DOE News
    Doe Science news source
    The DOE Science News Source is a Newswise initiative to promote research news from the Office of Science of the DOE to the public and news media.
    • 2019-12-06 17:05:56
    • Article ID: 723668

    How to Build a 3D Map of the Universe – and Why

    • Credit: FermiLab, Reidar Hahn

      Data of the Southern Sky taken from the Dark Energy Camera in Chile is helping scientists increase their understanding of what dark energy is and why the universe is expanding ever faster.

    One of the biggest mysteries in science began with a dying star.

    It wasn’t any particular dying star so much as the idea of one. In the 1980s, Saul Perlmutter at the Department of Energy’s (DOE) Lawrence Berkeley National Laboratory (LBNL) and his collaborators realized that they could use data about supernovae to research the history of the universe. Supernovae are extremely bright exploding stars that cast much of their mass out into space before they wink out.

    Fortunately, Type Ia supernovae’s brightness is very consistent. Even when their actual brightness varies, it does so in a predictable way. By comparing measurements of how bright these supernovae appear in telescopes with their actual brightness, along with measurements of light from their home galaxies, scientists can figure out their age and distance from us. Using those, they can estimate how the universe has expanded over time.

    Over the course of a decade, Perlmutter’s team collected enough data to look for a relationship between a supernova’s brightness and distance from Earth. They expected to see that very distant supernovae appear a bit brighter than they would in an expanding universe that wasn’t slowing in its growth. 

    The data revealed something else entirely.

    The supernovae all looked dimmer than they should for their distance. At first, the scientists thought it was just a bizarre set of data. “When you see an amazing new result, your first thought isn’t ‘Eureka!’, it’s, ‘That’s an interesting looking graph,’” said Perlmutter. He and his team spent more than six months checking every aspect of the graph, looking for some aspect of the analysis that might be wrong.

    It wasn’t.

    In fact, it showed the opposite: The universe was expanding ever more quickly. The implication of this was dramatic. For the data to work with Einstein’s theory of general relativity – the foundation of astrophysics – 70 percent of the universe’s energy must be from some unknown source.

    Something – a lot of something – was missing from our fundamental understanding of the universe.

    As Perlmutter prepared for an upcoming conference, he made a series of changes to his plastic transparency slides to present the new results. “You are aware that it’s a very big, significant result, but that makes you even more careful,” he said. “By the time you say it in public, you have been working with it for so long that it doesn’t feel like a surprise to you.”

    But for the audience, his 1998 talk made major waves. Not long after, a competing team presented the same result. In 2011, Perlmutter, Brian Schmidt, and Adam Riess received the Nobel Prize in physics for the discovery.

    Because we don’t know what’s pushing the universe outward ever more quickly, “dark energy” is scientists’ shorthand for the mysterious process. To understand the history of our universe, researchers supported by the DOE Office of Science are collaborating with scientists around the globe to build elaborate 3D maps of space and time.

    Considering the Possibilities

    Whatever dark energy is, it’s weird. None of the possibilities fit scientists’ understanding of physics.

    The first possibility is that it’s the “cosmological constant.” When Albert Einstein developed the equations describing general relativity, he assumed the universe was staying the same size. To counterbalance gravity pulling inward on the universe, he stuck in a variable, the cosmological constant, indicating something was pushing outward. When Edwin Hubble found that the universe was expanding, Einstein removed the constant. When they found there is a mysterious something pushing outward, scientists returned to Einstein’s idea. Unfortunately, the numbers from the experimental data are 10120 times smaller than the expectations for a cosmological constant in the equations.

    There are two more possibilities. The second is that dark energy is an unknown form of energy that’s changed over time. The third possibility is that general relativity doesn’t explain what happens on the largest scales. Instead, it would be an approximation of an even more general theory. That would throw a wrench into one of our most successful pillars of astrophysics.

    More than Just the Beginning of the Universe

    Figuring out how the structure of the universe has changed over time can help scientists determine if dark energy is constant or not.

    Scientists already know what the universe looked like in its early days, about 10 billion years ago. They’ve studied the cosmic microwave background, a set of faint heat signatures left over from that time. From examining this lingering radiation, scientists can work out the patterns of density and radiation way back then.

