- 2019-11-06 10:05:52
- Article ID: 722116
X-rays of human skull to improve military helmets
Army Research Lab Better Helmets
The Army Research Laboratory (ARL) recently teamed up with scientists at the U.S. Department of Energy’s (DOE) Argonne National Laboratory to look at the microstructure of the human skull using high-energy X-rays from the Advanced Photon Source (APS), a DOE Office of Science User Facility.
“The more we understand how the skull behaves, the more we can understand what happens to the brain.” — Karin Rafaels, team leader, CCDC ARL
Better characterization of the structure of the skull and understanding of human tolerance of ballistic impact will inform computer models to help develop more effective helmets for soldiers.
Not all bones are created equal
Scientists studying skull bone are just beginning to uncover the small-scale structures within our natural helmet, the skull, and detailed X-ray characterization of the human skull at the scale of this study is unprecedented.
One of the intricacies the scientists are searching for — as it would play an integral role in helmet design — is anisotropy, or the variation of mechanical properties depending on orientation. In other words, the scientists want to uncover any patterns in the crystal structure of skull bone to see if it behaves differently if pressed — or hit — from one angle compared to another.
“Other bones in our body exhibit anisotropy,” said ARL team leader Karin Rafaels. “In a femur, because it is meant to be load bearing, the crystal and collagen are organized along the long direction of the leg so that it is strong along that direction. It is more brittle across the femur, which is why fractures are generally in the direction perpendicular to your leg.”
Current computer models treat skull bone as isotropic, or the same in all directions. This is a decent approximation because the skull is not meant to be load bearing, so the crystal structure is more random compared to other bones, and any patterns would be on a very small scale. But when it comes to the skull and very concentrated impact, even slight patterns on a small scale make a big difference in the mechanical properties of the skull as it withstands a load at high velocity and over a small area.
“No matter the external load on the skull, the models predict the skull to behave the same way,” said ARL engineer Andrew Brown, the lead scientist on the study. “Is that necessarily the case? That was my big question, because in crystallography, how random is random? Can we quantify that?”
The knowledge of the mechanical behavior of all areas of the skull could aid the computer models in determining certain pathways to stop or deflect ballistic objects that minimize injury.
“At the APS, we can see if there are preferable loading pathways, or ways to distribute or direct the force of the impact, so that we can design our helmets to take advantage of the skull’s crystal structure,” said Rafaels.
Brown brought samples of skull, preserved in saline to remain lifelike, from all parts of the head, including in and around sutures, or places where the skull bones have fused together. At the 1-ID-E beamline of the APS, they did various line scans of the samples over 90 degrees in two perpendicular planes to expose any directionality in the structure. Over a period of three days, Brown and the APS beamline scientists Peter Kenesei and Jun-Sang Park, both physicists in the X-ray Science Division, produced terabytes of data that, after analysis, could reveal anisotropy in the samples.
“Even in quick reconstructions of the data, we could already see differences between the structures of the femur compared to the skull,” Rafaels said. “I can’t wait to see what we find during analysis.”
To test the mechanical properties of the bone samples against their internal crystal structures, Brown plans to use a mechanical load frame at the ARL to compress the X-rayed samples along different axes while observing their behavior. He will then match up the structures with the mechanical behavior to search for trends.
“A pattern we may find is a correlation between the strength of the sample along a certain axis paired with a crystal alignment along that same axis,” Brown said.
Evolution of a fracture
For the most part, the scientists looked for structural patterns in skull samples in an uninjured state. However, some of the skull samples used in the study had pre-existing fractures from a previous ARL experiment. These specific samples gave the scientists in the current study the opportunity to see how a skull fracture — resulting from the impact of a bullet on a helmet, and then of that helmet on the skull — affected the microstructure inside the skull.
“The faster the bullet, the smaller scale the damage can be to the skull,” said Rafaels, whose background is in biomechanics. “The APS allowed us to see how loads are transmitted through the crystal structure and how the energy is dispersed around the fracture. The more we understand how the skull behaves, the more we can understand what happens to the brain.”
The scientists used small-angle scattering at the APS to uncover changes in the crystal structure’s periodicity due to the fractures. At the nanoscale, the crystal structure of the skull is built around flexible collagen fibers. Platelets that form the crystal are generally staggered around 67 nanometers from each other on the collagen.
“We expect to see a peak from the small-angle scattering showing approximately 67 nm spacing,” Brown said, “so when that spacing shifts, we know the collagen is being stretched or compressed, and we get an idea of the type of strain in the skull from the injury.”
The scientists can use this data to make a map of strain around the fracture and incorporate the information into the computational models. If the models include this behavior of the bone, they can accurately predict what kinds of fractures propagate and how, with the end goal of preventing propagation.
Next steps
The team has submitted a new proposal to delve deeper into this study using the APS. Brown wants to perform in situ scattering experiments of skull bone being mechanically compressed at the beamline. The way the strain on the bone changes as a function of applied load for specimens with machined notches and specimens containing an existing fracture will provide insight into mechanical thresholds for fracture propagation.
For both the current experiment and future experiments, the scientists have enlisted much help from Jonathan Almer, APS physicist and group leader in the X-ray Science Division, and Stuart Stock, a materials scientist and faculty member of Northwestern University’s Feinberg School of Medicine. Both Almer and Stock have extensive experience imaging bone and have been publishing on the subject since 2005. Brown and Stock are spearheading data analysis, and Almer is integral to the experimental design and data collection.
“Andrew contacted the APS, and together we designed a feasible experiment, and we also brought in Stuart to collaborate,” Almer said. “Argonne often contributes to the user experiments in these ways, helping plan and conduct the experiment, and then linking scientists with experts in the field.”
Brown used the APS to image metals in 2014, and chose to return for its unparalleled light source and resident scientists.
“The APS is an impressive machine that a lot of experts in their fields use to contribute to all sorts of interdisciplinary research,” Brown said. “You can’t get this light source in a lab. It’s a very economical solution, and you’re using techniques you can’t use anywhere else.”
This study, and the studies to come, allow scientists to take a look inside the skull to reveal patterns in its architecture and the mechanisms that drive its behavior.
“Bullet to helmet to skin to skull to brain,” Rafaels said. “We have to get the models right all the way through — for our Army mission and for our understanding of bone in general.”
About the Advanced Photon Source
This research used resources of the Advanced Photon Source, a U.S. DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation’s first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America’s scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy’s Office of Science.
The U.S. Department of Energy’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit https://energy.gov/science.

