaxies. Scientists conjecture that these magnetic fields are generated by the turbulent plasma dynamo — the swirling of plasma at the juncture of plasmas that move at different speeds. 

    Most studies of this dynamo focus on plasma in which particles frequently interact. However, particles in ICM plasmas rarely collide, leaving current models unable to accurately predict ICM behavior.

    PPPL physicist Denis St- Onge has now used computer simulations and mathematical calculations to show that dynamos in collisionless systems rely on plasma instabilities and display unique characteristics. Detailed understanding of dynamos in these conditions could lead to improved comprehension of the origin of magnetic fields in the vast intracluster medium.

    PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which  is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science (link is external).

    X
    X
    X
    • Filters

    • × Clear Filters
    Study: X-Rays Surrounding 'Magnificent 7' May Be Traces of Sought-After Particle

    Study: X-Rays Surrounding 'Magnificent 7' May Be Traces of Sought-After Particle

    A new study, led by a theoretical physicist at Berkeley Lab, suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars.

    Borrowing from birds, experts reduce search times for novel high-entropy alloys to seconds

    Borrowing from birds, experts reduce search times for novel high-entropy alloys to seconds

    Computational materials science experts at the U.S. Department of Energy's Ames Laboratory enhanced an algorithm that borrows its approach from the nesting habits of cuckoo birds, reducing the search time for new high-tech alloys from weeks to mere seconds.

    January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation

    January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation

    January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation

    Pivotal discovery in quantum and classical information processing

    Pivotal discovery in quantum and classical information processing

    Researchers have achieved, for the first time, electronically adjustable interactions between microwaves and a phenomenon in certain magnetic materials called spin waves. This could have application in quantum and classical information processing.

    Shine On: Avalanching Nanoparticles Break Barriers to Imaging Cells in Real Time

    Shine On: Avalanching Nanoparticles Break Barriers to Imaging Cells in Real Time

    A team of researchers co-led by Berkeley Lab and Columbia University has developed a new material called avalanching nanoparticles that, when used as a microscopic probe, offers a simpler approach to taking high-resolution, real-time snapshots of a cell's inner workings at the nanoscale.

    Scientists find antibody that blocks dengue virus

    Scientists find antibody that blocks dengue virus

    The research team used the Advanced Photon Source to confirm an effective antibody that prevents the dengue virus from infecting cells in mice, and may lead to treatments for this and similar diseases.

    Using neural networks for faster X-ray imaging

    Using neural networks for faster X-ray imaging

    A team of scientists from Argonne is using artificial intelligence to decode X-ray images faster, which could aid innovations in medicine, materials and energy.

    The Odd Structure of ORF8: Scientists Map the Coronavirus Protein Linked to Disease Severity

    The Odd Structure of ORF8: Scientists Map the Coronavirus Protein Linked to Disease Severity

    A team of biologists who banded together to support COVID-19 science determined the atomic structure of a coronavirus protein thought to help the pathogen evade and dampen response from human immune cells. The structural map has laid the groundwork for new antiviral treatments and enabled further investigations into how the newly emerged virus ravages the human body.

    Impacts of Climate Change on Our Water and Energy Systems: It's Complicated

    Impacts of Climate Change on Our Water and Energy Systems: It's Complicated

    Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), UC Berkeley, and UC Santa Barbara have developed a science-based analytic framework to evaluate the complex connections between water and energy, and options for adaptations in response to an evolving climate.

    Insights Through Atomic Simulation

    Insights Through Atomic Simulation

    A recent special issue in The Journal of Chemical Physics highlights PNNL's contributions to developing two prominent open-source software packages for computational chemistry used by scientists around the world.


    • Filters

    • × Clear Filters
    Science Begins at Brookhaven Lab's New Cryo-EM Research Facility

    Science Begins at Brookhaven Lab's New Cryo-EM Research Facility

    On January 8, 2021, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory welcomed the first virtually visiting researchers to the Laboratory for BioMolecular Structure (LBMS), a new cryo-electron microscopy facility.

