- 2020-07-23 11:30:10
- Article ID: 735199
Doctoral graduate Yuan Shi wins 2020 Marshall N. Rosenbluth Outstanding Doctoral Thesis Award
The 2020 honor recognizes Shi’s thesis with the citation: “For elegantly describing three-wave coupling in plasma modified by oblique magnetic fields, identifying applications including plasma-based laser amplifiers, and adapting quantum field theory to describe plasma physics in the strong-field regime.”
Intense laser beams
The “three-wave coupling in plasma” includes the classic interaction of intense laser beams propagating in plasma, where the energy contained in one laser beam can be transferred to the other two beams. If the energy in a long laser pulse is captured by a short laser pulse, the laser intensity can be significantly amplified. The “strong-field regime” refers to the regime in which electromagnetic fields are so intense that relativistic-quantum effects must be considered, such as virtual pairs of particles and anti-particles that undergo constant creation and annihilation, modifying the plasma environment.
Shi was advised in his thesis by Professors Nat Fisch and Hong Qin. Fisch is Professor of Astrophysical Sciences, Director of the Program in Plasma Physics at Princeton University, and Associate Director for Academic Affairs at the U.S. Department of Energy’s (DOE) Princeton Plasma Physics Laboratory (PPPL). Qin is Principle Research Physicist at PPPL and Lecturer with the rank of Professor in the Program in Plasma Physics.
A rare combination
“Yuan is the kind of student who teaches his advisors new things,” Fisch said.“Yuan’s thesis is a rare combination of significant advances in fundamental theory and computation, with profound recognition of connections between seemingly far-flung topics. It is a textbook-quality thesis that advances our understanding of magnetized plasma implosions, plasma-based laser amplification, and numerical methods to describe strong-field QED plasmas.”
When asked what had led to his success, Shi said, “I am deeply indebted to my thesis advisors. As it turned out, in having two advisors, I benefited not just from the intersection of their research interests, but also from the union of their research interests and styles. If working with Hong was more about elegant theories and algorithms, then working with Nat was more about imaginative ideas. Together they enabled me to find synergies between quantum field theory and plasma physics, and thus to pursue a certain brand of research that would be hard to imagine as available in graduate programs anywhere else in the world.”
New ideas and methods
Qin noted that “a contributing factor to Yuan’s success has been his ability to absorb the full range of scientific opportunities at Princeton. Outside the plasma program, Yuan took more than 10 courses offered at Princeton University, which allowed him to bring new ideas and methods into his plasma research. Thus, his thesis introduced lattice QED [Quantum Electrodynamics] as a simulation tool, which, while unheard of in plasma physics, is well known in nuclear physics. He then used these techniques to model, among other phenomena, intense lasers interacting with plasmas.”
Shi earned his undergraduate degree at the University of Hong Kong, where he majored in physics and mathematics and minored in chemistry. His Ph.D. thesis research was supported in part through research grants from the National Nuclear Security Agency (NNSA), the Air Force Office of Scientific Research (AFOSR), and the DOE Office of Science.
Shi is now a Lawrence Postdoctoral Fellow at the Lawrence Livermore National Laboratory (LLNL), where he and others are extending his thesis research in new directions. One direction is magnetized inertial confinement fusion (ICF), where external magnetic fields are imposed upon laser-driven plasma capsules with the hope of achieving higher fusion yield leading eventually to ignited plasma.
“The magnetic field may change laser-plasma interactions (LPI) and modify crossbeam laser energy transfer,” Shi said. “This process, which was in part addressed in my thesis, needs to be understood and mitigated in order to attain the desired drive symmetry in ICF.”
Integrating fusion and quantum science
Another activity set in motion by Shi’s thesis lies in the integration of fusion energy science with quantum information science, which has become a research priority in the field of plasma physics following the passage of the National Quantum Initiative Act by Congress. At Livermore, Shi recently showed how the classic three-wave coupling in plasma that his thesis explored could be simulated on a quantum computer. “Yuan’s thesis work on quantum plasmas actually anticipated the current interest in the field,” said Qin. “His development of algorithms for quantum computers that solve plasma problems is now a remarkable new direction of research.”
Added Fisch, “Yuan’s thesis was indeed a remarkable achievement. But the real impact of his thesis may lie in what Yuan is now doing in his even more exciting postdoctoral work. He is bringing his ideas on laser plasma interactions to inform on experiments in magnetized imploding plasma in the most extreme environments of high magnetic fields and pressures. And he is formulating new algorithms for quantum computers. As proud as we were to have Yuan as a student, we are even prouder to see him shine now in his dazzling new research accomplishments.”
Shi will receive the Rosenbluth award during the annual meeting of the APS Division of Plasma Physics that will be held online in November. The award is named for the pioneering physicist whose career included 13 years as a visiting research scientist at PPPL. Included in the award is $2,000, a certificate, and an invitation to present a talk to the conference.
Shi becomes the eighth graduate of the Program in Plasma Physics to receive the Rosenbluth honor since the APS first awarded it in 1986. Previous winners were: Carey Forest, 1992; Michael Beer, 1996; Mark Herrmann, 2000; Yang Ren, 2008; Jong-Kyu Park, 2010; Jonathan Squire, 2017; and Seth Davidovits, 2018.
The Program in Plasma Physics is a graduate program within the Department of Astrophysical Sciences at Princeton University. Students are admitted directly to the program and are granted degrees through the Department of Astrophysical Sciences. The program is based at PPPL.
The award announcement appears on the APS website here.
PPPL, on Princeton University's Forrestal Campus in Plainsboro, N.J., is devoted to creating new knowledge about the physics of plasmas — ultra-hot, charged gases — and to developing practical solutions for the creation of fusion energy. The Laboratory is managed by the University for the U.S. Department of Energy’s Office of Science, which is the single largest supporter of basic research in the physical sciences in the United States and is working to address some of the most pressing challenges of our time. For more information, visit energy.gov/science

