- 2019-11-06 16:35:06
- Article ID: 722179
Target practice: Perfecting the Mu2e production target
By Catherine Steffel
Scientists, researchers, and engineers were ecstatic. They had been trying to carry out the Muon to Electron COnversion experiment for nearly two decades on two continents, and now it would finally be built at Brookhaven National Laboratory.
Undeterred when the project was pulled in 2005, they adjusted their plans and designs to run this groundbreaking experiment at Fermi National Accelerator Laboratory in Batavia, Illinois.
The muon enigma
Mu2e aims to solve a mystery that has puzzled experimentalists and theorists alike since the discovery of the muon in 1936: Scientists have never observed a muon transform into its lighter cousin, the electron, without also emitting other particles.
Observation of direct muon-to-electron conversion “would provide unmistakable evidence of physics beyond the Standard Model,” said experiment co-spokesperson Jim Miller, a scientist at Boston University.
Electrons, muons and taus are flavors of particles called leptons. Just like strawberry, chocolate and vanilla ice cream cannot transform into one another, despite being flavors of Neapolitan ice cream, muons seemingly are prevented from converting directly into electrons.
Measuring any such conversion process once, let alone several times over the course of an experiment, is no easy feat. To observe the muon-to-electron conversion signal, Mu2e will be about 10,000 times more powerful than the SINDRUM II experiment, which finished collecting data in 2000 and was the last experiment to search for direct muon-to-electron conversion.
If only one in 100 million billion (1017) muons transforms into an electron, Mu2e will see it.
Producing pions: A target’s tale
Before this can happen, physicists need pions.
The production target, a carefully shaped material that intercepts a particle beam, assumes that critical but difficult job. When a beam of protons hits the fixed production target, pions come out in all directions and decay almost immediately into muons, which spiral down through other components of the experiment to a detector, from which they (hopefully) emerge as electrons.
Mu2e components are made with as little material as possible because particle interactions increase with the amount of material in the experiment, interfering with the signal researchers hope to observe. This presented unique challenges to the production target design team.
Residing in a vacuum chamber inside a superconducting cylindrical magnet, the production target is subject to extreme conditions. A proton beam beats against the target every second, causing its temperature to increase to around 1,700 degrees Celsius (3,092 degrees Fahrenheit), the temperature experienced by the hottest parts of a NASA space shuttle re-entering Earth’s atmosphere.
Researchers soon realized that their initial design, a relic of the MECO experiment, was expensive. Too expensive. A gold rod encased in a titanium jacket, this target needed to be cooled with circulating water via an elaborate system of water pumps, nozzles and other infrastructure.
“That was when some of our colleagues pointed out that we may not need to actively cool the target at all,” said Steve Werkema, accelerator upgrade manager for Mu2e.
Two modifications – switching to a target that releases heat on its own, called a radiatively cooled target, and reducing beam power from 25 kilowatts to 8 kilowatts – not only saved money and simplified infrastructure but also reduced safety concerns.
Now, researchers needed a new production target. For the target material, they turned to a section of the periodic table known as the refractory metals. Refractory metals are advantageous in experiments like Mu2e because they have high melting points and are averse to corrosion even under high temperatures.
The researchers ultimately chose tungsten, a heavy, dense metal that can withstand high temperatures and brutal pounding by bunches of proton beam. This decided, it was back to the drawing board, literally.
Revisit, revise and repeat
The first Mu2e tungsten target looked like a thick, long pencil. Six millimeters (around 0.25 inches) in diameter and 160 millimeters (a little over 6 inches) long, the tungsten rod produced lots of pions.
The problem? There was no way to support this structure in vacuum.
To solve this conundrum, researchers attached parts that look like megaphones to both ends of the rod. Spaghetti-like spokes suspended these components in a bicycle ring structure that secures the target and assists a robotic arm with target removal and disposal.
“That’s when we started discovering problems that we had to overcome, one by one,” Werkema said.
The first problem they encountered was corrosion.
Ordinarily, tungsten is corrosion-proof, but studies showed that even the tiniest bit of oxygen in the vacuum chamber causes problems at Mu2e temperatures and pressures.
“Think about it like your car. Fenders rust and you get these big pieces of rust that fall off, and pretty soon you have no fender left,” said Dave Pushka, lead production target engineer at Fermilab.
The production target would corrode so fast that it wouldn’t last a year. Researchers improved the vacuum chamber to mitigate this effect. While they still anticipate some tungsten-oxide formation, it shouldn’t be enough to cause the target to fail quickly.