MORE NEWS FROM
Argonne National LaboratoryParticipating Labs
- DOE Office of Science
- Argonne National Laboratory
- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory
- Iowa State University, Ames Laboratory
- Brookhaven National Laboratory
- Princeton Plasma Physics Laboratory
- Lawrence Berkeley National Laboratory
- Thomas Jefferson National Accelerator Facility
- Fermi National Accelerator Laboratory (Fermilab)
- SLAC National Accelerator Laboratory

Batten down the hatches: Preventing heat leaks to help create a star on Earth
PPPL physicists have identified a method by which instabilities can be tamed and heat can be prevented from leaking from fusion plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

Quenching Water Scarcity with a Good Pore
Researchers at UC San Diego and MIT linked theory and experiment to move closer to developing materials that address global water scarcity.

Simulations Attempt to Reconstruct One of the Most Explosive Events in the Universe: A Neutron Star Merger
A team led by scientists that included Berkeley Lab researchers has simulated the formation of a disc of matter, a giant burst of ejected matter, and the startup of energetic jets in the aftermath of a merger by two neutron stars.

Tiny Quantum Sensors Watch Materials Transform Under Pressure
Scientists at Berkeley Lab have developed a diamond anvil sensor that could lead to a new generation of smart, designer materials, as well as the synthesis of new chemical compounds, atomically fine-tuned by pressure.

Scientists harvest energy from light using bio-inspired artificial cells
By replicating biological machinery with non-biological components, scientists have created artificial cells that convert light into chemical energy.

Argonne's debt to 2019 Nobel Prize for lithium-ion battery
A roar of approval rang out at the U.S. Department of Energy's (DOE's) Argonne National Laboratory upon the announcement in October that John B. Goodenough, M. Stanley Whittingham and Akira Yoshino had won the 2019 Nobel Prize in Chemistry. On December 10th in Stockholm, they received this highly coveted prize for their major contributions to the invention of the lithium-ion battery, which is a long-standing major focus of research at Argonne.

Battery collaboration meeting discusses new pathways to recycle lithium-ion batteries
At a conference held by the ReCell Center, an advanced battery recycling collaboration based at Argonne, representatives from industry, government, and academia discussed innovative approaches for lithium-ion battery recycling.

New Function for Plant Enzyme Could Lead to Green Chemistry
Scientists at Brookhaven National Laboratory have discovered a new function in a plant enzyme that could inspire the design of new chemical catalysts. The enzyme catalyzes, or initiates, one of the cornerstone chemical reactions needed to synthesize a wide array of organic molecules, including those found in lubricants, cosmetics, and those used as raw materials for making plastics.

Freeze Frame: Scientists Capture Atomic-Scale Snapshots of Artificial Proteins
Scientists at Berkeley Lab are the first to use cryo-EM (cryogenic electron microscopy), a Nobel Prize-winning technique originally designed to image proteins in solution, to image atomic changes in a synthetic soft material.

Argonne Collaboration Shows Benefits of Better Corn Residue Management Strategies
Sustainable corn stover removal can maintain soil carbon stock, according a new Argonne-led study.

James Wilson Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran, experienced federal administrator, and active member of the Princeton community
James W. Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran with a long career in public service, who died Aug. 6. A memorial service in his honor will be held Dec. 21.
Department of Energy to Provide $24 Million in EPSCoR Grants for Energy-Related Research
The U.S. Department of Energy (DOE) announced a funding opportunity for up to $24 million for new grants under the Established Program to Stimulate Competitive Research (DOE EPSCoR).