MORE NEWS FROM
Princeton Plasma Physics LaboratoryParticipating Labs
- DOE Office of Science
- Argonne National Laboratory
- Oak Ridge National Laboratory
- Pacific Northwest National Laboratory
- Iowa State University, Ames Laboratory
- Brookhaven National Laboratory
- Princeton Plasma Physics Laboratory
- Lawrence Berkeley National Laboratory
- Thomas Jefferson National Accelerator Facility
- Fermi National Accelerator Laboratory (Fermilab)
- SLAC National Accelerator Laboratory

Study: X-Rays Surrounding 'Magnificent 7' May Be Traces of Sought-After Particle
A new study, led by a theoretical physicist at Berkeley Lab, suggests that never-before-observed particles called axions may be the source of unexplained, high-energy X-ray emissions surrounding a group of neutron stars.

Borrowing from birds, experts reduce search times for novel high-entropy alloys to seconds
Computational materials science experts at the U.S. Department of Energy's Ames Laboratory enhanced an algorithm that borrows its approach from the nesting habits of cuckoo birds, reducing the search time for new high-tech alloys from weeks to mere seconds.

January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation
January Snapshots: CO2 removal, water-splitting, battery mystery, thirdhand smoke remediation

Pivotal discovery in quantum and classical information processing
Researchers have achieved, for the first time, electronically adjustable interactions between microwaves and a phenomenon in certain magnetic materials called spin waves. This could have application in quantum and classical information processing.

Shine On: Avalanching Nanoparticles Break Barriers to Imaging Cells in Real Time
A team of researchers co-led by Berkeley Lab and Columbia University has developed a new material called avalanching nanoparticles that, when used as a microscopic probe, offers a simpler approach to taking high-resolution, real-time snapshots of a cell's inner workings at the nanoscale.

Scientists find antibody that blocks dengue virus
The research team used the Advanced Photon Source to confirm an effective antibody that prevents the dengue virus from infecting cells in mice, and may lead to treatments for this and similar diseases.

Using neural networks for faster X-ray imaging
A team of scientists from Argonne is using artificial intelligence to decode X-ray images faster, which could aid innovations in medicine, materials and energy.

The Odd Structure of ORF8: Scientists Map the Coronavirus Protein Linked to Disease Severity
A team of biologists who banded together to support COVID-19 science determined the atomic structure of a coronavirus protein thought to help the pathogen evade and dampen response from human immune cells. The structural map has laid the groundwork for new antiviral treatments and enabled further investigations into how the newly emerged virus ravages the human body.

Impacts of Climate Change on Our Water and Energy Systems: It's Complicated
Researchers at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), UC Berkeley, and UC Santa Barbara have developed a science-based analytic framework to evaluate the complex connections between water and energy, and options for adaptations in response to an evolving climate.

Insights Through Atomic Simulation
A recent special issue in The Journal of Chemical Physics highlights PNNL's contributions to developing two prominent open-source software packages for computational chemistry used by scientists around the world.

Science Begins at Brookhaven Lab's New Cryo-EM Research Facility
On January 8, 2021, the U.S. Department of Energy's (DOE) Brookhaven National Laboratory welcomed the first virtually visiting researchers to the Laboratory for BioMolecular Structure (LBMS), a new cryo-electron microscopy facility.

Two Berkeley Lab Scientists Honored with the Lawrence Award
The Department of Energy has announced that Susannah Tringe and Dan Kasen, two scientists at Lawrence Berkeley National Laboratory (Berkeley Lab), will receive the Ernest Orlando Lawrence Award, one of DOE's highest honors. Additionally, former Berkeley Lab scientist M. Zahid Hasan was also named as one of the eight recipients.