    It’s figuring out what happened from 10 billion years ago onward that’s the hard part. Thankfully, scientists have something like time travel available when it comes to objects that are extremely far away. Because light takes time to arrive to Earth, extremely powerful telescopes are not looking at modern stars. Instead, scientists are seeing how those stars looked thousands, millions, and even billions of years ago, depending on how far away they are. Looking backwards at ever more distant stars allows them to create maps that are mapping length, width, and distance over time.

    How to Measure the Universe

    For a map of this sort, scientists need special tools based on the stars and galaxies themselves.

    Type Ia supernovae are the first option. Using this method requires scientists take new supernovae measurements with much higher precision at a larger range of distances. “Almost all of the large gamut of theories fit the data and would not be distinguishable from each other except with very, very high precision measurements,” said Perlmutter.

    Although DOE’s Office of Science is supporting several projects that can make these high-precision measurements, other techniques are necessary too. For something that’s so outside of the realm of known physics, scientists want multiple methods to compare results.

    The next tool is analyzing the Baryon Acoustic Oscillation (BAO). Like the cosmic microwave background, the BAO is a remnant of the universe’s early days. Not long after the Big Bang, the plasma that made up everything expanded, creating waves of density and pressure. About 370,000 years later, the plasma cooled, “freezing” the pressure waves. The cresting waves left clumps of matter at their beginning and end. As the universe grew, those wave patterns stretched out.

    Now, the patterns are imprinted on the distribution of all matter. By looking at how the cosmic microwave background’s patterns (which reflect the beginning of the universe) are different from the BAO’s patterns (which reflect the middle and current universe), scientists can map changes in the distribution of matter over time. “It is based on the fundamental physics from the beginning of the universe,” said Parker Fagrelius, an LBNL researcher.

    If that wasn’t mind-bending enough, a different technique called weak gravitational lensing measures how massive objects distort the shape of galaxies. Galaxies are so big that they bend space, along with the light from other galaxies behind them. When a telescope on Earth takes a photo of the background galaxies, their shapes are stretched compared to their true forms. By measuring this tiny distortion in the shape of the background galaxies at different positions, scientists can figure out the mass of the foreground ones. This technique can also help them map the matter distribution, including both visible and dark matter. “It’s one of the cleanest ways to measure the mass,” said Maria Elidaiana da Silva Pereira, a researcher at Brandeis University who works on the Dark Energy Survey.

    The last option is measuring the properties of galaxy clusters, or groups of galaxies. The biggest clusters reveal where the early universe was the densest. “They can tell us a lot about the growth and formation of structures in the universe,” said Antonella Palmese, a researcher at DOE’s Fermi National Accelerator Laboratory.

    Not Your Average Digital Camera

    Scientists also have their choice of options when it comes to taking data.   

    Imaging surveys are telescopes with giant digital cameras. They take large, sweeping photographs of the sky that include huge numbers of galaxies and supernovae. Scientists analyze the objects’ brightness and color, which gives them information about their distance and mass.

    The Dark Energy Survey, which is supported by an international group that includes DOE’s Office of Science, is providing the most comprehensive set of imaging data available. These images come from a 520-megapixel camera; in comparison, point-and-shoot cameras are 16 to 20 megapixels. Mounted on a telescope in Chile, the Dark Energy Camera took photos of about a quarter of the southern sky for five years. By the time it finished taking data in January 2019, it had photos of more than 300 million galaxies, tens of thousands of galaxy clusters, and several thousand Type Ia supernovae. “There was nothing as powerful as the Dark Energy Survey in terms of number of galaxies and galaxy clusters,” said Palmese.

    Looking at so many galaxies gave scientists an unprecedented look into weak gravitational lensing. The team made the most precise measurement of how matter is distributed in the universe so far. With those observations, they ran a model of a universe composed of dark energy and dark matter as if dark energy was constant over time (which it would be if it’s the cosmological constant) and if it wasn’t (some other force). If the results from the models using the Dark Energy Survey data and the results from the cosmic microwave background matched, it would have confirmed that the cosmological constant model works well. In other words, it would show that dark energy is a cosmological constant.

    The results were close – but not quite the same. While the data leaned towards the constant, it wasn’t strong enough to say whether there is a real discrepancy between the amount of matter measured by the Dark Energy Survey versus the cosmic microwave background results. That could indicate some problems with the model itself.