University of Kentucky Grant Seeks to Turn Coal Into Carbon Fiber
UK's Center for Applied Energy Research (CAER) has received a $1.8 million U.S. Department of Energy (DOE) grant to transform coal tar pitch into high-value carbon fiber for use in aircraft, automobiles, sporting goods and other high-performance materials.

Six Berkeley Lab Scientists Named AAAS Fellows
Six scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have been named Fellows of the American Association for the Advancement of Science (AAAS).

PPPL is recognized for being green
The U.S. Department of Energy's Princeton Plasma Physics Laboratory was recognized by the U.S. Environmental Protection Agency for its green practices in reducing waste, energy, and water, and transportation, and for green purchasing and electronics recycling.

Dmitri Zakharov Recognized with the 2019 Chuck Fiori Award
The award honors Dmitri Zakharov's contributions to environmental transmission electron microscopy at Brookhaven Lab's Center for Functional Nanomaterials.

Two Argonne projects earn Secretary of Energy Honor Awards
With this year's Nobel Prize in Chemistry awarded for the development of lithium-ion batteries, directors of the Joint Center for Energy Storage Research share perspectives on the future of energy storage.

Argonne teams up with Altair to manage use of upcoming Aurora supercomputer
Argonne National Laboratory and Altair, a global technology company, have created a new scheduling system that will be employed on the Aurora supercomputer.

University of Maryland, Baltimore County wins DOE's 2019 CyberForce Competition(tm)
After a long suspenseful day, University of Maryland, Baltimore County earned the top spot as national winner of the U.S. Department of Energy's CyberForce Competition.

In its 15th year, INCITE advances open science with supercomputer grants to 47 projects
The U.S. Department of Energy's Office of Science announced allocations of supercomputer access to 47 science projects for 2020--awarding 60 percent of the available time on some of the nation's most powerful supercomputers, with the ultimate goal of accelerating discovery and innovation. In 2020, 14 projects will run on Theta and 39 projects on Summit, where six of these projects will receive an allocation on both systems.

Harvesting Energy from Light using Bio-inspired Artificial Cells
Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

Engineering Living Scaffolds for Building Materials
Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

Excavating Quantum Information Buried in Noise
Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

How Electrons Move in a Catastrophe
Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

When Ions and Molecules Cluster
How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

Tune in to Tetrahedral Superstructures
Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

Tracing Interstellar Dust Back to the Solar System's Formation
This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

Investigating Materials that Can Go the Distance in Fusion Reactors
Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

Better 3-D Imaging of Tumors in the Breast with Less Radiation
In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

Microbes are Metabolic Specialists
Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.
Spotlight

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Princeton Plasma Physics Laboratory

Argonne organization's scholarship fund blazes STEM pathway
Argonne National Laboratory

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Brookhaven National Laboratory

From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns
Princeton Plasma Physics Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Brookhaven National Laboratory
Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
Department of Energy, Office of Science
DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
Department of Energy, Office of Science

Young Women's Conference in STEM seeks to change the statistics one girl at a time
Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Argonne National Laboratory

Chemistry intern inspired by Argonne's real-world science
Argonne National Laboratory

Argonne intern streamlines the beamline
Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
University of Alabama at Birmingham

"Model" students enjoy Argonne campus life
Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Princeton Plasma Physics Laboratory

The Gridlock State
California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Argonne National Laboratory

Undergraduate Students Extoll Benefits of National Laboratory Research Internships in Fusion and Plasma Science
Princeton Plasma Physics Laboratory

Students affected by Hurricane Maria bring their research to SLAC
SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Brookhaven National Laboratory

CSUMB Selected to Host Architecture at Zero Competition in 2019
California State University, Monterey Bay

From Hurricane Katrina Victim to Presidential Awardee: A SUNO Professor's Award-Winning Mentoring Efforts
Brookhaven National Laboratory

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Brookhaven National Laboratory

High-School Students Studying Carbon-Based Nanomaterials for Cancer Drug Delivery Visit Brookhaven Lab's Nanocenter
Brookhaven National Laboratory

Argonne welcomes The Martian author Andy Weir
Argonne National Laboratory

UW Professor and Clean Energy Institute Director Daniel Schwartz Wins Highest U.S. Award for STEM Mentors
University of Washington

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Illinois Mathematics and Science Academy (IMSA)

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
Rensselaer Polytechnic Institute (RPI)

Celebrating 40 years of empowerment in science
Argonne National Laboratory

Introducing Graduate Students Across the Globe to Photon Science
Brookhaven National Laboratory

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
Department of Energy, Office of Science

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
SLAC National Accelerator Laboratory

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
University of Virginia Darden School of Business

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
California State University, Channel Islands

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
Fermi National Accelerator Laboratory (Fermilab)
Showing results
0-4 Of 2215