ElastiDry Wins DOE National Pitch Competition
A panel of five judges from the Bay Area and Silicon Valley investment community chose the PNNL innovation from 10 product pitches.

Fermilab receives DOE award to develop machine learning for particle accelerators
Fermilab scientists and engineers are developing a machine learning platform to help run Fermilab's accelerator complex alongside a fast-response machine learning application for accelerating particle beams. The programs will work in tandem to boost efficiency and energy conservation in Fermilab accelerators.

Argonne earns HPCwire awards for the best use of high performance computing in energy and industry
HPCwire magazine recognizes two Argonne teams for outstanding achievement in their use of high performance computing.

Rachel Slaybaugh to Lead Berkeley Lab's Cyclotron Road
The Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) has named Rachel Slaybaugh, associate professor of nuclear engineering at UC Berkeley, to lead Berkeley Lab's Cyclotron Road Division.

$2.6 million Dept. of Energy grant to fund research into solar energy and power grids
A team of researchers from Binghamton University, State University of New York has been selected to receive $2.6 million from the U.S. Department of Energy Solar Energy Technologies Office (SETO) to develop ways to reliably support higher amounts of solar power on the grid.

Experiment to Precisely Measure Electrons Moves Forward
The MOLLER experiment at DOE's Jefferson Lab is one step closer to carrying out an experiment to gain new insight into the forces at work inside the heart of matter through probes of the humble electron. The experiment has just received a designation of Critical Decision 1, or CD-1, from the DOE, which is a greenlight to move forward in design and prototyping of equipment.

Physicists Hong Qin and Ahmed Diallo recognized for outstanding research at PPPL
Theoretical and experimental physicists receive PPPL awards for standout research in 2020.

Scientists collaborate on public-private partnership to facilitate the development of commercial fusion energy
Article describes PPPL work in coordination with MIT's Plasma Science and Fusion Center and Commonwealth Fusion Systems, a start-up spun out of MIT that is developing a unique tokamak fusion device called "SPARC."

Harvesting Energy from Light using Bio-inspired Artificial Cells
Scientists designed and connected two different artificial cells to each other to produce molecules called ATP (adenosine triphosphate).

Engineering Living Scaffolds for Building Materials
Bone and mollusk shells are composite systems that combine living cells and inorganic components. This allows them to regenerate and change structure while also being very strong and durable. Borrowing from this amazing complexity, researchers have been exploring a new class of materials called engineered living materials (ELMs).

Excavating Quantum Information Buried in Noise
Researchers developed two new methods to assess and remove error in how scientists measure quantum systems. By reducing quantum "noise" - uncertainty inherent to quantum processes - these new methods improve accuracy and precision.

How Electrons Move in a Catastrophe
Lanthanum strontium manganite (LSMO) is a widely applicable material, from magnetic tunnel junctions to solid oxide fuel cells. However, when it gets thin, its behavior changes for the worse. The reason why was not known. Now, using two theoretical methods, a team determined what happens.

When Ions and Molecules Cluster
How an ion behaves when isolated within an analytical instrument can differ from how it behaves in the environment. Now, Xue-Bin Wang at Pacific Northwest National Laboratory devised a way to bring ions and molecules together in clusters to better discover their properties and predict their behavior.

Tune in to Tetrahedral Superstructures
Shape affects how the particles fit together and, in turn, the resulting material. For the first time, a team observed the self-assembly of nanoparticles with tetrahedral shapes.

Tracing Interstellar Dust Back to the Solar System's Formation
This study is the first to confirm dust particles pre-dating the formation of our solar system. Further study of these materials will enable a deeper understanding of the processes that formed and have since altered them.

Investigating Materials that Can Go the Distance in Fusion Reactors
Future fusion reactors will require materials that can withstand extreme operating conditions, including being bombarded by high-energy neutrons at high temperatures. Scientists recently irradiated titanium diboride (TiB2) in the High Flux Isotope Reactor (HFIR) to better understand the effects of fusion neutrons on performance.

Better 3-D Imaging of Tumors in the Breast with Less Radiation
In breast cancer screening, an imaging technique based on nuclear medicine is currently being used as a successful secondary screening tool alongside mammography to improve the accuracy of the diagnosis. Now, a team is hoping to improve this imaging technique.