The researchers then wondered: How long could a proton beam bombard the target before it failed due to stress and fatigue? In an important milestone, Rutherford Appleton Laboratory researchers in England developed a prototype target and hit it with an electrical pulse until it failed. They concluded that, at least from that failure mode, the target would last more than a year.
The third challenge was temperature. Researchers were concerned that the target might deform like a stick of butter at a July picnic before reaching its prescribed lifetime (about 43 weeks of beam time).
As protons hit the production target, kinetic energy turns into heat, causing the target to expand outwardly and sag in the middle. This instability causes yet more sagging, as the spokes that support the target pull its ends together, putting more force on both ends and making the target sag further.
People on both sides of the Atlantic worked in friendly competition to develop the best target model. Ultimately, several design elements, such as springs connecting the spokes to the bicycle ring, were introduced to combat fatigue and target sag.
In its current version, the target still looks very much like an unsharpened pencil. It is gray, relatively heavy, and 200 millimeters (nearly 8 inches) long, with cylindrical rings on each end, fins that dissipate heat from the target core and brace against sag and empty space separating segments of the central rod.
The fins, which make the target look like a star from the ends, require finesse to function as intended under the harsh proton beam.
“As you add more fins, the surface of a fin doesn’t see cooler temperatures. It instead sees another fin at the same hot temperature. This means that there are some diminishing returns in terms of fin structure and number and heat dissipation,” Pushka said.
Mu2e Project Manager Ron Ray of Fermilab suggested that segmenting the target’s core could ameliorate this temperature-dependent issue. The researchers have found that introducing spaces between short, cylindrical segments of tungsten allows them to fine-tune temperatures along the target.
The gatekeepers of optimal target design
Meanwhile, three teams of engineers work to eliminate as many surprises as possible at beam-on.
“The production target team wants to know what happens with each change to the target or beam,” said Kevin Lynch, professor of physics at York College of the City University of New York and Mu2e production target design team member. “Our models track everything from pion production to muon-to-electron conversions to the way energy accumulates in components throughout the experiment.”
These independent calculations, performed by Lynch’s team at York College and Bob Bernstein’s team at Fermilab, are what senior engineer Ingrid Fang works with.
Fang, who has worked at Fermilab for over two decades, applies Lynch’s calculations to the geometry provided by Pushka, sets up the model, and solves for stress and temperature at every point in the target. The simulations are so complex it takes a supercomputer three or more days to solve the millions of equations.
“We have to find that sweet spot between temperature and muon yield,” Fang said.
It is Fang’s result that is studied by scientists, researchers and engineers. It is Fang’s result that makes or breaks decisions. It is Fang’s result that ultimately determines whether the production target moves on to construction or goes back to design.
“Now, it’s the grand finale,” Fang says of the current design. “We combined the target with its supporting structure and put all the loads, including beam pulsing, radiation load, gravity, and pre-tension on the bolts that secure the system, into the model, and the results look very promising.”
Building a target 101
Researchers know that life in the lab is full of ups and downs, tinkering and revision. What originally started as a gold, water-cooled rod has evolved into a segmented and finned, radiatively cooled, tungsten apparatus that meets project goals. Scientists, researchers, engineers and analysts have looked at more than 35 target designs over the years.
The researchers remain undaunted as they now face the latest challenge – actually building the production target.
“Tungsten is difficult to machine. You can’t cut it with a lathe. You can’t saw it. It has to be ground or electrode discharge machined,” Pushka said. He notes that there are at least three or four contractors in the Chicagoland area, and more beyond, who can perform this intricate work.
Werkema and Pushka estimate that the target will take 12 weeks to manufacture and another 12 weeks to assemble and align with the beam. Then, after Mu2e construction finishes in 2022, there’s another year of setup, measurements and calibration required before the experiment starts running in 2023.
“That seems like a long time away, but it seems like no time at all when you consider the first designs were made in the late 1990s. Right now, it feels like we’re finishing up because we overcame all of these engineering and design challenges, and now new stuff shows up and gets installed every week. You can actually see the progress,” Werkema says.
“I’ve worked on a lot of experiments at Fermilab,” Pushka said. “Mu2e is the hardest, most difficult experiment I’ve ever worked on and, I think, that we have ever tried to pull off. It’s extremely difficult from the science and engineering point of view.”
It seems that the researchers, for now, are on target to discover new physics through Mu2e.
This work is supported by the U.S. Department of Energy Office of Science.