    The Next Big Thing

    Unlike the digital cameras of imaging surveys, spectroscopic surveys have bundles of fiber optic cables, each of which collects light from a different galaxy. These bundles provide types of information on the visible and non-visible wavelengths of light that are different from what scientists can get from photographs. This information delivers precise details on an object’s distance and velocity. However, a spectroscopic survey can only take data on a fraction of the objects that an imaging survey can.

    The Dark Energy Spectroscopic Instrument (DESI) is the next step forward. A spectroscopic instrument installed on the Mayall telescope in Arizona, DESI will start gathering data of the northern sky early next year. What makes DESI unique compared to past surveys is the sheer amount of data it can take. It will be able to collect data on the light spectrum from ultraviolet all the way to infrared on 5,000 galaxies simultaneously.

    “It really opens up the cosmological timeline,” said Fagrelius, who has worked on the project for much of her career. “It’s really exciting.” DESI should give results for the BAO that are three times more accurate than all previous calculations combined as well in-depth data on lensing and galaxy clusters. Combining these results could give us the best insight yet into how dark energy has behaved over time.

    With these tools as well as the Large Synoptic Survey Telescope – which is anticipated to launch in Chile in 2023 – scientists anticipate nailing down a precise description of dark energy.

    But it’s likely that the investigation will raise more questions than it answers. After all, this investigation started because Perlmutter and his team were trying to figure out how much the universe’s expansion was slowing down. They never expected to find the opposite.

    “What I’m excited about is what we’re not expecting to see,” said Fagrelius. “With this amount of data, we’re going to discover things that we didn’t know we were looking for.”

     

    The Office of Science is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, please visit https://www.energy.gov/science.

    X
    X
    X
    • Filters

    • × Clear Filters
    Science Snapshots from Berkeley Lab: 3D nanoparticles and magnetic spin

    Science Snapshots from Berkeley Lab: 3D nanoparticles and magnetic spin

    Researchers at Berkeley Lab have captured 3D images of nanoparticles in liquid with atomic precision, and developed an ultrathin electrical switch that could further miniaturize computing devices and personal electronics without loss of performance.

    A step ahead in the race toward ultrafast imaging of single particles

    A step ahead in the race toward ultrafast imaging of single particles

    New research from Argonne National Laboratory takes a step toward the "holy grail" of imaging: the ability to see the structure of a single, free-form molecule at atomic resolution.

    The Milky Way's Satellites Help Reveal Link Between Dark Matter Halos and Galaxy Formation

    The Milky Way's Satellites Help Reveal Link Between Dark Matter Halos and Galaxy Formation

    Just like we orbit the sun and the moon orbits us, the Milky Way has satellite galaxies with their own satellites. Drawing from data on those galactic neighbors, a new model suggests the Milky Way should have an additional 100 or so very faint satellite galaxies awaiting discovery.

    Making Biofuels Cheaper by Putting Plants to Work

    Making Biofuels Cheaper by Putting Plants to Work

    One strategy to make biofuels more competitive is to make plants do some of the work themselves. Scientists can engineer plants to produce valuable chemical compounds, or bioproducts, as they grow. Then the bioproducts can be extracted from the plant and the remaining plant material can be converted into fuel. But one important part of this strategy has remained unclear -- exactly how much of a particular bioproduct would plants need to make in order to make the process economically feasible?

    Capturing 3D microstructures in real time

    Capturing 3D microstructures in real time

    Argonne researchers have invented a machine-learning based algorithm for quantitatively characterizing material microstructure in three dimensions and in real time. This algorithm applies to most structural materials of interest to industry.

    A new way to fine-tune exotic materials: Thin, stretch and clamp

    A new way to fine-tune exotic materials: Thin, stretch and clamp

    Turning a brittle oxide into a flexible membrane and stretching it on a tiny apparatus flipped it from a conducting to an insulating state and changed its magnetic properties. The technique can be used to study and design a broad range of materials for use in things like sensors and detectors.

    An innovative model of the dynamic magnetic field that surrounds Mercury

    An innovative model of the dynamic magnetic field that surrounds Mercury

    The first detailed model of the interaction between the solar wind and the magnetic field that surrounds Mercury, findings that could lead to improved understanding of the stronger field around Earth.