Microbes are Metabolic Specialists
Scientists can use genetic information to measure if microbes in the environment can perform specific ecological roles. Researchers recently analyzed the genomes of over 6,000 microbial species.
Spotlight

Graduate students gather virtually for summer school at PPPL
Princeton Plasma Physics Laboratory

Virtual internships for physics students present challenges, build community
Princeton Plasma Physics Laboratory

Blocking the COVID-19 Virus's Exit Strategy
Brookhaven National Laboratory

From Nashville to New Hampshire, PPPL's student interns do research, attend classes and socialize from their home computers
Princeton Plasma Physics Laboratory

Graduate student at PPPL Ian Ochs wins top Princeton University fellowship
Princeton Plasma Physics Laboratory

Chicago Public School students go beyond coding and explore artificial intelligence with Argonne National Laboratory
Argonne National Laboratory

Barbara Garcia: A first-generation college student spends summer doing research at PPPL
Princeton Plasma Physics Laboratory

Argonne organization's scholarship fund blazes STEM pathway
Argonne National Laboratory
Brookhaven Lab, Suffolk Girl Scouts Launch Patch Program
Brookhaven National Laboratory

From an acoustic levitator to a "Neutron Bloodhound" robot, hands-on research inspires PPPL's summer interns
Princeton Plasma Physics Laboratory

Brookhaven Lab Celebrates the Bright Future of its 2019 Interns
Brookhaven National Laboratory

PPPL apprenticeship program offers young people chance to earn while they learn high-tech careers
Princeton Plasma Physics Laboratory

JSA Awards Graduate Fellowships for Research at Jefferson Lab
Thomas Jefferson National Accelerator Facility

ILSAMP Symposium showcases benefits for diverse students, STEM pipeline
Argonne National Laboratory

Integrating Scientific Computing into Science Curricula
Brookhaven National Laboratory
Students from Minnesota and Massachusetts Win DOE's 29th National Science Bowl(r)
Department of Energy, Office of Science
DOE's Science Graduate Student Research Program Selects 70 Students to Pursue Research at DOE Laboratories
Department of Energy, Office of Science

Young Women's Conference in STEM seeks to change the statistics one girl at a time
Princeton Plasma Physics Laboratory

Students team with Argonne scientists and engineers to learn about STEM careers
Argonne National Laboratory

Lynbrook High wins 2019 SLAC Regional Science Bowl competition
SLAC National Accelerator Laboratory

Equipping the next generation for a technological revolution
Argonne National Laboratory

Chemistry intern inspired by Argonne's real-world science
Argonne National Laboratory

Argonne intern streamlines the beamline
Argonne National Laboratory

Research on Light-Matter Interaction Could Lead to Improved Electronic and Optoelectronic Devices
Rensselaer Polytechnic Institute (RPI)

Innovating Our Energy Future
Oregon State University, College of Engineering

Physics graduate student takes her thesis research to a Department of Energy national lab
University of Alabama at Birmingham

"Model" students enjoy Argonne campus life
Argonne National Laboratory

Writing Code for a More Skilled and Diverse STEM Workforce
Brookhaven National Laboratory

New graduate student summer school launches at Princeton Plasma Physics Laboratory
Princeton Plasma Physics Laboratory

The Gridlock State
California State University (CSU) Chancellor's Office

Meet Jasmine Hatcher and Trishelle Copeland-Johnson
Brookhaven National Laboratory

Argonne hosts Modeling, Experimentation and Validation Summer School
Argonne National Laboratory
Undergraduate Students Extoll Benefits of National Laboratory Research Internships in Fusion and Plasma Science
Princeton Plasma Physics Laboratory

Students affected by Hurricane Maria bring their research to SLAC
SLAC National Accelerator Laboratory

Brookhaven Lab Pays Tribute to 2018 Summer Interns
Brookhaven National Laboratory

CSUMB Selected to Host Architecture at Zero Competition in 2019
California State University, Monterey Bay

From Hurricane Katrina Victim to Presidential Awardee: A SUNO Professor's Award-Winning Mentoring Efforts
Brookhaven National Laboratory

Department of Energy Invests $64 Million in Advanced Nuclear Technology
Rensselaer Polytechnic Institute (RPI)

Professor Miao Yu Named the Priti and Mukesh Chatter '82 Career Development Professor
Rensselaer Polytechnic Institute (RPI)

2018 RHIC & AGS Annual Users' Meeting: 'Illuminating the QCD Landscape'
Brookhaven National Laboratory

High-School Students Studying Carbon-Based Nanomaterials for Cancer Drug Delivery Visit Brookhaven Lab's Nanocenter
Brookhaven National Laboratory

Argonne welcomes The Martian author Andy Weir
Argonne National Laboratory

UW Professor and Clean Energy Institute Director Daniel Schwartz Wins Highest U.S. Award for STEM Mentors
University of Washington

Creating STEM Knowledge and Innovations to Solve Global Issues Like Water, Food, and Energy
Illinois Mathematics and Science Academy (IMSA)

Professor Emily Liu Receives $1.8 Million DoE Award for Solar Power Systems Research
Rensselaer Polytechnic Institute (RPI)

Celebrating 40 years of empowerment in science
Argonne National Laboratory
Showing results
0-6 Of 2215