MORE NEWS FROM
Fermi National Accelerator Laboratory (Fermilab)Participating Labs
- DOE Office of Science
- Argonne National Laboratory
- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory
- Iowa State University, Ames Laboratory
- Brookhaven National Laboratory
- Princeton Plasma Physics Laboratory
- Lawrence Berkeley National Laboratory
- Thomas Jefferson National Accelerator Facility
- Fermi National Accelerator Laboratory (Fermilab)
- SLAC National Accelerator Laboratory

Batten down the hatches: Preventing heat leaks to help create a star on Earth
PPPL physicists have identified a method by which instabilities can be tamed and heat can be prevented from leaking from fusion plasma, giving scientists a better grasp on how to optimize conditions for fusion in devices known as tokamaks.

Quenching Water Scarcity with a Good Pore
Researchers at UC San Diego and MIT linked theory and experiment to move closer to developing materials that address global water scarcity.

Simulations Attempt to Reconstruct One of the Most Explosive Events in the Universe: A Neutron Star Merger
A team led by scientists that included Berkeley Lab researchers has simulated the formation of a disc of matter, a giant burst of ejected matter, and the startup of energetic jets in the aftermath of a merger by two neutron stars.

Tiny Quantum Sensors Watch Materials Transform Under Pressure
Scientists at Berkeley Lab have developed a diamond anvil sensor that could lead to a new generation of smart, designer materials, as well as the synthesis of new chemical compounds, atomically fine-tuned by pressure.

Scientists harvest energy from light using bio-inspired artificial cells
By replicating biological machinery with non-biological components, scientists have created artificial cells that convert light into chemical energy.

Argonne's debt to 2019 Nobel Prize for lithium-ion battery
A roar of approval rang out at the U.S. Department of Energy's (DOE's) Argonne National Laboratory upon the announcement in October that John B. Goodenough, M. Stanley Whittingham and Akira Yoshino had won the 2019 Nobel Prize in Chemistry. On December 10th in Stockholm, they received this highly coveted prize for their major contributions to the invention of the lithium-ion battery, which is a long-standing major focus of research at Argonne.

Battery collaboration meeting discusses new pathways to recycle lithium-ion batteries
At a conference held by the ReCell Center, an advanced battery recycling collaboration based at Argonne, representatives from industry, government, and academia discussed innovative approaches for lithium-ion battery recycling.

New Function for Plant Enzyme Could Lead to Green Chemistry
Scientists at Brookhaven National Laboratory have discovered a new function in a plant enzyme that could inspire the design of new chemical catalysts. The enzyme catalyzes, or initiates, one of the cornerstone chemical reactions needed to synthesize a wide array of organic molecules, including those found in lubricants, cosmetics, and those used as raw materials for making plastics.

Freeze Frame: Scientists Capture Atomic-Scale Snapshots of Artificial Proteins
Scientists at Berkeley Lab are the first to use cryo-EM (cryogenic electron microscopy), a Nobel Prize-winning technique originally designed to image proteins in solution, to image atomic changes in a synthetic soft material.

Argonne Collaboration Shows Benefits of Better Corn Residue Management Strategies
Sustainable corn stover removal can maintain soil carbon stock, according a new Argonne-led study.

James Wilson Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran, experienced federal administrator, and active member of the Princeton community
James W. Clark, PPPL's first deputy director for administrative operations, was a decorated World War II veteran with a long career in public service, who died Aug. 6. A memorial service in his honor will be held Dec. 21.
Department of Energy to Provide $24 Million in EPSCoR Grants for Energy-Related Research
The U.S. Department of Energy (DOE) announced a funding opportunity for up to $24 million for new grants under the Established Program to Stimulate Competitive Research (DOE EPSCoR).

University of Kentucky Grant Seeks to Turn Coal Into Carbon Fiber
UK's Center for Applied Energy Research (CAER) has received a $1.8 million U.S. Department of Energy (DOE) grant to transform coal tar pitch into high-value carbon fiber for use in aircraft, automobiles, sporting goods and other high-performance materials.

Six Berkeley Lab Scientists Named AAAS Fellows
Six scientists from the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) have been named Fellows of the American Association for the Advancement of Science (AAAS).