    Story Tips: Molding matter atom by atom and seeing inside uranium particles

    Story Tips: Molding matter atom by atom and seeing inside uranium particles

    Story Tips: Molding matter atom by atom and seeing inside uranium particles, from the Department of Energy's Oak Ridge National Laboratory

    Scientists See Energy Gap Modulations in a Cuprate Superconductor

    Scientists See Energy Gap Modulations in a Cuprate Superconductor

    Scientists studying high-Tc superconductors at the U.S. Department of Energy's Brookhaven National Laboratory have definitive evidence for the existence of a state of matter known as a pair density wave--first predicted by theorists some 50 years ago. Their results show that this phase coexists with superconductivity in a well-known bismuth-based copper-oxide superconductor.

    Uncertain Climate Future Could Disrupt Energy Systems

    Uncertain Climate Future Could Disrupt Energy Systems

    An international team of scientists has published a new study proposing an optimization methodology for designing climate-resilient energy systems and to help ensure that communities will be able to meet future energy needs given weather and climate variability. Their findings were recently published in Nature Energy.


    • Filters

    • × Clear Filters
    Argonne's Paul Dickman honored with nuclear waste management achievement award

    Argonne's Paul Dickman honored with nuclear waste management achievement award

    Paul Dickman has been named a Waste Management Symposium Fellow for 2020.

    Using Fiber Optics to Advance Safe and Renewable Energy

    Using Fiber Optics to Advance Safe and Renewable Energy

    Fiber optic cables, it turns out, can be incredibly useful scientific sensors. Researchers at Lawrence Berkeley National Laboratory have studied them for use in carbon sequestration, groundwater mapping, earthquake detection, and monitoring of Arctic permafrost thaw. Now they have been awarded new grants to develop fiber optics for two novel uses: monitoring offshore wind operations and underground natural gas storage.

    Brookhaven Lab's Lijun Wu Receives 2020 Chuck Fiori Award

    Brookhaven Lab's Lijun Wu Receives 2020 Chuck Fiori Award

    For the past 20 years, Wu has been advancing quantitative electron diffraction to study batteries, catalysts, and other energy materials.

    Jefferson Lab Temporarily Suspends Operations

    Jefferson Lab Temporarily Suspends Operations

    In an effort to minimize the risk to the Jefferson Lab workforce and in keeping with recommendations from national, state, and local authorities, the Department of Energy's Thomas Jefferson National Accelerator Facility is temporarily suspending operations.

    Department of Energy to Provide $60 Million for Science Computing Teams

    The U.S. Department of Energy (DOE) announced a plan to provide $60 million to establish multidisciplinary teams to develop new tools and techniques to harness supercomputers for scientific discovery.

    Fermilab, UNICAMP and Sao Paulo Research Foundation collaborate on major international projects for neutrino research

    Fermilab, UNICAMP and Sao Paulo Research Foundation collaborate on major international projects for neutrino research

    Under a new agreement, the University of Campinas and the Sao Paulo Research Foundation will play important roles in the Long-Baseline Neutrino Facility and the international Deep Underground Neutrino Experiment, hosted by Fermilab.

    New $21.4 million U.S.-Israel center aims to develop water-energy technologies

    New $21.4 million U.S.-Israel center aims to develop water-energy technologies

    A U.S.-Israel team that includes researchers from the U.S. Department of Energy's Argonne National Laboratory has received $21.4 million to develop new technologies to help solve global water challenges.

    Argonne's Valerii Vinokur awarded Fritz London Prize

    Argonne's Valerii Vinokur awarded Fritz London Prize

    Valerii Vinokur, a senior scientist and distinguished fellow at the U.S. Department of Energy's (DOE) Argonne National Laboratory, has been awarded the Fritz London Memorial Prize for his work in condensed matter and theoretical physics.

    Register to Join a Special April 16 Media Tour of a Telescope Instrument that Will Create a 3D Map of Millions of Galaxies

    Register to Join a Special April 16 Media Tour of a Telescope Instrument that Will Create a 3D Map of Millions of Galaxies

    Members of the media are invited to attend a mid-April dedication of the Dark Energy Spectroscopic Instrument (DESI), which is scheduled to begin its five-year mission to construct a 3D map of the universe in the coming months.

    Department of Energy to Provide $100 Million for Solar Fuels Research

    The U.S. Department of Energy (DOE) announced a plan to provide up to $100 million over five years for research on artificial photosynthesis for the production of fuels from sunlight.