    Two Berkeley Lab Scientists Honored with the Lawrence Award

    Two Berkeley Lab Scientists Honored with the Lawrence Award

    The Department of Energy has announced that Susannah Tringe and Dan Kasen, two scientists at Lawrence Berkeley National Laboratory (Berkeley Lab), will receive the Ernest Orlando Lawrence Award, one of DOE's highest honors. Additionally, former Berkeley Lab scientist M. Zahid Hasan was also named as one of the eight recipients.

    ElastiDry Wins DOE National Pitch Competition

    ElastiDry Wins DOE National Pitch Competition

    A panel of five judges from the Bay Area and Silicon Valley investment community chose the PNNL innovation from 10 product pitches.

    Fermilab receives DOE award to develop machine learning for particle accelerators

    Fermilab receives DOE award to develop machine learning for particle accelerators

    Fermilab scientists and engineers are developing a machine learning platform to help run Fermilab's accelerator complex alongside a fast-response machine learning application for accelerating particle beams. The programs will work in tandem to boost efficiency and energy conservation in Fermilab accelerators.

    Argonne earns HPCwire awards for the best use of high performance computing in energy and industry

    Argonne earns HPCwire awards for the best use of high performance computing in energy and industry

    HPCwire magazine recognizes two Argonne teams for outstanding achievement in their use of high performance computing.

    Rachel Slaybaugh to Lead Berkeley Lab's Cyclotron Road

    Rachel Slaybaugh to Lead Berkeley Lab's Cyclotron Road

    The Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has named Rachel Slaybaugh, associate professor of nuclear engineering at UC Berkeley, to lead Berkeley Lab's Cyclotron Road Division.

    $2.6 million Dept. of Energy grant to fund research into solar energy and power grids

    $2.6 million Dept. of Energy grant to fund research into solar energy and power grids

    A team of researchers from Binghamton University, State University of New York has been selected to receive $2.6 million from the U.S. Department of Energy Solar Energy Technologies Office (SETO) to develop ways to reliably support higher amounts of solar power on the grid.

    Experiment to Precisely Measure Electrons Moves Forward

    Experiment to Precisely Measure Electrons Moves Forward

    The MOLLER experiment at DOE's Jefferson Lab is one step closer to carrying out an experiment to gain new insight into the forces at work inside the heart of matter through probes of the humble electron. The experiment has just received a designation of Critical Decision 1, or CD-1, from the DOE, which is a greenlight to move forward in design and prototyping of equipment.

    Physicists Hong Qin and Ahmed Diallo recognized for outstanding research at PPPL

    Physicists Hong Qin and Ahmed Diallo recognized for outstanding research at PPPL

    Theoretical and experimental physicists receive PPPL awards for standout research in 2020.

    Scientists collaborate on public-private partnership to facilitate the development of commercial fusion energy

    Scientists collaborate on public-private partnership to facilitate the development of commercial fusion energy

    Article describes PPPL work in coordination with MIT's Plasma Science and Fusion Center and Commonwealth Fusion Systems, a start-up spun out of MIT that is developing a unique tokamak fusion device called "SPARC."


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Graduate students gather virtually for summer school at PPPL
    Monday October 05, 2020, 04:45 PM

    Graduate students gather virtually for summer school at PPPL

    Princeton Plasma Physics Laboratory

    Virtual internships for physics students present challenges, build community
    Tuesday September 15, 2020, 04:35 PM

    Virtual internships for physics students present challenges, build community

    Princeton Plasma Physics Laboratory

    Blocking the COVID-19 Virus's Exit Strategy
    Monday August 31, 2020, 04:05 PM

    Blocking the COVID-19 Virus's Exit Strategy

    Brookhaven National Laboratory

    Summer Students Tackle COVID-19
    Monday August 31, 2020, 03:35 PM

    Summer Students Tackle COVID-19

    Brookhaven National Laboratory

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
    Friday April 17, 2020, 05:25 PM

    Graduate student at PPPL Ian Ochs wins top Princeton University fellowship

    Princeton Plasma Physics Laboratory

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory





    Showing results

    0-6 Of 2215