PPPL is recognized for being green
The U.S. Department of Energy's Princeton Plasma Physics Laboratory was recognized by the U.S. Environmental Protection Agency for its green practices in reducing waste, energy, and water, and transportation, and for green purchasing and electronics recycling.

Dmitri Zakharov Recognized with the 2019 Chuck Fiori Award
The award honors Dmitri Zakharov's contributions to environmental transmission electron microscopy at Brookhaven Lab's Center for Functional Nanomaterials.

Two Argonne projects earn Secretary of Energy Honor Awards
With this year's Nobel Prize in Chemistry awarded for the development of lithium-ion batteries, directors of the Joint Center for Energy Storage Research share perspectives on the future of energy storage.

Argonne teams up with Altair to manage use of upcoming Aurora supercomputer
Argonne National Laboratory and Altair, a global technology company, have created a new scheduling system that will be employed on the Aurora supercomputer.

University of Maryland, Baltimore County wins DOE's 2019 CyberForce Competition(tm)
After a long suspenseful day, University of Maryland, Baltimore County earned the top spot as national winner of the U.S. Department of Energy's CyberForce Competition.

In its 15th year, INCITE advances open science with supercomputer grants to 47 projects
The U.S. Department of Energy's Office of Science announced allocations of supercomputer access to 47 science projects for 2020--awarding 60 percent of the available time on some of the nation's most powerful supercomputers, with the ultimate goal of accelerating discovery and innovation. In 2020, 14 projects will run on Theta and 39 projects on Summit, where six of these projects will receive an allocation on both systems.

Harvesting Energy from Light using Bio-inspired Artificial Cells
Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

Engineering Living Scaffolds for Building Materials
Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

Excavating Quantum Information Buried in Noise
Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

How Electrons Move in a Catastrophe
Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

When Ions and Molecules Cluster
How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

Tune in to Tetrahedral Superstructures
Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

Tracing Interstellar Dust Back to the Solar System's Formation
This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

Investigating Materials that Can Go the Distance in Fusion Reactors
Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

Better 3-D Imaging of Tumors in the Breast with Less Radiation
In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

Microbes are Metabolic Specialists
Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.
Spotlight

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Princeton Plasma Physics Laboratory

Argonne organization's scholarship fund blazes STEM pathway
Argonne National Laboratory

Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Brookhaven National Laboratory

From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns
Princeton Plasma Physics Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Brookhaven National Laboratory
Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
Department of Energy, Office of Science
DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
Department of Energy, Office of Science

Young Women's Conference in STEM seeks to change the statistics one girl at a time
Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Argonne National Laboratory

Chemistry intern inspired by Argonne's real-world science
Argonne National Laboratory

Argonne intern streamlines the beamline
Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
University of Alabama at Birmingham

"Model" students enjoy Argonne campus life
Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Princeton Plasma Physics Laboratory

The Gridlock State
California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Argonne National Laboratory

Undergraduate Students Extoll Benefits of National Laboratory Research Internships in Fusion and Plasma Science
Princeton Plasma Physics Laboratory

Students affected by Hurricane Maria bring their research to SLAC
SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Brookhaven National Laboratory

CSUMB Selected to Host Architecture at Zero Competition in 2019
California State University, Monterey Bay

From Hurricane Katrina Victim to Presidential Awardee: A SUNO Professor's Award-Winning Mentoring Efforts
Brookhaven National Laboratory

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Brookhaven National Laboratory

High-School Students Studying Carbon-Based Nanomaterials for Cancer Drug Delivery Visit Brookhaven Lab's Nanocenter
Brookhaven National Laboratory

Argonne welcomes The Martian author Andy Weir
Argonne National Laboratory

UW Professor and Clean Energy Institute Director Daniel Schwartz Wins Highest U.S. Award for STEM Mentors
University of Washington

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Illinois Mathematics and Science Academy (IMSA)

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
Rensselaer Polytechnic Institute (RPI)

Celebrating 40 years of empowerment in science
Argonne National Laboratory

Introducing Graduate Students Across the Globe to Photon Science
Brookhaven National Laboratory

Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
Department of Energy, Office of Science

Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
SLAC National Accelerator Laboratory

Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
University of Virginia Darden School of Business

Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
California State University, Channel Islands

Photographer Adam Nadel Selected as Fermilab's New Artist-in-Residence for 2018
Fermi National Accelerator Laboratory (Fermilab)
Showing results
0-4 Of 2215