    • Filters

    • × Clear Filters
    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Harvesting Energy from Light using Bio-inspired Artificial Cells

    Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

    Engineering Living Scaffolds for Building Materials

    Engineering Living Scaffolds for Building Materials

    Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

    Excavating Quantum Information Buried in Noise

    Excavating Quantum Information Buried in Noise

    Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

    How Electrons Move in a Catastrophe

    How Electrons Move in a Catastrophe

    Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

    When Ions and Molecules Cluster

    When Ions and Molecules Cluster

    How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

    Tune in to Tetrahedral Superstructures

    Tune in to Tetrahedral Superstructures

    Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

    Tracing Interstellar Dust Back to the Solar System's Formation

    Tracing Interstellar Dust Back to the Solar System's Formation

    This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Investigating Materials that Can Go the Distance in Fusion Reactors

    Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    Better 3-D Imaging of Tumors in the Breast with Less Radiation

    In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

    Microbes are Metabolic Specialists

    Microbes are Metabolic Specialists

    Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.


    Spotlight

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL
    Tuesday September 24, 2019, 04:05 PM

    Barbara Garcia: A first-generation college student spends summer doing research at PPPL

    Princeton Plasma Physics Laboratory

    Argonne organization's scholarship fund blazes STEM pathway
    Tuesday September 17, 2019, 05:05 PM

    Argonne organization's scholarship fund blazes STEM pathway

    Argonne National Laboratory

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
    Friday September 13, 2019, 11:30 AM

    Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program

    Brookhaven National Laboratory

    From an acoustic levitator to a
    Thursday September 12, 2019, 03:05 PM

    From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns

    Princeton Plasma Physics Laboratory

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
    Friday August 30, 2019, 10:00 AM

    Brookhaven Lab Celebrates the Bright Future of its 2019 Interns

    Brookhaven National Laboratory

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
    Thursday August 01, 2019, 12:05 PM

    PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers

    Princeton Plasma Physics Laboratory

    Creating a diverse pipeline
    Friday July 19, 2019, 01:05 PM

    Creating a diverse pipeline

    Princeton Plasma Physics Laboratory

    JSA Awards Graduate Fellowships for Research at Jefferson Lab
    Monday July 08, 2019, 03:00 PM

    JSA Awards Graduate Fellowships for Research at Jefferson Lab

    Thomas Jefferson National Accelerator Facility

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
    Monday May 20, 2019, 12:05 PM

    ILSAMP Symposium showcases benefits for diverse students, STEM pipeline

    Argonne National Laboratory

    Integrating Scientific Computing into Science Curricula
    Monday May 13, 2019, 11:05 AM

    Integrating Scientific Computing into Science Curricula

    Brookhaven National Laboratory

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
    Monday April 29, 2019, 02:05 PM

    Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)

    Department of Energy, Office of Science

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
    Friday April 12, 2019, 03:05 PM

    DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories

    Department of Energy, Office of Science

    Young Women's Conference in STEM seeks to change the statistics one girl at a time
    Thursday March 28, 2019, 03:05 PM

    Young Women's Conference in STEM seeks to change the statistics one girl at a time

    Princeton Plasma Physics Laboratory

    Students team with Argonne scientists and engineers to learn about STEM careers
    Tuesday March 12, 2019, 05:05 PM

    Students team with Argonne scientists and engineers to learn about STEM careers

    Argonne National Laboratory

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition
    Wednesday February 13, 2019, 02:05 PM

    Lynbrook High wins 2019 SLAC Regional Science Bowl competition

    SLAC National Accelerator Laboratory

    Equipping the next generation for a technological revolution
    Thursday January 24, 2019, 01:05 PM

    Equipping the next generation for a technological revolution

    Argonne National Laboratory

    Chemistry intern inspired by Argonne's real-world science
    Friday January 18, 2019, 05:05 PM

    Chemistry intern inspired by Argonne's real-world science

    Argonne National Laboratory

    Chasing a supernova
    Friday January 18, 2019, 04:05 PM

    Chasing a supernova

    Argonne National Laboratory

    Argonne intern streamlines the beamline
    Tuesday January 08, 2019, 02:05 PM

    Argonne intern streamlines the beamline

    Argonne National Laboratory

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
    Thursday October 11, 2018, 04:00 PM

    Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices

    Rensselaer Polytechnic Institute (RPI)

    Innovating Our Energy Future
    Wednesday October 03, 2018, 07:05 PM

    Innovating Our Energy Future

    Oregon State University, College of Engineering

    Physics graduate student takes her thesis research to a Department of Energy national lab
    Tuesday October 02, 2018, 03:05 PM

    Physics graduate student takes her thesis research to a Department of Energy national lab

    University of Alabama at Birmingham

    Friday September 21, 2018, 01:05 PM

    "Model" students enjoy Argonne campus life

    Argonne National Laboratory

    Writing Code for a More Skilled and Diverse STEM Workforce
    Thursday September 06, 2018, 01:05 PM

    Writing Code for a More Skilled and Diverse STEM Workforce

    Brookhaven National Laboratory

    New graduate student summer school launches at Princeton Plasma Physics Laboratory
    Tuesday September 04, 2018, 11:30 AM

    New graduate student summer school launches at Princeton Plasma Physics Laboratory

    Princeton Plasma Physics Laboratory

    The Gridlock State
    Friday August 31, 2018, 06:05 PM

    The Gridlock State

    California State University (CSU) Chancellor's Office

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson
    Friday August 31, 2018, 02:05 PM

    Meet Jasmine Hatcher and Trishelle Copeland-Johnson

    Brookhaven National Laboratory

    Argonne hosts Modeling, Experimentation and Validation Summer School
    Friday August 24, 2018, 11:05 AM

    Argonne hosts Modeling, Experimentation and Validation Summer School

    Argonne National Laboratory

    Students affected by Hurricane Maria bring their research to SLAC
    Wednesday August 22, 2018, 01:05 PM

    Students affected by Hurricane Maria bring their research to SLAC

    SLAC National Accelerator Laboratory

    Brookhaven Lab Pays Tribute to 2018 Summer Interns
    Wednesday August 22, 2018, 10:05 AM

    Brookhaven Lab Pays Tribute to 2018 Summer Interns

    Brookhaven National Laboratory

    Changing How Buildings Are Made
    Monday August 20, 2018, 12:05 PM

    Changing How Buildings Are Made

    Washington University in St. Louis

    CSUMB Selected to Host Architecture at Zero Competition in 2019
    Thursday August 16, 2018, 12:05 PM

    CSUMB Selected to Host Architecture at Zero Competition in 2019

    California State University, Monterey Bay

    Department of Energy Invests $64 Million in Advanced Nuclear Technology
    Friday July 20, 2018, 03:00 PM

    Department of Energy Invests $64 Million in Advanced Nuclear Technology

    Rensselaer Polytechnic Institute (RPI)

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
    Thursday July 19, 2018, 05:00 PM

    Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor

    Rensselaer Polytechnic Institute (RPI)

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
    Tuesday July 03, 2018, 11:05 AM

    2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'

    Brookhaven National Laboratory

    Argonne welcomes <em>The Martian</em> author Andy Weir
    Friday June 29, 2018, 06:05 PM

    Argonne welcomes The Martian author Andy Weir

    Argonne National Laboratory

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
    Monday June 18, 2018, 09:55 AM

    Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy

    Illinois Mathematics and Science Academy (IMSA)

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
    Friday June 15, 2018, 10:00 AM

    Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research

    Rensselaer Polytechnic Institute (RPI)

    Celebrating 40 years of empowerment in science
    Thursday June 07, 2018, 03:05 PM

    Celebrating 40 years of empowerment in science

    Argonne National Laboratory

    Introducing Graduate Students Across the Globe to Photon Science
    Monday May 07, 2018, 10:30 AM

    Introducing Graduate Students Across the Globe to Photon Science

    Brookhaven National Laboratory

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)
    Wednesday May 02, 2018, 04:05 PM

    Students from Massachusetts and Washington Win DOE's 28th National Science Bowl(r)

    Department of Energy, Office of Science

    The Race for Young Scientific Minds
    Thursday April 12, 2018, 07:05 PM

    The Race for Young Scientific Minds

    Argonne National Laboratory

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond
    Wednesday March 14, 2018, 02:05 PM

    Q&A: Al Ashley Reflects on His Efforts to Diversify SLAC and Beyond

    SLAC National Accelerator Laboratory

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week
    Thursday February 15, 2018, 12:05 PM

    Insights on Innovation in Energy, Humanitarian Aid Highlight UVA Darden's Net Impact Week

    University of Virginia Darden School of Business

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities
    Friday February 09, 2018, 11:05 AM

    Ivy League Graduate, Writer and Activist with Dyslexia Visits CSUCI to Reframe the Concept of Learning Disabilities

    California State University, Channel Islands





    Showing results

    0-4 Of 2215